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Midkine expression by stem-like tumor cells
drivespersistence tomTOR inhibition andan
immune-suppressive microenvironment

Yan Tang1, David J. Kwiatkowski 1 & Elizabeth P. Henske 1

mTORC1 is hyperactive in multiple cancer types1,2. Here, we performed inte-
grative analysis of single cell transcriptomic profiling, paired T cell receptor
(TCR) sequencing, and spatial transcriptomic profiling on Tuberous Sclerosis
Complex (TSC) associated tumorswithmTORC1hyperactivity, and identified a
stem-like tumor cell state (SLS) linked to T cell dysfunction via tumor-
modulated immunosuppressive macrophages. Rapamycin and its derivatives
(rapalogs) are the primary treatments for TSC tumors, and the stem-like tumor
cells showed rapamycin resistance in vitro, reminiscent of the cytostatic
effects of these drugs in patients. The pro-angiogenic factor midkine (MDK)
was highly expressed by the SLS population, and associated with enrichment
of endothelial cells in SLS-dominant samples. Inhibition of MDK showed
synergistic benefit with rapamycin in reducing the growth of TSC cell lines
in vitro and in vivo. In aggregate, this study suggests an autocrine rapamycin
resistance mechanism and a paracrine tumor survival mechanism via immune
suppression adopted by the stem-like state tumor cells with mTORC1
hyperactivity.

Tuberous Sclerosis Complex (TSC) is an autosomal dominant disease
with an incidence of 1:6000 births. TSC is caused by loss-of-function
mutations in the tumor suppressor genes TSC1 and TSC23. Second hit
loss of the remaining wild-type copy of TSC1 or TSC2 leads to hyper-
active mTORC1, and drives tumor growth in multiple organs3. Angio-
myolipoma (AML) and lymphangioleiomyomatosis (LAM) are
common and related manifestations of TSC that can lead to renal and
pulmonary insufficiency, respectively4,5. AML and LAM also occur
sporadically in patients without TSC3–5. The mTORC1 inhibitors sir-
olimus (rapamycin) and everolimus (Afinitor) are closely related
compounds termed rapalogs, and are FDA-approved for the therapy of
LAM and AML, respectively. Rapalogs induce a modest response in
most patients with a median 50% volume reduction of AML6 and sta-
bilization of lung function in LAM for at least 12 months7, with recur-
rent tumor growth and lung function decline after treatment
cessation. Therapeutic strategies that eliminate, rather than suppress,
tumor cells in TSC, are urgently needed.

Prior efforts to characterize TSC tumors using bulk RNA-
Sequencing (RNA-Seq) has advanced our understanding of the
unique transcriptional programs of TSC tumors8, including the
important role of melanocyte inducing transcription factor (MITF)9,
but were limited in the ability to reveal tumor cell heterogeneity, or
interaction between tumor and microenvironment8. In contrast,
single-cell RNA-Sequencing (scRNA-Seq) enables comprehensive
investigation of heterogeneity of tumor and microenvironment cells
and global mapping of molecular interactions among cell types. Two
recent single-cell studies on LAM lungs have yielded important insight
into the cellular origin of LAM cells and revealed alveolar epithelial
remodeling by LAM cells10,11. However, these studies were limited by
the small number of LAM cells identified (<200 LAM cells).

Tumor cell heterogeneity and plasticity is increasingly recognized
as an important and common aspect of tumor biology. The occurrence
of multiple cell states in tumors and plasticity of inter-conversion of
cell states likely contributes to therapeutic resistance12. In AML, three

Received: 19 April 2021

Accepted: 11 August 2022

Check for updates

1Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA.
e-mail: dk@rics.bwh.harvard.edu; ehenske@bwh.harvard.edu

Nature Communications |         (2022) 13:5018 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-5668-5219
http://orcid.org/0000-0002-5668-5219
http://orcid.org/0000-0002-5668-5219
http://orcid.org/0000-0002-5668-5219
http://orcid.org/0000-0002-5668-5219
http://orcid.org/0000-0001-7978-6699
http://orcid.org/0000-0001-7978-6699
http://orcid.org/0000-0001-7978-6699
http://orcid.org/0000-0001-7978-6699
http://orcid.org/0000-0001-7978-6699
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32673-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32673-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32673-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32673-7&domain=pdf
mailto:dk@rics.bwh.harvard.edu
mailto:ehenske@bwh.harvard.edu


different cell types represent the neoplastic process (fat, muscle, and
vessels)13. Cellular heterogeneity is evident in both AML and LAM, but
the precise components of this heterogeneity, how the different cel-
lular elements inter-relate, and how each element responds to therapy
are unexplored. In addition, aberrant vascular hypertrophy is also
typical of AML13, and may contribute to an hypoxic tumor micro-
environment. Tumor cells can acquire stemness and dormancy due to
hypoxic conditions, and become stress and therapy resistant14.

Emerging data suggest that the immune systemplays a key role in
the pathogenesis and potentially the therapy of LAM and AML. Natural
killer cells are enriched and activated in LAM15,16. Evidence of T-cell
infiltration and exhaustion have been observed in human AML and
LAM and in mouse models, and there is clear benefit of immunother-
apy in mouse models of TSC and LAM17,18. This T-cell infiltration and
dysfunction are unexpected since AML have a very low neoantigen
burden19. Macrophage infiltration was also observed in renal AML20,
hepatic AML21, and TSC skin tumors22. Despite these advances in
understanding the immune microenvironment of LAM and AML, a
comprehensive analysis has not been possible. In addition, the iden-
tification ofmolecular interactions between AML/LAM tumor cells and
other cell types in the microenvironment has not previously been
possible.

To address these points, we interrogated the tumor micro-
environment of AML and LAM. Single-cell profiling of five LAM speci-
mens, six AML, and fourmatched normal kidneys revealed twodistinct
cell states in AML/LAM cells: a stem-like state (SLS) and an inflamma-
tory state (IS). SLS tumor cells exhibited high stemness and dormancy
marker expression, and showed rapamycin resistance in primary AML-
derived cultures. MDK was highly expressed specifically in SLS cells,
and MDK inhibitor treatment enhanced the therapeutic effect of
rapamycin in patient-derived TSC2-deficient AML cells in vitro and
in vivo. Integrative analysis of single-cell data and spatial tran-
scriptomic profiling of these tumors further revealed a modulatory
axis from SLS tumor cells to suppressive TREM2+/TYROBP+ macro-
phages, leading to T-cell dysfunction. Concurrent single-cell T-cell
receptor sequencing (scTCR-Seq) analysis demonstrated a substantial
suppression of clonal expansion and T-cell RNA velocity in SLS-
dominant tumors compared to IS-dominant tumors. In contrast, IS
tumor cells with low MDK expression showed high expression of
cytokines and were enriched with immune regulatory pathways. Sub-
stantial T-cell clonal expansion with elevated cytotoxic programs was
observed in IS-dominant tumors compared with SLS-dominant
tumors. Taken together, these data reveal differential immune remo-
deling by previously unrecognized distinct cell states in mTORC1-
hyperactive tumors, and provide a rationale for precision immu-
notherapy in TSC.

Results
Single-cell analysis of AML and LAM
AML and LAM are hallmark manifestations of TSC3, and are also seen
sporadically in patients without TSC. Six renal AML tumors and four
matched normal tissues (Supplementary table) obtained at the time of
tumor resection were assessed with scRNA-Seq and paired scTCR-Seq
using the 10× Chromium single-cell 5’ chemistry (Fig. 1a). Five LAM
lungs (Supplementary table 1) obtained at lung transplantation were
also analyzed with scRNA-Seq. After filtering out low-quality cells, a
total of 108,071 cells from the AML and 33,136 cells from the matched
normal kidneys were analyzed; 42,202 cells were analyzed from the
LAM lung samples. Pathological images for the AML/LAM samples are
provided in Supplementary Fig. 1.

