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VESPER: global and local cryo-EM map alignment
using local density vectors
Xusi Han1,3, Genki Terashi 1,3, Charles Christoffer 2, Siyang Chen2 & Daisuke Kihara 1,2✉

An increasing number of density maps of biological macromolecules have been determined

by cryo-electron microscopy (cryo-EM) and stored in the public database, EMDB. To inter-

pret the structural information contained in EM density maps, alignment of maps is an

essential step for structure modeling, comparison of maps, and for database search. Here, we

developed VESPER, which captures the similarity of underlying molecular structures

embedded in density maps by taking local gradient directions into consideration. Compared

to existing methods, VESPER achieved substantially more accurate global and local alignment

of maps as well as database retrieval.
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Proteins are the major working molecules in a variety of
cellular processes in a cell. Toward a mechanistic under-
standing of protein function, tremendous efforts have been

paid to solve the three-dimensional (3D) structures of proteins
using experimental methods including cryo-electron microscopy
(cryo-EM)1–3, which is increasingly becoming a mainstream
technique in structural biology. EM density maps have been
rapidly accumulated in the public database, the Electron Micro-
scopy Data Bank (EMDB)4, which now holds over 12,855 entries
as of November 2020. To interpret the structural information
contained in EM density maps, alignment of maps is an essential
step. Alignment is involved in many important procedures for
analyzing EM maps, including rigid-body structure fitting of
atomic models5, comparison of maps to identify differences in
maps during a structure modeling process6 or to understand
similarities and differences of different functional states7–9,
and EM map database search10,11. Two types of alignment and
searching operations, global and local, are valuable for examining
EM maps. The former aligns two entire maps to identify corre-
sponding regions of the maps and to identify related maps from a
database, while the latter is useful for identifying a
substructure captured in a smaller map within the entire complex
in a larger map.

There are a couple of existing methods developed for EM map
matching and database search. One of them is gmfit, which
represents a map with a combination of Gaussian functions
(Gaussian mixture model; GMM)11,12. gmfit compares two maps
by placing one map on the other map in random initial positions,
which are then locally optimized by a steepest-descent method to
maximize the correlation of the Gaussian functions of the GMM
of the two maps. To run gmfit, users need to specify the number
of Gaussian distribution functions (GDFs) to approximate a map.
A popular molecular visualization program, Chimera, offers a
function named fitmap for superimposing two EM maps13. To
run fitmap, users specify the number of initial placements of
maps. Then, from each of the randomly generated placements,
local optimization is performed to maximize the correlation
between two maps. Previously, we have developed EM-SURFER,
a web-based tool for real-time global matching and database
search for EM maps10,14. In EM-SURFER, we used 3D zernike
descriptors (3DZD) for the efficient comparison of EM map
isosurfaces. 3DZD is based on a mathematical series expansion of
a given 3D function15,16, which gives a compact and rotation-
invariant representation of EM maps. Using 3DZD, an EM-
SURFER search against the entire EMDB is completed in a few
seconds. On the other hand, EM-SURFER does not provide a
map alignment because it uses rotation-invariant descriptors, and
it also only performs global matching. Overall, these methods
exhibit a limited accuracy in map alignment and a database
search, particularly for partial matching. The concept of map
alignment has also been used in subunit structure fitting to an EM
map of a complex structure, where a simulated density of a
subunit is generated and fitted. Such methods include EMFIT17,
FoldHunter18, ADP_EM19, and SITUS20. EM-LZerD uses a
shape-fitting function to select multi-chain complex models that
fit to an EM map21.

Here, we developed a method called VESPER (VEctor-based
local SPace ElectRon density map alignment), which performs
accurate global and local alignment and comparison of EM maps.
VESPER represents an EM map as a set of vectors, which point
toward denser points in the vicinity. Thus, the directions of the
vectors capture local structures embedded in the map, which
turned out to be effective in obtaining accurate global and local
map alignment. An alignment of maps is evaluated by a score
defined as the sum of dot products of matched vectors from two
maps. The best alignment with the maximum score is sought

using a fast Fourier transform (FFT)22 in an exhaustive search
using rotational and translational intervals. Compared on
benchmark datasets, VESPER showed a higher accuracy in map
retrieval as well as in global and local map matching than gmfit
and fitmap.

Results
We first explain the VESPER algorithm. Then we discuss VES-
PER’s performance in global map matching and partial map
matching.

Overview of the VESPER procedure. Figure 1a illustrates the
overview of the VESPER workflow. For a given density map from
EMDB, we used the author-recommended contour level provided
in EMDB to extract the occupied volume. An EM map is
represented by a set of unit vectors computed with the mean shift
algorithm (see the “Methods” section). The voxel spacing of the
maps is set to 7 Å. This vector representation originates from
the approach used in MAINMAST, a de novo protein structure
modeling method for cryo-EM maps23,24. In MAINMAST, the
locations of density points are updated toward neighboring
denser points and clustered iteratively using the mean shift
algorithm until the points converge into a small number of
representative points. In VESPER, on the other hand, each den-
sity point is represented as a unit vector that shows the gradient
of the density toward a local representative point that has a high-
density value calculated by the mean shift algorithm. In many
cases, representative points with high-density values correspond
to the backbone of a protein in the map. Thus, the vector
representation captures information about underlying local
molecular structures around each voxel. For a pair of EM maps,
the goal of VESPER is to find the pose transformation that
maximizes the agreement of the local density landscape of the two
maps. For each rotation of a map using an interval of 30° as
default (users can change this interval), a translation scan is
performed using FFTs to optimize the sum of dot products of
matched vectors (the DOT score). The dot product of a pair of
matched vectors ranges from −1 to 1 with 1 for a perfect match, 0
for two perpendicular vectors, and −1 for two vectors pointing in
opposite directions. Equal weight is given to the vector at each
voxel. A large overlap between two maps tends to have a large
DOT score as long as a majority of matched vectors have a
positive dot product value. Since the vector has three coordinates,
FFT needs to be performed for each component, which makes the
time complexity for a DOT score essentially three times larger
than other related scores, such as simple cross-correlation that
considers one value at each grid point. Then, for each of the 10
top-scoring models from the FFT search, VESPER performs a
finer rotational angle search with a 5° interval around each axis (if
the angle interval used for the initial coarse-grained search is
larger than 5°). Finally, the top 10 (default) or a user-specified
number of scoring superimpositions will be output. In the results
we show below, we will discuss the top-scoring superimposition
for VESPER unless noted otherwise.