Data integration identified tumor cells and all other expected
major cell types in the immune and stromal compartments of AML
tumors and matched normal tissues (Fig. 1b, c). Cell types were
annotated first by unbiased cross-referencing to two databases of pure
cell types, using SingleR23, with normalized data. This was followed by

manual annotation with cell type-specific marker genes to refine cell
type identification (Supplementary Fig. 2a). AML and LAM cells were
identified using a panel of five well-established marker genes known
frompriorwork tobehighly expressed inbothAMLandLAM24 (CTSK25,
PMEL26, VEGFD27,28, MITF29, and MLANA30) (Supplementary Fig. 2b).
Graph-based clustering was performed on the mesenchymal cell
population using Seurat, resulting in eight clusters (Supplementary
Fig. 2c). Cells expressing at least two of the five marker genes at or
above median expression across all mesenchymal cells with non-zero
values were identified as AML/LAM cells. We observed that nearly all
cells meeting this criterion were in three clusters (cluster 1, 2 and 6),
and therefore, we annotated all cells in these three clusters as tumor
cells. The number of AML cells (6%) and LAM cells (0.66%) was low.
Importantly, no cells with this expression pattern were observed in the
normal kidney specimens, strongly suggesting that this method of
tumor cell identification was specific, although it may have under-
counted the tumor cell fraction in both AML and LAM. Cells from each
patient sample contributed to each cluster, suggesting an absence of
major batch effects (Supplementary Fig. 2d, e). Normal kidney con-
tained 49% epithelial cells in contrast to 1.1% epithelial cells in AML, as
expected (Fig. 1d).Many immunepopulationswere enriched in tumors
compared tomatched normal, includingmacrophages (18.3% vs 2.7%),
dendritic cells (4% vs 0.7%), and T cells (32.6% vs 14.1%). We also
identified proliferating T cells and proliferating macrophages in AML
(Supplementary Fig. 1a).

Themajor cell types identified in LAM lung included immune cells
(T cells, NK cells, B cells, macrophages, andmonocytes), mesenchymal
cells, epithelial cells and endothelial cells (lymphatic and blood)
(Fig. 1e). Proliferating macrophages were also identified in LAM (Sup-
plementary Fig. 2f). In contrast to the AML, no proliferating T lym-
phocytes were identified in the LAM specimens.

Globalmapping of pathways and genetic regulatory networks in
AML cells
Re-clustering of the mesenchymal population showed separate clus-
ters of cells from normal kidneys and AML tumors (Fig. 1f). The tri-
modal cluster consists of cells derived solely from AML tumors.
Besides AML cells (as described above), the cluster also contains
tumor-associated fibroblasts (TAF) with no expression of tumor mar-
ker genes but high expression of known TAF marker genes: Tumor-
Derived Adhesion Factor (IGFBP7)31, Fibroblast-Specific Protein-1(FSP1/
S100A4)32, Platelet-Derived Growth Factor Receptor Beta (PDGFRB)32,
Secreted Protein Acidic And Rich in Cysteine (SPARC), and SPARC-Like
Protein 1 (SPARCL1) (Fig. 1f, Supplementary Fig. 3a). TAF have been
shown to promote tumor proliferation in many human cancers33.

Differential gene expression analysis by Seurat34,35 identified 160
genes uniquely upregulated in tumor cells compared with TAF and
normal kidney, including genes previously reported (e.g., GPNMB8,
SQSTM1/p6236, MMP237, PTGDS38) and genes involved in tumor metas-
tasis (e.g. MMP11, MDK, DCN, PDPN) (Fig. 1g, Supplementary Fig. 3b,
Supplementary data 1). Two long non-coding RNAs (lncRNAs)
(MALAT1, NEAT1) were upregulated in both tumor cells and tumor-
associated fibroblasts compared to matched normal mesenchymal
cells (Fig. 1g and Supplementary Fig. 3c), suggesting remodeling of
fibroblasts by AML cells.

To identify pathways differentially regulated in AML cells vs. TAF
and normal kidney, we used Gene Set Variation Analysis (GSVA)39, a
non-parametric, unsupervised method for estimating the variation of
gene set enrichment. Hallmark gene set analysis (containing 50 gene
sets) identified genes involved in cholesterol homeostasis as the most
upregulatedpathway inAMLcells, consistentwithpriorwork40,41, while
the second most upregulated pathway was mTORC1 signaling, a well-
known biochemical effect of TSC2 loss in AMLs and LAM (Fig. 1h). ROS,
glycolysis, and adipogenesis pathways were also enriched in AML,
consistent with prior work36,42–44.
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To investigate transcriptional networks driving the expression
characteristics of AML, we used Single-Cell Regulatory Network
Inference and Clustering (SCENIC)45. This regulon analysis revealed
that more regulons were upregulated in AML cells rather than down-
regulated. Known TSC-associated transcription factors9,46–48were re-
identified, such as MITF and TFE3, for which both expression and

regulon activity were much higher in tumor cells compared to normal
kidney mesenchymal cells (Supplementary Fig. 3d). Similarly,
SREBF1/SREBF2 and PPARG, known master regulators of lipid and
cholesterol metabolism downstream of mTORC140,41,49, had both high
expression and high regulon activities in AML cells (Supplementary
Fig. 3d). This analysis also identified transcription factors and regulons
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associated with AML, including several involved in epigenetic regula-
tion, e.g. HDAC2, SIRT6, FOXN3, MEF2A (Fig. 1i, Supplementary Fig. 3d,
Supplementary data 2, 3).

Specific genes of interest include MDK (newly identified here as
highly expressed inAML) andGPNMB (a knownmarker of AML50), both
of which are increased in AML cells in both the scRNA-Seq dataset
(Fig. 1g) and the bulk RNA-seq dataset of tumor samples8 (Supple-
mentary Fig. 3e). Using RNA in situ hybridization,MDK expression was
detected in AML tumors but not in adjacent normal kidney (Fig. 1j),
consistent with the single-cell data. MDK is a direct target of the tran-
scription factor SP151, and regulon analysis showed enriched SP1
expression and activity in the cells with high MDK expression (Sup-
plementary Fig. 3f). AML cells with high MDK expression showed
higher expression of HIF1A (Supplementary Fig. 3g), which binds to a
hypoxia-responsive element in the MDK promoter52. MDK is an
heparin-binding growth factor53 that promotes cell growth and
angiogenesis54,55.

AML tumor cells exhibit two major states: stem-like and
inflammatory
UMAP re-clustering of the 6596 AML cells revealed four clusters
(Fig. 2a, b). Differential expression analysis revealed high expression of
modulated smooth muscle genes56 in cluster 1 and high expression of
contractile smoothmusclegenes56 in cluster 2 (Supplementary Fig. 4a).
Clusters 0 and3 appeared to represent intermediate or transitional cell
states between clusters 1 and 2, with a gradient expression of modu-
lated and contractile smooth muscle marker genes (Supplementary
Fig. 4a). Custer 1 showed relatively high expression of the mesoderm-
specific transcription factor 21 (TCF21), a master regulator of pheno-
typic modulation of smooth muscle cells56 (Fig. 2b, Supplementary
Fig. 4b). In disease conditions, phenotypic modulation transforms
smooth muscle cells from a differentiated contractile state into a
dedifferentiated modulated state. We noticed that several genes
(SOX4, TCF4) (Fig. 2b, Supplementary Fig. 4c), known to be stem cell
markers, were upregulated in cluster 1, and therefore calculated the
“stemness score” using a curated list of 50 tumor stemness marker
genes57. Cluster 1 showed the highest stemness scores which declined
in a gradient leading to cluster 2 (Fig. 2c), as well as high activity of
signaling pathways involved in stemness including Notch, Hedgehog,
andWNT pathways (Supplementary Fig. 4d). Cluster 2 was enriched in
immune pathways (Supplementary Fig. 4d), and showed high expres-
sion of inflammatory genes including CCL3, CCL4 and IL1B (Fig. 2b,
Supplementary Fig. 4e). Based on these features, we defined cluster 1
as a stem-like state (SLS) and cluster 2 as an IS. Differential expression
analyses of cluster 1 (SLS) versus cluster 2 (IS) identified 231 differen-
tially expressed genes at fold change >2 (Supplementary Fig. 2f, g).
Metabolic kinetic models using generalized mass action (GMA) equa-
tions have been used to simulate and predict biological processes58,59.
We previously showed that kinetic models of metabolic pathway

systems can be used to interpret transcriptomic profiles measured
during disease for cellular metabolism modeling60. Purine-related
metabolism is linked to the mTORC1 pathway61–63, and high levels of
purine nucleotides are required to maintain cancer stemness64, while
external hypoxanthine supplementation promotes tumor stemness64.
Therefore, we generated pseudo-bulk RNA-seq data from single-cell
transcriptomes to infer cellular purine metabolism in both SLS and IS
populations as well as normal mesenchymal cells obtained from mat-
ched normal kidneys in this study. We found that the metabolism of
guanine/guanosine in the purine pathway was elevated in both tumor
cell states compared to normal controls (Fig. 2d). In contrast, hypox-
anthine and inosine metabolism was elevated specifically in the SLS
population, suggesting that metabolic mechanisms may contribute to
the high stemness features seen in the population.