On the right-hand side in Fig. 1a, an example of local map
alignment with EM maps of a complete V-ATPase structure
(EMD-8724) and the Vo region (EMD-8409) is shown. The top
panel shows vectors in the two maps (the number of vectors is
reduced for illustration). Shown in the bottom panel on the right
is the top-scoring superimposition of the two maps, where the
map of the Vo region was correctly fitted in the complete map of
V-ATPase. The colors of spheres in the superimposed maps
indicate the dot product values of matched vectors, with red being
a positive score and blue being a negative score or 0. In the
magnified region, blue arrows reflect the difference in underlying
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helix orientations (residue 90–115). On the other hand, the helices
and loops (residue 304–333) on the right side of the maps have
almost identical orientations, which are indicated in red.

Significance of a map alignment. For a database search for a
query map, we use a normalized score (Z-score) instead of the
raw DOT score because the DOT score has a dependency on the
size of maps. We compute the Z-score as follows: The query map
is placed in a rotational pose with an angle interval used, and for
each rotational pose, the query map is translated by the pre-
determined translational interval. Then, the largest DOT score

among all the translations for a rotational pose is stored. Exam-
ples of the distribution of the largest DOT score from each
rotational pose are shown in Fig. 1b–d for self-comparison of 70S
ribosome (EMD-2978), self-comparison of human adenovirus 5
capsid (EMD-3004), and a comparison between the two maps,
respectively. From each of the top 10 scoring poses found, a
further local rotational refinement with an interval of 5° was
performed, from which the largest DOT score for two maps was
identified. Then, the Z-score for the largest DOT score (indicated
with a red arrow in Fig. 1b–d), which is defined as (DOT_Score
−mean)/standard_deviation, was computed from the DOT score
distribution. Since a DOT score distribution can be biased when

Fig. 1 Overview of VESPER. a The flowchart of VESPER. Steps of VESPER are illustrated in the right panel with an example of a map alignment between the
complete V-ATPase (EMD-8724, 6.8 Å; left) and Vo region of the V-ATPase (EMD-8409, 3.9 Å; right). First, a set of unit vectors are computed using the
mean shift algorithm for each map. The number of vectors for EMD-8724 and EMD-8409 were 2441 and 678, respectively. In the figure, vectors were
thinned out for better presentation. Next, the two maps are matched using FFT to maximize the sum of the dot products of matched vectors. Then, the top
10 scoring models undergo a local angle refinement with a 5° interval. The best scoring superimposition is shown at the bottom of the right panel. The Vo

region (PDB ID: 5tj5) is colored in yellow and the complete V-ATPase (PDB ID: 5vox) is in gray. In the superimposed maps, vectors with positive and non-
positive and DOT scores are colored in blue and red, respectively. The helix in the complete V-ATPase that does not match well to the Vo region is colored
in red. Vectors from the Vo region are colored in blue and red, while those from the complete V-ATPase are colored in cyan and magenta. b 70S ribosome
(EMD-2978, resolution: 11.6 Å) matched to itself. DOT score: 10,841; Z-score: 101.62. c human adenovirus 5 capsid (EMD-3004, resolution: 12.5 Å)
matched to itself. DOT score, 398,169; Z-score: 94.31. d an alignment between human adenovirus (EMD-3004) and 70S ribosome (EMD-2978). DOT
score, 943; Z-score: 3.97.
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two symmetrical maps, such as virus capsids, are compared, as
shown in Fig. 1c, the DOT scores in the distribution are first
clustered with single-linkage clustering with a cutoff of 20% of the
difference between the maximum and minimum DOT scores, and
scores in the largest cluster are used for computing the Z-score.
For the comparison of virus capsids in Fig. 1c, this clustering
process eliminated a bias to the score distribution for the Z-score
computation, which was introduced from a small peak that
locates at around 200,000. This peak came from all rotational
poses at the correct translation position of the two maps. The
clustering process does not affect usual cases of comparison with
asymmetric maps (e.g. Fig. 1b). The Z-scores computed for the
three map comparisons are 101.62, 94.31, and 3.97 for Fig. 1b–d,
respectively. Thus, self-comparisons (Fig. 1b and c) each had a
very high Z-score, apparently indicating that the compared maps
are similar (actually identical as they are self-comparisons) while
maps with different shapes have insignificant Z-scores (Fig. 1d).

Dataset of density maps. To evaluate the performance of VES-
PER, we constructed a dataset of EM density maps from EMDB
as follows: First, maps that do not have contour level information
were excluded. Then, the remaining maps were grouped by the
name of the macromolecules of the maps. Groups were inspected
manually. A group was removed if it only contains low-resolution
maps with a resolution of 20 Å or worse or if it contains fewer
than five maps. From each group, five maps were randomly
selected. This process yielded a dataset with 129 groups with 645
maps in total. Finally, groups that share the same partial struc-
tures are merged into a class. For example, the group for the
complete V-ATPase and the group for the Vo domain of V-
ATPase were merged in the same class. The resulting dataset with
105 classes was used for evaluating partial map matching per-
formance. The number of maps in a class ranged from 5 to 50.

For global map matching, one group was randomly selected
from each class to form a dataset of 82 classes with 410 maps.
Thus, each class consists of a single group with five maps. This is
to have each class distinct from each other to prevent a query map
from having a correct partial match with maps from different but
related groups. The list of maps for datasets for global and partial
matching are provided in Supplementary Data 1.

Using this dataset, we evaluated a method’s ability to retrieve a
map in the same class within the top, the first tier, and the second
tier. The first tier is defined as the ranks up to the number of
other maps in the same class with the query, and the second tier is
double of it. Thus, for a global map search, the first and the
second tier is within the 4th and the 8th ranks. For a partial map
search, the ranks of the first and the second tiers depends on the
number of maps in the same class.

Global map search. First, we examined the global map search
performance of VESPER. We primarily used an angle interval of
30° and a translational interval of 7 Å unless noted otherwise
because this setting showed a reasonable balance between
the accuracy and the speed among other settings tested (see the
“Methods” section). In Fig. 2a–c, we compared results using the
DOT score with cross-correlation (CC), which is a commonly
used metric to evaluate the fitting of two EM maps13,25,26. To
compute the DOT score and CC, the density voxel spacing is
resampled to 7 Å (or to the user’s setting) and maps are con-
toured before calculation. Both CC and the DOT score were
computed for the overlap between the two maps. For a query map
in the global map matching dataset, the rest of the maps were
compared with the query and ranked by the Z-score of the DOT
score or CC. We examined if a map in the same group (a correct
map) was retrieved as the closest, within the first, or the second

tier. To evaluate map retrieval results for a group, the fraction of
query maps in the group that found a correct map within a cutoff
rank was computed. The overall performance of a method is
computed by the average over all the groups.

Figure 2a shows the histogram of the fraction of maps in each
group that found a correct map as the closest hit. As shown, using
VESPER with the DOT score (blue bars) had more groups (43
groups) that achieved 1.0 than using CC (orange bars; 28 groups).
In Fig. 2b, the retrieval performance of each map group is plotted,
considering the first tier. It is apparent that the performance of
the DOT score was better than CC for the majority of the map
groups. VESPER with the DOT score had a higher correct map
fraction for 54 groups, while CC was better for 12 groups. Both
methods tied for 16 groups. The same trend was observed when
up to the second tier was considered (Supplementary Fig. 1a). The
superior performance with the DOT score was observed
consistently across all resolution bins from 2 to 50 Å (Fig. 2c
and Supplementary Fig. 1b). Figure 2g is an example where
VESPER with the DOT score showed a better retrieval
performance than CC. For the query map of PKS module 5
(PikAIII) from the pikromycin pathway (EMD-566427), VESPER
retrieved all four other maps in the same group, while CC
retrieved only one map in the same group.

We further compared the performance of VESPER using the
DOT score and CC with three existing methods, gmfit and fitmap,
and EM-SURFER that uses 3DZDs for the map shape search10,14.
gmfit was run with 20 GDFs, which is the setting for map
superimposition in the Omokage map search web server where gmfit
was used6. The other parameters of gmfit were set to their default
values except for the maxsize parameter, where we tried two settings:
One is default of the standalone program and the other is -maxsize
64, which is the parameter setting used in the Omokage server. In
fitmap, an input map was contoured, and the number of initial
placements was set to 100. Corr score was used in fitmap. For 3DZD,
parameters were set to the same as what are used in EM-SURFER.

Table 1 summarizes the map retrieval performance within the
first and the second tier. We added the Laplacian filter in this
comparison, which has an effect of enhancing 3D edges20. For the
global map search (the left half of Table 1), VESPER with the
DOT score (VESPER (DOT)) had the best average correct map
fractions within the first and the second tier, which was 4.7%
points higher than the second-best method, gmfit with the
maxsize 64 option and the Laplacian filter, respectively. The
direct comparison with gmfit (Fig. 2d) and fitmap (Fig. 2e) shows
that VESPER performed better for more map groups in the first
tier. The same trend was shown when the second tier was
considered (Supplementary Fig. 1c, d).

Figure 2f and Supplementary Fig. 1e show the map retrieval
performance for maps at different resolutions. VESPER had the
highest fraction of correct maps for most resolution bins. gmfit
was the second for most of the resolution bins and the best for the
resolution bin of 12–14 Å. Figure 2h is an example of map search
from a query map of the ClpB–ClpP complex (EMD-255828,
resolution: 21 Å) where VESPER performed better than gmfit in
map retrieval. While VESPER found all the other four maps of
the same complex in the first tier, gmfit retrieved two unrelated
maps that have somewhat similar overall shape at the third and
fourth ranks, which happened perhaps due to the low resolution
of the query map. Figure 2i is the opposite case, where VESPER’s
retrieval result was worse than gmfit. gmfit’s retrievals were all
correct in the first tier for the query map of the secretin GspD
(EMD-667529) while VESPER’s third and the fourth retrievals
were incorrect, both from GroEL. For this query, the GroEL maps
had relatively high score because they have an overall similar
shape and also because these maps are largely hollow inside, and
thus inconsistency inside the maps were not much penalized.
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Global map alignment accuracy. Next, we examined the global
map alignment accuracy. For this test, we randomly selected three
pairs of maps, each from the same resolution range of better than
5 Å, 5–10 Å, and over 10 Å, and six maps pairs that were taken
from different resolution ranges. These maps have a fitted protein

structure in PDB (Table 2). The ground truth of the super-
imposition for the map pairs was computed by aligning the
underlying protein structures of the maps using MM-align30.
Table 2 summarizes the root mean square deviation (RMSD) of
the best-scoring superimposition by VESPER with the DOT score