The SLS (cluster 1) also showed higher expression of genes asso-
ciated with TGF-beta signaling and the hypoxia pathway (two main
triggers of tumor cell dormancy)14,65 (Supplementary Fig.4d). It has been
increasingly recognized that a hypoxic microenvironment, as well as
stress-induced during metastasis, trigger a dormant state in which
tumor cells become resistant to drug treatment and stress66. Further
analysis of a panel of dormancymarker genes revealed high expression
in the SLS population (cluster 1), including the transcription factor
NR2F1 (Fig. 2e). NR2F1 serves as a critical node in the induction and
maintenance of tumor stem cell dormancy by integrating epigenetic
programs of quiescence and survival14,67. Regulon analysis confirmed
that NR2F1 regulon activity (pathway activity of 41 genes regulated by
NR2F1) was upregulated in the SLS (cluster 1) (Fig. 2f).

Other dormancy marker genes also showed high expression in
SLS, including DEC2 (BHLHE41), Hypoxia Inducible Factor 1 Subunit
Alpha (HIF1A), and estrogen receptor alpha (ESR1) (Fig. 2e). Estrogen
receptor alphawas shown tobe required bybreast cancer cells to enter
NR2F1-dependent dormancy14. Hormonal signaling is of particular
interest in TSC, since 1) LAM affects almost exclusively women, 2) LAM
and AML cells express ER alpha, and 3) estrogen impacts the survival,
metastasis, andmetabolismof TSC2-deficient cells inmodels of LAM68.
To investigate whether ER alpha contributes to dormancy in TSC-
deficient settings, as suggested by the scRNA-Seq data, we used TSC2-
deficient 621-101 cells69, whichwere derived from a LAMpatient’s AML.
The cells were treated with 100nM estradiol or vehicle control for
24 hours and subjected to scRNA-Seq. All of themajor dormancy genes
were upregulated in the estradiol treated group compared to the
control group (Supplementary Fig. 4h). The related gene Estrogen
Related Receptor Alpha (ESRRA) was also elevated by estradiol treat-
ment. Regulon analysis further showed that estradiol treatment
increased NR2F1 expression and regulon activity (Fig. 2g).

The identification of SLS and IS populations was validated in
tumor specimens by co-staining with antibodies to SLS and ISmarkers
(MDK and TAGLN respectively, Fig. 2i), and Cathepsin K (AML/LAM
marker gene25). MDK positivity was observed primarily in one

Fig. 1 | Single-cell atlas of angiomyolipoma (AML) and lymphangioleiomyo-
matosis (LAM). aWorkflow showing samples collected and integrative analysis of
scRNA-Seq, paired scTCR-Seq, and spatial transcriptomics, followed by in vitro and
in vivo mechanistic studies (created with BioRender.com). b Uniform Manifold
Approximation and Projection (UMAP) plots of major cell types identified in six
AML tumors (left) and four matched normal kidneys (right). LEC: lymphatic
endothelial cells; BEC: blood endothelial cells; Tregs: regulatory T cells; NK: natural
killer cells; DC: dendritic cells. cViolin plots ofmarker genes of each cell type. The y
axis represents thenormalizedgene expression value.dQuantificationof fractional
representation of cell types in tumors (n = 6) and matched normal (n = 4) tissues.
Standard errors are shown for each group. *p <0.05, **p <0.01, ***p <0.001, two-
sided t test. Data are presented as mean ± SEM. e UMAP plot showing major cell
types identified in five LAM lungs. LEC: lymphatic endothelial cells; BEC: blood
endothelial cells; NK: natural killer cells. f Re-clustering of mesenchymal cells from
AML tumors andmatched normal kidneys. Green: AML tumor cells; blue: cells from

matched normal kidneys; red: tumor-associated fibroblasts (TAF). g Expression of
MDK, GPNMB, and NEAT1 in AML tumor cells compared to normal kidney
mesenchymal cells and TAFs. The y axis represents the normalized gene expression
value. ****p <0.001 (Wilcoxon test). h Hallmark pathways enriched in AML cells
(green) and in matched normal mesenchymal cells (blue). x axis shows pathway
enrichment score. Top five enriched pathways are shown i Expression and regulon
activity of SIRT6 and HDAC2 in tumor and normal mesenchymal cells using same
UMAP coordinates of F. Regulon activities of these two transcription factors were
calculated based on the expression of their target genes. Note: TAF cells colored in
gray were not analyzed for regulon activity. j RNA in situ hybridization (ISH)
assessment of MDK in AML tumor and in adjacent normal kidney. RNA in situ
hybridization assessments were performed on the same samples subjected to
single-cell analysis. An H&E image of the same sample is also provided. These are
representative images of 5 tumor samples and 4 matched normal samples.
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population, while TAGLN positivity was observed primarily in a sepa-
rate population (Fig. 2i). As expected, CTSK stained both populations.
Quantification revealed little co-localization of MDK and TAGLN, ver-
sus extensive co-staining of MDK with CTSK or TAGLN with CTSK
(Fig. 2j), supporting the existence of two distinct populations of AML
cells, MDK+ and TAGLN+.

Cell populations occur in LAM that are similar to the two types
observed in AML
In the sporadic form of LAM, AML are common, and genetic studies
have shown that the AML and LAM cells arise from a common pre-
cursor cell70. To determine whether the two cell states identified in
AML are present in pulmonary LAM, we analyzed 57,186 cells from five
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LAM lungs using the same marker gene set and method as used for
AML. A total of 375 LAM cells were identified (Fig. 1e). Considering the
LAM cells alone, clustering revealed four clusters (Fig. 2k). Similar to
AML, one cluster expressed SLS/ modulated smooth muscle marker
genes (cluster 2) and another cluster expressed IS/contractile smooth
muscle marker genes (cluster 1) (Fig. 2l). An intermediate state with
expression of all these genes was also identified (cluster 0). The SLS
population and the intermediate state showed higher stemness score
(Fig. 2m) and genes associatedwith dormancywere upregulated in the
SLS population and intermediate state (Supplementary Fig. 5a), similar
to the SLS cluster in AML. In addition, like the SLS AML cells, the SLS
cluster of LAM cells had upregulation ofNF2F1 expression and regulon
activity (Fig. 2n). Interestingly, the expression of VEGFD, a validated
LAM biomarker71, was much lower thanMDK (a potent angiogenic and
lymphangiogenic growth factor55,72) in LAM cells (Fig. 2o), suggesting a
potential role ofMDK in LAM-associated lymphangiogenesis. Thus, we
measured MDK serum levels in women with LAM and healthy controls
and found that MDK levels were 3.7-fold higher in LAM patients
(n = 20) compared to healthy controls (n = 19) (p =0.0361, Supple-
mentary Fig. 5b).

The stem-like population of AML cells may contribute to rapa-
mycin resistance
Rapalog therapy for AML and LAM leads to sustained but incomplete
responses, with regrowth of AML and ongoing loss of lung function in
LAM when treatment is stopped6,7. These partial responses suggest
possible drug tolerance in a subset of AML/LAM tumor cells. Our
observation of elevated stemness and dormancy in a subset of tumor
cells, typical features of drug-tolerant tumor persister cells73, led us to
directly examine rapamycin tolerance in AML cells. We developed a
primary culture from one of the AML tumors profiled in this study
(AML1162 with TSC2mutation allele frequency of 41%). After one week
in culture, these cells were treated with either DMSO (control) or
rapamycin for 24 hours followed by scRNA-Seq profiling. A total of
2066 cells and 4083 cells were analyzed in the control and treatment
group, respectively, after filtering out low-quality cells (Fig. 3a). Mer-
ging these two sets of cells, UMAP clustering identified seven clusters
(Fig. 3b). Marker genes identified in each cluster are provided in Sup-
plementary data 4. Using the same expression criteria described
above, a total of 2004 candidate AML cells were identified, accounting
for 33% of all cells (Fig. 3c).

Rapamycin had a striking effect on overall transcriptomes, and
most clusters were composed nearly entirely of either treated or
untreated cells. Strikingly, we identified a small cluster (cluster 4) that
contained AML cells from both control and rapamycin treatment
groups, suggesting that it contained cells that are resistant to rapa-
mycin, or at least cells in which transcription was not changed by
rapamycin treatment. In this cluster, the expression of many AML

tumormarker genes was unaffected by rapamycin, in contrast to other
clusters where rapamycin suppressed the expression of these tumor
genes (Supplementary Fig. 6a), including CTSK (Fig. 3d).