Fig. 2 Performance on global map search. a–c comparison of VESPER with the DOT (blue) score and CC (orange). a The number of map groups classified
by the fraction of member maps that retrieved a correct map as the top hit. b The first tier hit fraction for each group. The area of a data point is
proportional to the number of groups. c The average fraction of correct hits within the first tier on maps at different resolutions. d Comparison between
VESPER and gmfit on the first tier hit fraction. e Comparison between VESPER and fitmap on the first tier hit fraction. f The average first tier hit fraction for
maps in each resolution bin by VESPER with the DOT score (blue), CC (orange), gmfit (green), fitmap (red), and EM-SURFER (3DZD; purple). The
resolution of the query map was considered. g An example of a query map where the DOT score performed better than CC. The query map is PikAIII
(EMD-5664). The top four retrieved maps by VESPER with the DOT score were all from PikAIII: EMD-5649, EMD-5663, EMD-5651, and EMD-5666, in
this order. On the other hand, only 1 out of the top 4 retrieved maps by CC were PikAIII: EMD-5649 (PikAIII), EMD-6443 (Tetrahymena telomerase), EMD-
6635 (glutamate dehydrogenase), EMD-5145 (bovine TriC), in this order. h An example of map retrieval where VESPER performed better than gmfit. The
query is a map of ClpB bound to ClpP (EMD-2558). All the four maps retrieved in the first tier by VESPER were ClpB-ClpP: EMD-2557, EMD-2556, EMD-
2560, EMD-2559 in this order. With gmfit, only two within the top four retrieved maps were the ClpB-ClpP: EMD-2559 (ClpB-ClpP), EMD-2560 (ClpB-
ClpP), EMD-5145 (bovine TriC), EMD-2327 (GroEL-GroES). i An example of map retrieval where gmfit performed better than VESPER. The query is a 3.04
Å res. map of secretin GspD (EMD-6675). VESPER retrieved only two correct maps among the top four retrieved maps: EMD-1763 (secretin GspD), EMD-
6676 (secretin GspD), EMD-2325 (GroEL-GroES), and EMD-1203 (GroEL-gp31) in this order. All four retrieved maps by gmfit were all from secretin GspD:
EMD-6676, EMD-8779, EMD-1763, and EMD-6677 in this order.
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in comparison with CC, gmfit, and fitmap. For VESPER, four
parameter combinations of a voxel spacing and a rotational angle
were examined.

For 10 out of 15 map pairs, VESPER showed the lowest RMSD
using one of the parameters used among the methods compared
(Table 2). Comparing VESPER with the DOT score and CC, we
see that the DOT score had more cases with a smaller RMSD,
indicating that the DOT score performs better than scoring with
CC, which is consistent with the global map search accuracy
discussed with Fig. 1 and Table 1. The difference of RMSD values
between VESPER with the DOT score and CC for the 15 maps
has a p-value of 0.008 when tested with one-sided paired t-test.
Examining VESPER’s results for maps with less (better) than 5 Å
resolution, the RMSDs achieved became lower (better) as finer
voxel spacings were used. This implies that the DOT score was
able to distinguish small differences in the alignments. The same
trend still held, but was less obvious, for maps with worse
resolutions. In Supplementary Fig. 2 we provided figures of
alignments with large RMSD values by fitmap and CC. VESPER
performed better than gmfit and fitmap. fitmap produced
alignments with large RMSD values for a few cases. This may
be because fitmap performs local optimization from random
initial structures. Overall, VEPSER showed the best performance
among the methods compared for both global map database
search and alignment.

Comparison with 18 existing map alignment scores. Addi-
tionally, we compared the DOT score with 18 existing scores for
evaluating map alignments, which were described in the paper by
Joseph et al. 8 The scores were compared on a dataset of 100 map
alignments for 26 EM map pairs that were used in the paper. The
reference alignment of a map pair was computed by super-
imposition of the underlying protein structures. Alignments were
classified to correct (more precisely, sufficiently close to the
reference alignment) and incorrect using either RMSD or the log
(ALCPS) score. To comprehensively evaluate the performance of
the scores, we used seven evaluation metrics, which capture dif-
ferent important aspects of the performance of the scores for
identifying correct alignments among other candidates. For more
details, refer to the “Methods” section and Supplementary
Information file. The results are provided in Supplementary
Data 2.

The results (Supplementary Data 2) show that, overall, the
DOT score performed the best among the scores compared. T
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Table 1 Average fraction of correct maps retrieved within
the first and the second tier.

Global Partial

FT ST FT ST

VESPER (DOT) 0.613 0.670 0.592 0.657
CC 0.479 0.551 0.456 0.515
Laplacian 0.564 0.623 0.510 0.567
gmfit 0.563 0.609 0.479 0.551
gmfit (−64)* 0.566 0.613 0.479 0.556
fitmap 0.124 0.164 0.101 0.123
EM-SURFER 0.350 0.398 0.285 0.339

Global and partial map search results are shown. FT, the fraction of correct maps within the first
tier (top|C|−1 maps, where |C| represents the number of maps in the same class as the query
map); ST, the fraction in the second tier (top 2*(|C|−1) maps). VESPER (DOT) is the results of
VESPER using the DOT score. For the Laplacian filter, cross correlation was computed after the
filter was applied to maps. gmfit used the default parameter of the gmfit program. gmfit(−64)
used a “-maxsize 64” option when converting an EM map to a Gaussian mixture model using the
gmconvert program. This is the parameter used in the gmfit webserver. The number in bold
shows the best performance for each metric.
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Other scores that showed the top performance in terms of some
metrics include a normal vector-based score (NVA in the table),
the overlap (OVR), and the cross correlation (CCC).

Partial map search. Next, we discuss VESPER’s performance in
partial map search. The partial map search is aimed at finding
maps in a dataset, which contains common macromolecules with
the query map. The results are summarized in the right half of
Table 1 and Fig. 3. Table 1 shows that VESPER (DOT) achieved
the highest average success rates when retrievals within the first

and the second tier were considered. When the top hit was
considered, VESPER (DOT) had more map groups (67 groups)
than CC (51 groups) that had a 100% successful retrieval
(Fig. 3a). When individual map groups were considered, VESPER
(DOT) was more accurate than CC for the majority of map
groups (Fig. 3b), and VESPER’s advantage was consistent over all
the resolution ranges (Fig. 3c). When compared to gmfit (Fig. 3d)
and fitmap (Fig. 3e), it was clear that VESPER performed better in
the map retrieval for more map groups. Comparison for maps
determined at different resolutions (Fig. 3f) shows that VESPER

Fig. 3 Performance on partial map search. a The number of map groups with different fractions of member maps with a correct top hit. VESPER with the
DOT score (blue) and CC (orange). b The average fraction of correct hits within the first tier for the 129 groups. The x-axis, VESPER with the DOT score;
the y-axis, CC. The area of a point is proportional to the number of groups at that data point. c Comparison of VESPER (DOT) and CC on partial map
retrieval at different resolutions. The resolution of the query map was considered. The average fraction of correct hits within the first tier was considered.
d Comparison between VESPER and gmfit on the average fraction of correct hits in partial map search within the first tier for each map group.
e Comparison between VESPER and fitmap on the first tier hit fraction in partial map search. f The average first tier hit fraction for maps in each resolution
bin for VESPER (DOT) (blue), CC (orange), gmfit (green), fitmap (red), and EM-SURFER (3DZD; purple). The resolution of the query map was considered
on the x-axis. g The Vo domain of V-ATPase (left, EMD-8409, res.: 3.9 Å) matched to the complete V-ATPase (middle, EMD-8726, res.: 7.6 Å). Colored
dots in the right panel shows the dot product of matched vectors, with blue being a positive score and red for zero or a negative score. For this query, the
first tier success rates of VESPER (DOT)/CC/gmfit/fitmap were 0.57/0.36/0.36/0.21, respectively. The ranks of this hit (EMD-8726) from the query by
VESPER (DOT)/CC/gmfit/fitmap were 3/524/66/67 and the RMSD values of the match computed with the underlying protein subunit were 6.05/
132.45/140.23/2.27 Å, respectively. h proteasome regulatory particle (left, EMD-8675, res.: 6.1 Å) matched to 26S proteasome (middle, EMD-3537, res.:
7.7 Å). The first tier success rates of VESPER (DOT)/CC/gmfit/fitmap were 0.89/0.32/0.37/0.11, respectively. The ranks of this hit (EMD-8726) from the
query by VESPER (DOT)/CC/gmfit/fitmap were 1/507/184/473 and the RMSD values of the match computed with the underlying protein subunit were
11.32/111.40/138.33/131.44 Å, respectively.
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was the best for all resolution bins. The same trend was observed
when different criteria were used for evaluation (Supplementary
Fig. 3).

Two examples of local matches are shown in Fig. 3g, h. The
first example is a search from a map of the Vo domain of V-
ATPase (EMD-8409), which found a map of the complete V-
ATPase (EMD-8726) at the third rank (Fig. 3g). This retrieval at
the high rank contributed to a substantially higher first-tier (FT)
success rate by VESPER in comparison with the other methods.
VESPER’s FT success rate with the DOT score was 0.57, while
CC, gmfit, and fitmap only achieved 0.36, 0.36, and 0.21,
respectively. As shown in the right panel of Fig. 3g, the majorities
of vectors from the two maps have positive dot product score (i.e.
they point to similar orientations), which yielded a high retrieval
rank. The RMSD of the local alignment by VESPER (DOT) was
6.05 Å, which was sufficient to capture the map similarity. The
local matches by CC and gmfit were not successful as shown as
very large RMSD values of the alignments of 132.45 and 140.23 Å.
In terms of RMSD, fitmap had a better RMSD for this map pair,
2.27 Å, but this match was ranked as low as 67 in the search. The
second example (Fig. 3h) is from a search from the proteasome
regulatory particle (EMD-8675), which is aligned with 26S
proteasome (EMD-3537). Although the alignment was not highly
accurate (an RMSD of 11.32 Å), it was sufficient to rank the full
26S proteasome map as the top rank in the search. The other
three methods had a completely wrong alignment with an RMSD
over 100 Å and could not retrieve this map within a high rank
(see the figure caption).