Further analysis of cluster 4 showed high expression of tumor
marker genes (Supplementary Fig. 6b, only DMSO control group is
shown in theUMAP), with a strikingly similar expressionpattern to that
of the SLS population of AML tumors. For instance, we have identified
elevated expression of SOX4, PTGDS,MMP2 amongothermarker genes
in AML tumors (Supplementary Fig. 4f), suggesting that cluster 4
corresponds to the SLS state of AML cells. In addition, cells in cluster
4 showed a high stemness score (Fig. 3e), and high dormancy score
(calculated by expression of known dormancy marker genes14 includ-
ing the dormancy inducerNR2F1 and hormonal regulator ESR1) (Fig. 3f
and Supplementary Fig. 6c). Consistent with these results, NR2F1 reg-
ulon activity was high in this cluster (Fig. 3g).

Levels of the dormancy inducer NR2F1 and the hormonal reg-
ulator ESR1 (ERa) were unchanged by rapamycin (Supplementary
Fig. 6a), suggesting that dormancy may be associated with treatment
resistance. Expression of SQSTM1 (p62) and SOD2, which help to
maintain cellular ROS homeostasis in TSC36, were unaffected by rapa-
mycin in cluster 4 (Supplementary Fig. 6a), suggesting that redox
homeostasis maintenance may be involved in treatment tolerance.
These data suggest that the SLS state is resistant to rapamycin treat-
ment, which is consistent with the notion that acquired stemness and
dormancy render tumor cells resistant to chemical therapeutics74–76.

MDK is reported tomediate drug resistance inother tumors77, and
weobservedhigh expressionofMDK in the SLSpopulation (Fig. 2h). To
determine whether MDK is involved in rapamycin tolerance and whe-
therMDK is regulated by TSC pathway, we used two cellularmodels of
TSC and found that expression of MDK was upregulated in TSC2-
deficient AML patient-derived 621-101 cells compared to TSC2-
reexpressing 621-103 cells, as well as in mouse kidney derived TSC2-
deficient TTJ cells78 compared to TSC2-add back TTJ+ TSC2 cells
(Fig. 3h). BecauseMDK is a secreted cytokine,we further assessedMDK
protein levels in the cell culture medium by ELISA. MDK levels were
significantly higher in both the patient-derived and mouse-derived
TSC2-deficient cell lines compared with TSC2-add back con-
trols (Fig. 3i).

Next, to assess the importance of MDK expression on rapamycin
resistance in vitro and in vivo, we used an MDK inhibitor (iMDK) that
specifically inhibits MDK but not other growth factors such as VEGF or
pleiotrophin (PTN) (homologous toMDK)79 andwas shown to potently
inhibit MDK and thus enhance PD-1 therapy in melanoma mouse
models80. TSC2-deficient cells (621-101, TTJ) and normal human fibro-
blasts (NHLF) were treated with DMSO, rapamycin (20 nM), iMDK
(1 µM), or a combination of rapamycin (20 nM) and iMDK (1 µM).
Treatment with iMDK alone had minimal effects in all 3 cell lines.
However, when combined with rapamycin, iMDK had a synergistic

Fig. 2 | Heterogeneous cellular states in AMLand LAM.aUMAP plot of AML cells
only showing two distinct clusters (cluster 1 and cluster 2) and two transitional
clusters (0 and 3). b Violin plots of highly expressed genes of each cluster. The y
axis represents the normalized gene expression value. c Stemness score calcu-
lated using 50 tumor stem cell marker genes for each cluster (see method).
d Inferred purine metabolism flux in SLS and IS populations relative to matched
normalmesenchymal cells using pseudo-bulk RNA-seq generated from single-cell
transcriptomes. Relative levels of hypoxanthine (HX) and inosine/deoxyinosine
(Ino/dlno) are upregulated in SLS. e Feature plots of expression of dormancy
marker genes in the tumor cell population. f Analysis of NR2F1 expression and
regulon activity in AML cells. Left panel: expression of NR2F1 in cluster 1 and 2;
right panel: NR2F1 regulon activity based on 41 downstream target genes. Note:
only cluster 1 and cluster 2 were compared for regulon activity. Other clusters are
colored in gray. g NR2F1 expression and regulon activity in LAM patient-derived
TSC2-deficient cells 621-101 cells with andwithout estrogen treatment. Left panel:
t-SNE plot of cells fromestradiol treated group (red) and cells from control group

(blue); middle panel: expression of NR2F1; right panel: NR2F1 regulon activity.
h Expression of MDK and TAGLN in AML cell clusters. i Triple staining for MDK,
TAGLN, and CTSK. Representative images of 5 samples. j Quantification of co-
staining of MDK, TAGLN, and CTSK shows little co-localization of MDK and
TAGLN (first bar), while both TAGLN and MDK co-localize with the tumor marker
gene CTSK (second and third bars). The y axis represents area of overlap (arbi-
trary unit). k Re-clustering of the LAM cells from 5 LAM lungs, revealing four
clusters. l Average expression of SLS (left) and IS (right) marker genes in the LAM
clusters. An SLS population (cluster 2 in K), IS population (cluster 1 in K), and an
intermediate state (Cluster 0 and 3 in K) were identified. m SLS population
(Cluster 2) and intermediate state LAM cells (Cluster 0 and 3) show high stemness
scores. n Expression and regulon analysis ofNR2F1 in LAM cells. Left panel:NR2F1
expression; right panel: NR2F1 regulon activity corresponding to the degree of
regulation of 23 downstream target genes. o Feature plot showing expression of
MDK and VEGFD in LAM cells.
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effect on the two TSC2-null cell lines (Fig. 3j). We defined synergy as
the combined effect of two drugs is greater than the sum of each
drug’s individual activity81,82. In normal fibroblasts (NHLF), rapamycin
had a dramatic growth inhibitory effect, which was not significantly
changed by the addition of iMDK. To determine whether iMDK sensi-
tizes tumors to rapamycin treatment in vivo, we generated sub-
cutaneous tumors using the TSC2-deficient TTJ cells in immune-

deficient athymic nude mice. Combination treatment with iMDK and
rapamycin led to a more rapid onset of tumor response, and a lower
tumor burden, compared with rapamycin alone, while iMDK alone had
no apparent effect (Fig. 3k, Supplementary Fig. 6d).Many cancers have
relatively high MDK expression in comparison to matched normal
tissues, including bladder cancer (Supplementary Fig. 6e). We found
that three bladder cancer cell lines were also sensitized by iMDK to
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rapamycin treatment (Supplementary Fig. 6f). These datamay provide
a rationale for combination therapy targeting MDK and mTORC1 in
TSC and other selected tumors.

Remodeling of endothelial cells by heterogeneous tumor cell
states
We next investigated the potential differential effects of these two cell
states, SLS and IS, on the tumor microenvironment. As seen in Fig. 1,
both blood and lymphatic endothelial cells were enriched in AML
compared with adjacent normal kidney, suggesting ongoing angio-
genesis and lymphangiogenesis. Strikingly, the distribution of IS and
SLS was not uniform among our six AML samples, with two AMLs
consisting mainly of IS (>70%), and four mainly SLS (>80%) (Fig. 4a).
The SLS-dominant tumors had a much greater content of endothelial
cells, with an average of 24.9% fenestrated endothelial cells and 1%
lymphatic endothelial cells, in contrast to the IS-dominant tumors with

average 1.4% fenestrated endothelial cells and 0.6% lymphatic endo-
thelial cells (Fig. 4b). To validate this, immunohistochemistry (IHC)
staining for the endothelial marker CD31 was performed on each AML
and the percentage of endothelial cells was calculated by digital ana-
lysis, revealing a strong correlation with the percentage predicted by
scRNA-Seq (Fig. 4c) and a higher percentage of endothelial cells in SLS-
dominant tumors (Fig. 4d, Supplementary Fig. 7a). This dramatic dif-
ference in the endothelial composition in SLS-dominant vs. IS-
dominant tumors suggests that the endothelial cells are responding
to specific cues arising from the predominant cell type within the
tumor. Thus, we investigated all genes thatwere over-expressed in SLS
compared to IS and again identified MDK as the top differentially
expressed angiogenic gene (by fold change). VEGFD (a pro-
lymphangiogenic factor) is thought to drive pulmonary lymphangio-
genesis in LAM. Differential expression analysis showed much higher
expression of MDK than VEGFD in general, with higher expression of