In Fig. 4, we asked a question whether a search tends to retrieve
maps in the same group higher in the rank than maps in the same
class. The answer was that the result depended on each case. Out
of 100 query maps, a map in the same group (yellow) was ranked
at the top of the retrieval for 46 cases while the top was from the
same class (green) for other 50 cases. When the retrieved maps up
to third rank for each query was counted (thus in total of
300 maps), there were 125 maps in the same group and 158 maps
from the same class. Thus, about half of the top ranked retrievals
are from the same group and the other half were from the
same class.

Atomic model fitting accuracy. In the last section, we discuss
atomic model fitting accuracy of the methods. Nine maps were
selected for a test set, three each from resolution ranges of better
than 5, 5–10 Å, and over 10 Å (Table 3). These maps each have an
associated PDB entry of a protein structure that covers most of
the region of the maps and does not contain nucleic acid struc-
tures. For each protein chain, a density map is simulated using
the molmap command in Chimera at the resolution of the target
map. The density threshold was set to 0.2. With VESPER, fitting
was computed with four parameter combinations of a voxel
spacing and an angle interval as performed in Table 2.

The results are summarized in Fig. 5. In this figure, VESPER
with the DOT score and with CC was run with a voxel spacing of
3 Å and a rotational angle of 10°. Results with other parameter
combinations are shown in Supplementary Fig. 4. The first panel,
Fig. 5a, shows the RMSD values of the top-scoring alignment of
57 queries computed by the four methods. The plot compares
VESPER (DOT) with each of the other methods. Among the 57
queries, VESPER (DOT) placed more protein chains, 30 (52.6%)
and 33 (57.9%) within an RMSD of 5.0 and 10.0 Å, than the other
three methods, as shown in the plot. CC, gmfit, and fitmap had
15/15, 10/12, 14/16, maps within an RMSD of 5.0/10.0 Å,
respectively. The difference of the performance between VESPER
(DOT) and CC was statistically significant with a p-value < 0.05
computed with the one-sided paired t-test. Figure 5b is a

breakdown of the alignment results for each EM map in Table 3.
It counted the fraction of query chains that were aligned within
5.0 and 10.0 Å by each method. Considering the 5.0 Å cutoff,
VESPER (DOT) showed the largest fraction of correctly placed
chains for seven out of nine maps including two ties with other
methods.

The next three panels show examples of chain structure fitting
by the four methods. The first example (Fig. 5c) is results for five
chains of γ-secretase (EMD-3238, PDB ID: 5fn3). VESPER
(DOT) successfully fit four chains within an RMSD of 5.0 Å to the
correct pose (red). In contrast, fitmap placed two chains, nicastrin
(chain A) and PEN-2 (chain D), and CC and gmfit placed only
nicastrin within 5.0 Å RMSD. Similar results were observed in the
next example, transcription factor IIH (EMD-3802, PDB ID:
5of4) (Fig. 5d). Out of 10 chains, VESPER (DOT) (red) placed
eight chains (chain A, B, E, F, H, X, Y, Z) closer than an RMSD of
5.0 Å. CC and gmfit placed three chains and one chain,
respectively, within the cutoff, fitmap did not find a pose within
5.0 Å RMSD for any chain. In the panel, the pose of subunit XPD
(chain B) computed by fitmap is shown, which has an RMSD of
37.7 Å but still the smallest RMSD among the other chains. The
chain was placed in the correct position in the map but with a
substantial rotation from the correct orientation, which made the
RMSD large. The last panel (Fig. 5e) shows fitting for 18 chains of
RNA polymerase I-Rrn3–CF complex (EMD-3591, PDB ID:
5n5z). VESPER (DOT) placed seven chains within 5.0 Å RMSD,
which was substantially more than the other three methods. gmfit
did not fit a chain within 5.0 Å but one chain at a position with an
RMSD of 9.0 Å.

Discussion
In this work, we developed VESPER, a method for EM density
map search and alignment. The VESPER algorithm matches two
maps by considering local gradients represented by unit vectors,
which captures underlying macromolecular structures in the

Fig. 4 Top 100 retrievals of partial map search. For 100 queries of partial
map search that belong to a class with 10 or more members, top 100
retrieved maps were visualized in colors indicating whether the maps
belong to the same group (yellow), the same class (green), or others
(dark blue).
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maps. This implementation of the DOT score often results in
different map alignments as compared with CC. In CC, positions
with large absolute density values, such as those in a high-density
region in a map, influence more to the overall CC value. On the
other hand, for the DOT score the contribution of each aligned
position pair is essentially the same because the vectors are
normalized to the same length. But this also means that the DOT
score can be affected by changes in local gradient caused by small
structure variations.

Overall, VESPER showed higher accuracy than existing
methods in both global and local EM map search and alignment
under a reasonable speed requirement and for a given range of
resolutions under the parameter settings tested. Note that, in
general, the optimal parameter setting for a method differs for
each map and the purpose of the computation. Thus, a perfectly
fair comparison is not possible, and the comparison shown in this
work is to characterize the performance of VESPER but not to
rank the methods.

With VEPSER, an accurate map database search can be pro-
vided, for example, to EMDB, which currently does not offer on-
the-fly context-based map search. Another useful application of
VESPER is to perform local map alignment to identify a subunit
in a density map of a macromolecular complex. Since VESPER
outputs multiple candidate alignments with a fitness score, users
can manually examine alternative alignments and choose the
most plausible one considering background information of the
complex. By identifying the location of known subunit structures
in an EM map, VESPER maybe also helpful for segmenting the
map. Overall, we expect VESPER will serve as an indispensable
addition to the structural biology toolbox for studying EM maps.