Fig. 3 | The stem-like population of AML cells may contribute to rapamycin
resistance. a UMAP plot of primary cultures derived from AML tumor colored by
treatment. Cells were treated with DMSO as control (red) or 20nM rapamycin
(cyan) for 24hoursbefore scRNA-Seq.bUMAPplot of the AML-derivedprimary cell
culture, colored by clusters. c Expression of 5 AML markers in the primary AML
culture before and after rapamycin treatment (as in A). d CTSK expression in cells
before and after rapamycin (as in A). eCluster 4 in theDMSOcontrol group showed
high stemness score, calculated using a panel of 50 cancer stem cell marker genes
(see method). Note that stemness score was only calculated in DMSO control
group, and the cells in rapamycin treatment group are colored in gray. fCluster 4 in
the DMSO control group showed high dormancy score, calculated using known
dormancy marker genes (see method). Note that dormancy score was only calcu-
lated in DMSO control group, and the cells in rapamycin treatment group are
colored in gray. g Expression (left) and regulon activity (right) of NR2F1 in control
group. Note: only cluster 2 and cluster 4 were comparatively analyzed for regulon
activity. The color bars indicate expression level and regulon activity only for these
two clusters; other cells are colored in gray. h Relative expresion ofMDK in TSC2-
deficient cell lines compared to TSC2-add back cells. Left panel: patient-derived
TSC2-deficent 621-101 cells (n = 3) compared to TSC2-add back 621-103 cells (n = 3);

right panel: mouse kidney derived TSC2-deficent TTJ cells (n = 3) compared to
TSC2-add back cells (n = 3). Data are presented as mean ± SD. ***p value = 0.0004;
****p value < 0.0001, two-sided t test. i MDK protein level in the cell culture
supernatants (n = 3 per cell line) measured by ELISA. Data are presented as
mean ± SD. ***p <0.001, two-sided t test. j Proliferation measured by crystal violet
assay. Treatments were: DMSO, 1 µM iMDK, 20 nM rapamycin, and combination of
iMDK and rapamycin for days indicated. All experiments were replicated three
times. 621-101 and TTJ are TSC-deficient. NHLF: normal human lung fibroblasts.
Data are presented asmean ± SD. k Tumor size reduction relative to pre-treatment
tumor volume in rapmayin treatment and combined iMDK and rapamycin treat-
ment groups. p values were calculated by two-sided t test. *p <0.05. Data are pre-
sented as mean± SD. Day 7: p value = 0.001; day 10: p value = 0.001; day 12: p
value = 0.001; day 14: p value = 0.001. Relative tumor size after treatment for all
treatment groups can be found in Supplementary Fig. 6d: TTJ xenograftmice (n = 6
per group) were treated three times/wk with DMSO, iMDK (9mg/kg), rapamycin
(3mg/kg), or combined iMDK (9mg/kg) and rapamycin (3mg/kg). Averaged tumor
size was reduced to <20% of pre-treatment volume after 4 treatments in the
combination treatment group, in contrast to 8 treatments in the rapmaycin
treatment group.

Fig. 4 | Endothelial cell remodeling inSLS-dominant tumors. aPercentage of SLS
and IS cells in the six AML tumors profiled. b Quantification of fractional repre-
sentation of blood endothelial cells (BEC) and lymphatic endothelial cells (LEC) in
SLS-dominant (n = 4) and IS-dominant tumors (n = 2). c Comparison of percentage
of blood endothelial cells identified by single-cell profiling and CD31 IHC for five

AML tumors. d)Representative IHC staining of endothelial cells with anti-CD31 in
two IS-dominant tumors and in three SLS-dominant tumors. e Expression of MDK
and VEGFD in AML cell populations. The MDK figure is also shown in Fig. 2h, and is
repeated here for ease of comparison.
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MDK in cluster 1 (SLS) and higher expression of VEGFD in cluster 3 (IS)
(Fig. 4e). Interestingly,VEGFA, anotherwell-recognizedpro-angiogenic
factor was only expressed in a small number of SLS cells (Supple-
mentary Fig. 7b). Taken together, these data suggest that high
expression of pro-angiogenic MDK in SLS tumors may account for the
enriched endothelial cells in this subtype of AML.

Further differential and pathway analysis revealed remodeling of
endothelial cells in AML, including high expression of C-C Motif Che-
mokine Ligand 21 (CCL21), TBX1 and NRP2 specifically observed in
tumor LECs (Supplementary Fig. 7c–g). Regulon analysis further
revealed that transcription factors NR2F1 and NR2F2 may underlie
these transcriptional programs (Supplementary Fig. g, h).

T-cell dysfunction and suppressed clonal expansion in SLS-
dominant tumors revealed by integrative analysis of scRNA-Seq
and scTCR-Seq
T-cell infiltration and exhaustion have been observed in human TSC
tumors, and a clear benefit of immunotherapy was observed in mouse
models17,18. To determine whether T cells are influenced by tumor cell
states in AML, we focused on the four AMLs with paired normal kid-
neys profiled, two of which were SLS-dominant and two of which were
IS-dominant. Pathway activity analysis of tumor-derived T cells com-
pared to that from paired normal kidneys revealed upregulation of
inflammatory responses, including the type I and type II interferon
pathways (Supplementary Fig. 8a). Cell proliferation pathways (E2F
targets, MYC targets, Mitotic signaling) were also consistently upre-
gulated in tumor-derived T lymphocytes, in line with the observed
general expansion of T cells (Fig. 1d). A population of proliferating
CD8+ cells (CD8 T-prolif) was present specifically in the tumors (Sup-
plementary Fig. 8b, c) and not in normal kidney, suggesting an
expansion of tumor antigen-reactive T lymphocytes. T-cell expansion
in tumorswas confirmedbyCD3 IHC (Supplementary Fig. 8d).Multiple
immune checkpoint markers were expressed in tumor-derived T cells
(Supplementary Fig. 8e).

The higher fraction of T cells in IS-dominant tumors compared
to SLS-dominant tumors suggests more T-cell infiltration and/or
T-cell proliferation in IS-dominant tumors (Supplementary Fig. 8f),
consistent with previous reports that stem-like states in tumors are
associated with immunoresistance83. Re-clustering of tumor-derived
CD8+ T cells (downsampled to have equal number of cells from SLS
or IS samples) revealed three major clusters: memory/naive T cells
(CD8 Tm/naive), effector T cells (CD8 Teff) and proliferating T cells
(CD8 T-prolif), as well as subclusters within each major cluster, with
different expression of immune checkpoint genes or cytotoxic
effector genes (Fig. 5a, b).We calculated an exhaustion score for each
cell based on relative expression of known checkpoint genes,
including T-cell Immunoreceptor With Ig And ITIM Domains (TIGIT),
Lymphocyte Activating 3 (LAG3), B- and T-Lymphocyte Attenuator
(BTLA) and Killer Cell Lectin Like Receptor G1 (KLRG1); and a cyto-
toxic score based on relative expression of cytotoxic effectors,
including Granzyme B (GZMB), Interferon Gamma (IFNG) and Tumor
Necrosis Factor (TNF). CD8+ T cells derived from SLS-dominant
tumors showed much lower cytotoxic scores compared to those
derived from IS-dominant tumors, and a lower percentage of cyto-
toxic cells (defined as expressing at least one cytotoxic effector
genes) within each subpopulation (Fig. 5c). In addition, SLS-
dominant tumor-derived cells exhibited higher exhaustion scores
(Fig. 5c). Despite a roughly equal frequency of exhausted cells in each
subpopulation (Fig. 5c), the fraction of exhausted CD8+ Teff cells in
SLS-dominant tumors was higher than that in IS-dominant tumors,
and IS-dominant tumors showed a higher frequency of both cyto-
toxic CD8+ Teff and CD8+ Tm/Naive populations (Fig. 5d). Similar
analysis of tumor-derived CD4+ T cells revealed six subtypes of CD4+
T cells (Fig. 5e, f). While memory CD4+ T cells and CD40LG-high
population derived from IS-dominant tumors showed a higher

cytotoxicity score (Fig. 5g), no significant difference in cell frequency
in any subtypewas observedbetween SLS-dominant and IS-dominant
tumors (Fig. 5h).

Tumor activated lymphocytes undergo clonal expansion, and
expanded T cells from the same clone have the same TCR sequence
(clonotypes), which enables tracking of differentiation trajectories.We
examined sharing of expanded TCR clonotypes across all sub-
populations of CD8+ and CD4+ T cells within individual samples
after cell number normalization, which revealed 229 clonotypes
shared amongCD8+ T-cell subtypes and 319 clonotypes shared among
CD4+ T cell subtypes in IS-dominant tumors but only five clonotypes
shared among CD8+ T subtypes in SLS-dominant tumors (Fig. 5i).
While SLS tumors showed quite limited clonotype sharing among
subtypes in CD8+ T population and no clonotype sharing in CD4+ T
population, IS tumors exhibited extensive clonotype sharing among
subtypes in both CD8+ T and CD4+ T populations (Fig. 5j): 75% of
expanded TCRs in the CD8+ Teff subtype were shared with the CD8+
Tm/Naive subtype in IS tumors, revealing a dynamic connection
between these two CD8+ T-cell states. In IS tumors, the majority of
proliferating CD8+ T cells shared clonotypes with CD8+ Teff popula-
tion, which may imply a tumor antigen-reactive T-cell proliferation
(Fig. 5j). Proliferating T cells shared a high number of clonotypes with
two cytotoxic Teff populations (CD8 Teff-TNF and CD8 Teff-IFNG). In
addition, extensive clonal sharing was observed between CD8 Teff and
two cytotoxic Teff populations (CD8 Teff-TNF and CD8 Teff-IFNG),
suggesting an active and dynamic differentiation trajectory toward
functional T cells. These observations suggest that the high frequency
of cytotoxic CD8+ T cells observed in IS tumors is at least partially due
to a dynamic differentiation of presumably tumor-recognizing effector
cells. As expected based on previous work84, CD4+ T cells showed less
clonal expansion in general compared to CD8+ T population. CD4+
T cells clonal sharing was only detected in IS-dominant tumors. The
Tregs cluster shared TCRs with CD4 T-cluster 1, CD4 Tm and CD4
T-CTLA4 clusters (Fig. 5j), suggesting a complex dynamic differentia-
tion of Tregs in tumors.

To infer dynamic differentiation among subtype T cells, we cal-
culated splicing-based RNA velocity using single-cell transcriptome
data85. Consistent with the substantial clonal connectivity observed in
IS-dominant tumors, this analysis supported a differentiation trajec-
tory fromCD8effectorT cells to proliferating T cells and frommultiple
CD4+ T subpopulations to Tregs (Fig. 5k). In contrast, SLS-dominant
tumors showed limited differentiation potential among subtypes.

Given the striking difference in T-cell modulation in SLS versus IS-
dominant tumors, we next explored whether SLS tumor cells express
higher levels of immune checkpoint genes to inhibit T cells. We ana-
lyzed TIGIT ligands (PVR, NECTIN2), BTLA ligand (TNFRSF14), LAG3
ligand (HLA-DRA, FGL1), KLRG1 ligand (CDH1, CDH2), and PD-1 ligands
(CD274, PDCD1LG2). Surprisingly, all of these ligands showed low
expression in both groups of tumor cells (Supplementary Fig. 8g). The
low expression levels and lack of significant differences of these
immune checkpoint ligands between SLS versus IS tumors suggest
other mechanisms in the differential modulation of T-cell function in
these tumor cell states.

Delineating the suppressive immune microenvironment in TSC
Immunosuppressive myeloid cells, such as tumor-associated macro-
phages (TAMs), are considered major barriers to cancer
immunotherapy86, due to their potent suppressive function and high
abundance in the tumor microenvironment87. As noted above,
enrichment of macrophages represented the most striking immune
infiltration in AML (Fig. 1b, d). This enrichment of macrophages in the
AML was confirmed by CD68 IHC (Fig. 6a). These AML-derived mac-
rophages showed higher expression of the immune checkpoint genes
T-cell immunoglobulin andmucin domain-containing protein 3 (TIM3)
encoded by HAVCR2, and V-domain immunoglobulin suppressor of
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T-cell activation (VISTA) encoded by VSIR, in comparison to macro-
phages derived from matched normal kidneys (Fig. 6b). The expres-
sion of other immune checkpoint genes is provided in Supplementary
Fig. 9a. Expression of VISTA and TIM3 on tumor-infiltrating macro-
phages is associated with T-cell dysfunction in the tumor
microenvironment88,89.

Tumor cells may influence other cells in the microenviron-
ment by direct ligand-receptor interactions or indirect cell-to-cell
communications in which tumor cells produce a signal (such as
paracrine effectors) to recruit or exclude immune cells and alter
their behavior86,90. Therefore, we further analyzed one SLS tumor
and one IS tumor using Nanostring digital spatial profiler (DSP) to
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query spatial tumor microenvironment organization, and con-
firmed higher expression of the IS marker gene ACTA2 in IS-
dominant tumors (Fig. 6c). For each tumor, we selected 12 regions
of interest (ROIs) that were enriched with tumor cells (smooth
muscle actin positive, green), T cells (CD3 positive, pink), and
macrophages (CD68 positive, yellow) for RNA sequencing (Sup-
plementary Fig. 9b). Since single-cell data have much higher
resolution, we re-defined gene signatures (Supplementary data 5)
for each of the major cell types identified in AML, including mac-
rophages, Langerhans cells, dendritic cells, T cells, B cells, lym-
phatic endothelial cells and blood endothelial cells. We then used
these cell type specific gene signatures to deconvolute the cell
composition of each selected area and to infer the relative fre-
quency or activity of these cell types in each of the ROIs, and
searched for genes primarily expressed by tumor cells that may
influence or correlate with the frequency/activity of another cell
type. We reasoned that genes expressed primarily by tumor cells
may influence a different cell type in the tumor microenvironment
by an indirect paracrine signal, hence correlation analysis of the
expression of genes (primarily expressed in tumor cells) and fre-
quency/activity of another cell type in each ROI was performed to
reveal genes mediating cell-to-cell communication, as shown
previously90. We found a high correlation of APOE, LGALS1, and
PCSK1N, which were primarily expressed in SLS tumor cells, with
macrophage frequency/activity in SLS-dominant tumors (Fig. 6d,
Supplementary data 6). These correlations were not observed in
IS-dominant tumors (Supplementary Fig. 9c). Interestingly, all of
these genes encode secreted proteins, suggesting a specific para-
crine regulatory role of SLS tumor cell secretome onmacrophages.
Consistent with this concept, APOE and LGALS1 were previously
shown to promote M2 polarization of macrophage/microglia in
mouse models91,92. We next analyzed a published bulk RNA-Seq
dataset of ten AML tumors8, which again revealed a high correla-
tion between APOE and macrophage population frequency (Sup-
plementary Fig. 9d). Since bulk RNA-Seq data are confounded by
tumor purity and tumor heterogeneity, the robust identification of
this correlation strongly supports the existence of a tumor-
macrophage regulatory axis.

To search for putative macrophage receptors for these tumor
ligands and to profile the full spectrum of ligand-receptor mediated
direct tumor microenvironment interactions, we next performed
ligand-receptor interaction analysis using a validated algorithm
previously described86 and a list of over 2,500 curated pairs of ligand-
receptors to infer putative tumor microenvironment interaction
based on ligand expression in one cell type and corresponding
receptor expression in another cell type. This revealed tumor-
macrophage interactions via APOE-TYROBP (DAP12) as the strongest
interaction among tumor microenvironment interactions (Fig. 6e).

TYROBP and TREM2 form a receptor complex on macrophages
which has been extensively studied in the context of neurodegen-
erative diseases, where the complex mediates signaling and cell
activation following binding to its ligands including APOE or β-
amyloid (a cleavage product of the amyloid-beta precursor protein
APP)93–95. Interestingly, APP also showed strong interaction with
TYROBP. Recent studies have shown that TREM2+/TYROBP+ TAMs
suppress T-cell function and proliferation in various tumors and that
targeting this TAM population can modulate immunosuppressive
TAMs and restore T-cell function96,97.

To compare macrophages derived from SLS and IS tumors, we
downsampled to 5,000 cells from each tumor type and included all
macrophages derived from matched normal kidneys for down-
stream analysis. Re-clustering identified 12 clusters (Fig. 6f). Most
clusters were primarily derived from tumors except two small
clusters (cluster 8 and cluster 9) that were mainly derived from
normal kidneys (Fig. 6g, h). Two main types of macrophages (tis-
sue-resident macrophages (TRM) and TAMs) were identified in the
tumor derived macrophage population. Cluster 2 and cluster 3
were annotated as TRM based on high expression of IL7R98 and
inflammatory genes (Fig. 6i and Supplementary Fig. 9e). The TAMs
in AML are mainly composed of 4 clusters (cluster 0, cluster 1,
cluster 4, and cluster 6) characterized by a high M2 module score,
which was calculated by the relative expression of alternatively
activated macrophage marker genes, including CD16399, MRC199,
VEGFA100, and TREM296 (Fig. 6h and Supplementary Fig. 9f). Sur-
prisingly, the organization of TAMs showed a striking difference
between SLS and IS tumors: cluster 1 and cluster 6 were mainly
composed of cells derived from SLS tumors, whereas cluster 0 and
cluster 4 were mainly composed of cells derived from IS tumors
(Fig. 6i). Cells from cluster 1 and cluster 6 showed high expression
of TREM2 and TYROBP (Fig. 6k). These data show that there is a
higher percentage of TREM2+/TYROBP+ TAMs derived from SLS
tumors.