Methods
Unit vector representation of local densities in VESPER. VESPER represents a
density map with a unit vector at each grid position, which points toward a
neighboring local density maximum point. The mean shift algorithm, a non-
parametric clustering approach, is used for this task. First, the grid spacing of a
map is converted to 7 Å. Then, a unit vector is placed at each grid point xi (i= 1,
…, N) with a density value that is no less than the author-recommended contour
level Φthr in an EM map. The unit vector located at xi is !

yi�xið Þ
yi�xij j

, where yi is computed

as follows:

yi ¼
∑N

n¼1 k xi � xn
� �

Φ xn
� �

xn
∑N

n0¼1 k xi � xn0
� �

Φ xn0
� � ð1Þ

k(p) is a Gaussian kernel function, which is defined as

k p
� � ¼ exp �1:5

p
σ

���
���
2

� �
; ð2Þ

where the σ is a bandwidth, which was set to 8.0 in all the computations in this
work. ΦðxnÞ is the density value of the grid point xn. The Gaussian kernel has an
effect of reducing density noise.

Cross-correlation (CC). CC for an alignment of two maps is computed in the
same way as in other existing software31–34:

CC ¼ ∑N
i¼1 ui � �u

� �
vi � �v
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ uj � �u
� 	2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ vj � �v
� 	2

r ; ð3Þ

where ui and vi are a density value of the position i in two maps, �u and �v are the
average density value of the two maps within the contour level used. N in the
numerator is the number of overlapped grid points in the alignment.

Exploration of parameter combinations. The voxel spacing and the angle spacing
are the two parameters for using VESPER. We used a voxel spacing of 7 Å and an
angle spacing of 30° for aligning and searching density maps as the default setting of
VESPER we used in this study. This setting was chosen from several parameter
combinations we examined because it provided a reasonable balance between the map
search accuracy and the computational time. In Table 4 and Supplementary Fig. 5, we
provided the computational time and the global map retrieval accuracy of parameter
combinations with a voxel spacing of 3, 7, or 10 Å and an angle spacing of 10°, 30°,
60°, and 90°. Results shown are the average of three query maps (EMD-3661, EMD-
8724, and EMD-1203) against all the 410 maps in the global matching dataset.

The computational time increased about 6 to over 30 times when the voxel
spacing was changed from 7 to 3 Å while it showed a relatively smaller decrease to
about when a larger spacing of 10 Å was used. Using a finer angle spacing of 10°
also increased the computational cost about 3–20 times from 30°. Comparing the
time needed for using the DOT score and CC, CC costs about the half the time of
DOT score when an angle spacing of 10° was used, but the differences became
smaller when less expensive settings were used.

Turning our attention to the retrieval accuracy (Supplementary Fig. 5), 10° and
30° did not make a substantial difference, but using coarser-grained angles, such as
60° or 90°, drastically deteriorated the accuracy. The voxel spacing of 7 Å was also
practically convenient because it is the grid spacing of the density maps we used.
To further speed up a search, practically we could apply a pre-filtering to reduce
the number of maps in the database to search against. For example, maps that have
a significantly different volume to the query may be removed. We could also
remove some functional classes of maps, e.g. virus entries or ribosome entries, or
maps of a certain resolution range, if the user is not interested in them.

In addition to the voxel and angle spacing, the contour level to use for
extracting input maps would affect the accuracy. In this work, we used author-
recommended contour level provided in EMDB for each map.

Recommended Z-core cutoff value. For the global and partial map search, a Z-
score of 10 or larger is an indication of significant map similarity, judging from Z-
score distributions of map pairs of positive (maps of the same group for global map
search and maps in the same class for local map search) and negative cases
(Supplementary Fig. 6). For map alignment, a Z-score of 10 would also be a proper
cutoff as shown in the distribution of the local map alignments (i.e. local structure
fitting). Below a Z-score of 10, results are mixture between positive and negative
search results and alignments better or worse than a 5 Å RMSD.

Comparison of the DOT score with 18 existing scores. We followed the paper by
Joseph et al. 8 to compare the DOT score with 18 other existing scores in their
performance of selecting accurate map alignments. 18 scores are: Overlap (OVR);
Segment based Manders’ Overlap Coefficient, Local cross correlation (SMOC);
Local cross correlation (SCCC); Cross correlation-coefficient (CCC); Local mutual
information (LMI); Normalized mutual information (NMI); Chamfer surface dis-
tance score on points selected based on a density threshold range (CDT); Chamfer
surface distance score on points selected using mean filter (CDM); Chamfer surface
distance score on all points at an iso-contour level (CDA); Normal vector score on
surface points selected from a density threshold range (NVT); Normal vector score

Table 3 EM maps used in partial map alignment evaluation.

Resolution bins Protein name Map ID Number of chains Chain IDs

<5 Å Voltage-gated calcium channel 9515/5gjw 4 A, C, E, F
γ-secretase 3238/5fn3 5 A–D, G
Transcription factor IIHa 3802/5of4 10 A, B, D–H, X–Z

5–10 Å Voltage-gated calcium channel 6476/3jbr 4 A, B, E, F
RNA polymerase I-Rrn3-CF complexa 3591/5n5z 18 A–R
Hsp90-Cdc37-Cdk4 complexa 3340/5fwp 4 A, B, E, K

>10 Å Dynein-Lis1 complex 8706/5vlj 3 A–C
NMDA receptor 8104/5ipt 4 A–D
Origin recognition complexa 8541/5ujm 5 A–E

Map ID shows the EMD-ID and the associated PDB ID of the macromolecules. The Chain IDs show the chains that were used as queries of the local alignment evaluation and the number of chains
indicates the number of query chains.
aThe names of the four entries that were shown in Fig. 5.
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on surface points identified by mean filter on binary mask (NVM); Normal vector
score on all points at an iso-contour level (NVA); Normalized variants of CDT,
CDM, & CDA (CDT_GDT), (CDM_GDT), (CDA_GDT); SMOC, SCCC, LMI are
combined with OVR (SMOC_OV), (SCCC_OV), (LMI_OV). These scores were
computed with the TEMPy program35.