Theseobservations suggest a regulatory axis fromSLS tumor cells
to TAMs via an APOE-TREM2/TYROBP interaction, with APOE as a
putative ligand for the TREM2/TYROBP complex in tumor TME. Con-
sistent with this hypothesis,APOE (andAPP) showed higher expression
in SLS AML cells compared to IS cells (Fig. 6l). We sought to validate
this observation using 10x Visium spatial transcriptomic profiling in an
independent AML sample. We used CTSK and PMEL to identify AML
cells (Fig. 6m). Spots with averaged expression of CTSK and PMEL
higher than 50% across all spots were annotated as tumor spot-
s(yellow). We then calculated scores for SLS and IS within identified
tumor spots using the most robust marker genes MGP (for SLS) and
ACTA2 (for IS) (see Methods), and identified islands enriched with SLS
(blue) or IS (green). Plotting average expression of TREM2 and TYROBP
(red) revealed higher expression in the SLS enriched island compared

Fig. 5 | T-cell dysfunction and suppressed T-cell clonal expansion in SLS-
dominant tumors. a UMAP plot of CD8+ T cells obtained from four AML tumors
(downsampled to have equal number of cells from SLS or IS-dominant tumors).
Phenotypic clusters are represented in distinct colors. CD8 Teff: effector CD8+
T cells; CD8 Tm/Naive: memory/naive CD8+ T cells; CD8 T-prolif: proliferating
CD8+ T cells. b Violin plot of representative marker genes of each cluster of CD8+
T cells defined in a. The y axis represents the normalized gene expression values.
c Module score of T-cell exhaustion or cytotoxicity across major CD8+ T cell
population in SLS or IS-dominant tumors. Exhaustion module score was calculated
based on relative expression of checkpoint genes TIGIT, LAG3, BTLA, and KLRG1.
Cytotoxicitymodule scorewas calculated basedon relative expression of cytotoxic
effector genes GZMB, IFNG, and TNF. Module scores were scaled with red color
representing higher score. Percentage of cytotoxic or exhausted cells in each
population is represented by the circle size. d Quantification of fractional pre-
sentation of clusters of CD8+ T cells across two subtypes of tumors (n = 2 per
subtype). e UMAP of clusters of CD4+ T cells obtained from four AML tumors

(downsampled to have equal number of cells from SLS or IS-dominant tumors).
f Violin plot of representative marker genes of each cluster of CD4+ T cells. The y
axis represents the normalized gene expression value. g Module score of T-cell
exhaustion or cytotoxicity across major CD4+ T cell population in SLS or IS-
dominant tumors calculated as C. h Quantification of fractional presentation of
clusters of CD4+ T cells across the two subtypes of tumors (n = 2 per subtype).
i Representative shared T-cell clonotypes identified in IS-dominant tumor and in
SLS-dominant tumor. Each clonotype is represented by a different color. Major cell
groups are display on left panel. j Shared TCR clonotypes in CD8+ T cells and CD4+
T cells, after normalizing to total cell numbers. Number of shared clonotypes
between each pair of subtypes were displayed. *p <0.05, two-sided Fisher’s exact
test. No shared clonotypes were identified in CD4+ T cells in SLS-dominant tumor.
k RNA velocity of T-cell population calculated based on ratio of unspliced and
spliced transcripts in each cell. (Left panel) velocity vectors represented by arrows
indicate potential differentiation paths; (right panel) Quantitative analysis of RNA
velocity of subtypes of T cells derived from IS (red) versus SLS (cyan) tumors.
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to IS enriched island (Fig. 6m). APOE also showed higher expression in
the SLS enriched island (Fig. 6m).

Our discovery of a striking suppression of CD8+ T cells in SLS-
dominant tumors is consistent with the reported role of TREM2+/TYR-
OBOP+ TAMs in suppressing CD8+ T-cell function and proliferation in
tumors96. ThehigherT-cell clonal expansion anddynamicdifferentiation

in IS-dominant tumors suggest tumor-reactive T-cell activation. Taken
together, this tumor-specific inhibition of T-cell function and T-cell
proliferation/differentiation in SLS-dominant AML implies a major
immunomodulatory role of myeloid cells in TSC. This has particular
importance given the extremely low expression of immune checkpoint
ligands on the AML tumor cells (Supplementary Fig. 8g).
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Analysis of molecular interactions between tumor and tumor
microenvironment provides potential targets for distinct pre-
cision therapeutic strategies for SLS and IS tumor
In the immune compartment, we also observed enrichment of B lym-
phocytes and dendritic cells in AML relative to normal kidney. We
detected 1620 B cells predominately from tumor (Fig. 7a, b). Re-
clustering revealed six clusters. Of these, five were particularly tumor
enriched.We identified follicular B cells expressing high levels of CD20
(MS4A1) and CXCR5 in both tumor (cluster 5) and adjacent normal
kidneys (clusters 1) (Fig. 7b). In contrast, plasma B cells expressing
immunoglobulin gamma (IGHG1, CD27, CD38) were exclusively enri-
ched in tumors (Fig. 7c). Pathway analysis identified induced
interferon-gamma and TGF beta signaling in regulatory B cells, sug-
gesting a regulatory role of Tregs in tumor microenvironment101

(Supplementary Fig. 10a). A pattern of reduced activity in tumor-
specific plasma B cells, evidenced by a universal downregulation of
pathways involved in cell growth (Myc targets, mTOR pathway) and
inflammation (interferon alpha/gamma, IL2, and TNF alpha signaling),
may suggest a reduced function of plasma cells in the tumors.

We detected 839 cross-presenting dendritic cells expressing
CLEC9A and XCR1 (Supplementary Fig. 10b) exclusively in tumors. Re-
clustering identified a small cluster of proliferating cells (cluster 3)
(Fig. 7d, e). This cluster showed higher activity of Myc targets, E2M
targets, and mTORC1 signaling (Supplementary Fig. 10c). HAVCR2
(TIM-3) has been reported to be an important regulatory factor of
dendritic cells in anti-tumor immunity102,103. The proliferating cluster
exhibited high HAVCR2 expression (Fig. 7f), suggesting a pro-tumoral
function of proliferating dendritic cells.

Although AML has an extremely low mutational burden19, the
overall enrichment of plasma B cells and cross-presenting dendritic
cells in tumors may suggest tumor-specific antigen presentation in
tumor microenvironment that may include all the genes/proteins
highly expressed in AML, including CTSK and MDK.

Tumor-microenvironment interactions play crucial roles in
tumor development104. To assess the comprehensive crosstalk
between tumor and tumor microenvironment, we quantified poten-
tial cell-cell interactions among all cell types in the tumor micro-
environment as described above. We observed numerous
interactions in SLS-dominant tumors, including B2M-HLA-F, HLA-B-
CANX, and MIF-CD74 in B and T cells (Fig. 7g and Supplementary
Fig. 10d, e), similar to what has been reported for melanoma86, which
is of interest because as described above, AML express many mela-
noma marker genes including MITF, PMEL, and MLANA46,47. Inter-
estingly, we identifiedmore tumor-TAF interactions in SLS-dominant
tumors (21 pairs) compared to IS-dominant tumors (4 pairs) by

ligand-receptor analysis (Supplementary data 7). We also observed
extensive interactions of KLRD1 and HLA family members between
NK cells and other cell types (Supplementary Fig. 10f), and interac-
tions between tumor cells andother cell types related to extracellular
matrix remodeling. Tumor cell-secreted extracellular matrix mole-
cule such as collagen (COL4A1) can bind to adhesion receptors
broadly expressed on many cell types, such as integrin receptor
ITGB1 (Supplementary Fig. 10g). We observed expression by tumor
cells of thrombospondin (THBS1) and tissue inhibitors of metallo-
proteinases (TIMP1 and TIMP2), secreted factors involved in extra-
cellular matrix remodeling (Supplementary Fig. 10g).

Differential analysis of the landscape of ligand-receptors interac-
tions in SLS-dominant versus IS-dominant tumors revealed different
tumor microenvironment crosstalk in these two tumor cell states. For
example, more interactions between tumor and blood endothelial
cells were found in SLS-dominant tumors, consistent with enriched
endothelial cells in SLS-dominant tumors (Fig. 7g). The depletion of
interactions of CD8 and CD4 T cells with other cell types in SLS-
dominant tumors may underlie the molecular mechanisms for the
observed suppressed T-cell clonal expansion (Fig. 7g).