The alignment dataset was computed for 26 map pairs provided in the Table 1 of
the paper by Joseph et al. Two map pairs from the table were excluded from our
dataset because defining the correct alignment was not possible since the associated
atomic detailed structures from PDB do not sufficiently overlap with the density maps.

All maps were resampled to the grid spacing of 3 Å. 100 alignments were computed
for each pair of maps by shifting and rotating maps using the translation and angle
definition used in the ALCPS score8. ALCPS is defined as ALCPS= 2πrθ/360, where r
is the translation and θ is a rotation angle from the correct superimposition, which was
defined by the superimposition of the associated protein structures using MM-Align30.
For an alignment set for a map pair, correct alignments were defined in two metrics,
RMSD and log(ALPCS). When RMSD was used for evaluation, 10 Å was used as the
cutoff to define correct alignments. For log(ALCPS), cutoffs were defined differently
for the three categories, which were −0.4, 0.82, and −0.5, for the Other, Ribosome,

Fig. 5 Performance of atomic model fitting. a Comparison of RMSD of the alignment with the best score by VESPER (DOT) with CC, gmfit, and fitmap. EM
maps in the dataset are listed in Table 3. A voxel spacing of 3 Å and a rotation angle of 10° were used in Fig. 4. Supplementary Fig. 4 provides results for the
other three parameter combinations. Blue circles, comparison against CC; orange triangles, gmfit; green crosses, fitmap, respectively. b The fraction of
query chains for each map that had the top-scoring alignment with an RMSD of 5.0 Å or less (solid gray bars) and 10.0 Å or less (including hatched bars).
Black bars, VESPER (DOT); dark gray, CC; medium gray, gmfit; pale gray, fitmap. c Chain structure fitting for five chains of γ-secretase (EMD-3238, PDB ID:
5fn3). The left panel shows superimposed structures of 5fn3 in the map. Each chain is in different color. From the second to the last panel from the left,
chains placed within an RMSD of 5.0 Å are shown for VESPER (DOT), CC, gmfit, and fitmap, respectively. The number of chains placed within the cutoff
was 4, 1, 1, and 2 chains by these methods, respectively. d Chain structure fitting of transcription factor IIH (EMD-3802, PDB ID: 5of4). There are 10 chains
to fit. VESPER (DOT), CC, gmfit, and fitmap placed eight (A, B, E, F, H, X, Y, Z), three (A, B, Y), one (B), and zero chains within 5.0 Å RMSD, respectively.
Chain IDs are taken from the PDB file. For fitmap, the placement of chain B, which had an RMSD of 37.7 Å is shown, since this chain had the smallest RMSD
among the other chains. e fitting of 18 chains of RNA polymerase I-Rrn3-CF complex (EMD-3591, PDB ID: 5n5z). Within 5.0 Å RMSD, VESPER (DOT), CC,
gmfit, and fitmap placed seven (A, B, C, E, G, H, O), four (A, B, C, O), zero, and two (B, P) chains, respectively. For gmfit, chain A that was fit at an RMSD of
9.0 Å is shown.
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and Virus categories, respectively. These log(ALCPS) cutoff values were adopted from
the aforementioned paper by Joseph et al.8.

Scores were evaluated by six metrics, the area under the curve (AUC) of the
receiver operator characteristic (ROC) curve, average precision (i.e. the area under
the precision-recall curve), the Z-score of the score of the best alignment (i.e. the
alignment that is the closest to the reference alignment), the average Z-score of top
10 best alignments, Δlog(ALCPS) and ΔRMSD, which are the difference of the best
alignment and the top-choice by the score, the average accuracy, and the average
F1-score. A Z-score is defined by (score−average_of the_score)/standard deviation,
where the average and the standard deviation were computed from the score
distribution of different alignments of the same map pair. An F1-score is defined as
2�(precision�recall)/(precision+ recall). These scores evaluate different important
aspects of the scores. log(ALCPS) considers deviations of translational and
rotational shifts of an alignment, whereas RMSD measures an average deviation at
each amino acid residue point. Supplementary Fig. 7 provides correlation of RMSD
with the DOT Z-score and four other representative scores. AUC and the average
precision are for evaluating the overall retrieval performance, the two Z-score
metrics evaluate how distinctively a score can select correct alignments, Δlog
(ALCPS) and ΔRMSD are for evaluating how good the top choice of a score is
relative to the best alignment in the dataset, and the average accuracy and F1-score
check the classification performance of a score. Since the suitability of each metric
differs for different purposes and targets, we provide all these values in
Supplementary Data 2 (in a separate Excel file). Refer also to explanation in the
Supplementary Information file for some more details. The alignment dataset is
made available at https://kiharalab.org/vesper_data. The VESPER program36 is
available at https://github.com/kiharalab/VESPER.

Data availability
The dataset of EM maps is provided in Supplementary Data 1. The experimental EM
maps can be downloaded from EMDB. The datasets used for the comparison with 18
existing scores and the local structure alignment (Fig. 5) are provided at https://kiharalab.
org/vesper_data.

Code availability
The VESPER program is freely available for academic use via https://github.com/
kiharalab/VESPER and https://kiharalab.org/em-surfer/vesper.php.
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