Discussion
mTORC1 is estimated to be hyperactive in at least half of all human
malignancies and plays a central role in tumorigenesis105–107. Our work
provides a comprehensive atlas of tumor cells and the tumor micro-
environment in mTORC1 hyperactive AML and LAM. Our analysis
highlights a complex cellular ecosystem with active crosstalk between
AML cells and the tumormicroenvironment and distinct AML/LAMcell
states associated with rapamycin resistance and immune modulation
(Fig. 7h). In addition to confirming known genes and pathways con-
tributing to TSC pathogenesis, we highlight previously unrecognized
pathways that likely contribute to tumor progression, and pinpoint
targets for the future of immunotherapy in TSC. Our study represents
an important step toward understanding intra-tumoral expression
heterogeneity in mesenchymal tumors, a far less studied tumor type
than epithelial tumors.

Among our key findings is the identification of a conserved drug-
resistant tumor cell state characterized by stemness and dormancy
seen in both AML and LAM. Rapamycin and its analogs induce a
cytostatic effect in TSC treatment, resulting in some shrinkage and
then stabilized tumor volume. Here, we reveal two distinct cell states
(SLS and IS) in the tumor cell population, and identify underlying
transcription factors thatmaydrive thedevelopmentof thesedifferent
cell states in response to the tumor microenvironment, characterized
by distinct expression of tumor stem cell and dormancy programs or

Fig. 6 | The suppressive immune environment is shaped by tumor cell states.
a Representative CD68 IHC staining of 5 AML tumors and 4 matched normal
samples. b Higher expression of TIM3 (HAVCR2) and VISTA (VSIR) in macrophages
obtained from tumors compared to macrophages obtained from matched normal
kidneys. Left panel: violin plot showing expression ofHAVCR2and VSIR; right panel:
dot plot showing scaled expression and the percentage of cells expressing these
genes. c Nanostring digital spatial profiling of one SLS-dominant and one IS-
dominant tumor. Left panel: a representative ROI (Region of Interests) from SLS-
dominant tumor;middlepanel: a representative ROI from IS-dominant tumor; right
panel: expression of ACTA2 across all ROIs after Q3 normalization (From left to
right columns are 12 SLS-dominant tumor ROIs and 12 IS-dominant tumor ROIs).
Scale bars, 100μm. d Inferred interactions between tumor cells and macrophages
calculated by integrative analysis of spatial transcriptomics of the representative
SLS-dominant tumor (12 ROIs) and scRNA-seq. x axis displays relative expression of
genes in single-cell data. Only genes that are expressed in both single-cell data and
spatial transcriptomics data are shown. Left side are genes relatively highly
expressed in tumor cells; right side are genes relatively highly expressed in mac-
rophages. Y axis displays Pearson Correlation Coefficient (PCC) of gene expression
with macrophage frequency in spatial transcriptomics data. Genes with log-ratio
<−1.5 and correlation coefficient higher than 0.4 are colored. APOE: PCC =0.49,

p =0.1 (correlation test, two-sided). e Interactions between tumor cells and other
cell types calculated as the product of the average ligand expression and average
receptor expression (only interactions with a score greater than 1 across any cell
typepair are displayed). Eachcolumn showsa pair of cell types, and each row shows
the ligand-receptor pair. The color indicates interaction score. Column label: cell
type expressing the ligand and cell type expressing the receptor are separated by
“_”. Row label: ligand and receptor are separated by “_”. f tSNE plot of macrophages
colored by cluster (downsampled to have equal number of cells from SLS or IS
tumors).g tSNEplot ofmacrophages coloredby sample typeoforigin.hFractionof
macrophages obtained from subtypes of tumors or from matched normal across
clusters. i Average expression of IL7R,GZMK,GZMH, and IFITM1. jM2module score
calculated by relative expression of CD163, MRC1, VEGFA, GPNMB, and TREM2.
k Feature plot showing expression of TREM2 and TYROBP (DAP12). l Violin plot
showing expression of APOE and APP in tumor cells (SLS vs. IS). m Spatial tran-
scriptomic profiling of an independent AML tumor using 10× Visium platform.
Panels from left to right: (1) H&E-stained tissue, (2) averaged expression of CTSK
and PMEL; spots with the expression of CTSK and PMEL higher than the median of
all spots were annotated as tumor (yellow), (3) SLS spots (blue) and IS spots (green)
were identified by marker gene expression; averaged expression of TREM2 and
TYROBP are displayed in red, (4) expression of APOE.
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inflammatory programs. Immunofluorescent staining confirmed the
existence of these cell states, as predicted by single-cell transcriptomic
profiling. SLS cells with stemness and dormancy properties contribute
to rapamycin tolerance as shown by our in vitro treatment analyses.
Inhibition of MDK, a gene highly expressed in SLS cells, enhanced
rapamycin’s therapeutic effect both in vitro and in vivo, suggesting
that MDK may at least partially account for the molecular mechanism

of rapamycin tolerance in TSC, in line with role of MDK in drug resis-
tance observed in other cancers77,108. Thus, intra-tumoral hetero-
geneity, which is believed to underlie therapy resistance in many
malignant tumors, also occurs in mTORC1-hyperactive AML and LAM,
and combinatorial targeting mTORC1 and factors such as MDK that
contribute to this heterogeneity may enhance the efficacy of mTORC1
inhibition.
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SLS-dominant tumors were enriched for both blood endothelial
cells and lymphatic endothelial cells when compared to IS-dominant
tumors, indicating differential induction of vascular remodeling of
endothelial cells. We validated this enrichment of endothelial cells by
IHC. Lymphatic vascularization is a hallmark of both AML and LAM,
AML cells can metastasize to regional lymph nodes, and it has been
proposed that LAM cells metastasize to the lungs from a distant
unknown site-of-origin24,109 VEGFD is thought to promote lym-
phangiogenesis and lymphatic metastasis24. Serum VEGFD levels are
elevated in about two-thirds of LAM patients, serving as an important
diagnostic biomarker110. Whether other growth factorsmay contribute
to lymphangiogenesis in LAM, including the one-third of LAM patients
without elevated VEGFD, is a critical unanswered question. We iden-
tified MDK as a secreted factor that may promote lymphangiogenesis
and angiogenesis in SLS-dominant tumors, and found that MDK is
elevated in the serum of LAM patients, suggesting that it may be a
critical mechanistic link to lymphangiogenesis in LAM as well as a
candidate therapeutic target.

Compared to matched normal kidneys, a higher percentage of
T cells was observed in AML tumors, and proliferating T cells were
solely observed in tumors, indicating tumor-induced T-cell activation
and expansion. This concept is supported by increased expression of
genes associated with inflammation in tumor-associated T cells
revealed by comparative pathway analysis. This T-cell infiltration in
tumors was validated by IHC and supports the conclusion of a prior
study of T cells in AML17. Evidence of T-cell exhaustion was present in
the effector T-cell population, consistent with T-cell exhaustion pre-
viously reported in human AML and LAM and in mouse models17,18,
which may curtail the proliferation and cytotoxicity of tumor-
recognizing T cells111. Intriguingly, CD8+ T cells derived from SLS-
dominant exhibited much higher exhaustion and lower cytotoxicity
compared to those from IS-dominant tumors. Integrative analysis of
paired scRNA-Seq and scTCR-Seq revealed that clonal expansion and
T-cell velocity were almost completely suppressed in SLS-dominant
tumors.

We observed striking macrophage infiltration in these renal AML,
validated by IHC and consistent with previous observations in hepatic
AML21, emphasizing a possible role of the innate immune system in
TSC. M2 polarization of TAMs is implicated in tumor promotion and
immune suppression112. A subset of M2-like TAMs was observed in
AML, characterized by high expression of M2 marker genes. Interest-
ingly, it seems thatmacrophage alternative polarization inAMLtumors
is shaped by different tumor cell states. Specifically, SLS-dominant
tumors were enriched withM2-like macrophages with high expression
of TREM2 and TYROBP, a receptor complex on macrophages recently
shown to suppress T-cell function in tumor microenvironment96,97.
Because TREM2+/TYROBP+ tumor-infiltrating macrophages inhibit
T-cell proliferation in animal models of sarcoma, colorectal cancer,
and mammary tumor96,97, it is possible that these suppressive macro-
phages are responsible for the observed T-cell dysfunction and almost
complete suppression of T-cell clonal expansion and differentiation
observed in SLS-dominant tumors. Integrative analysis of spatial
transcriptomic profiling and single-cell analysis identified a connection

between APOE (primarily expressed by tumor cells) and macrophage
population frequency, which was robustly recapitulated by a further
integrative analysis of bulk RNA-Seq and single-cell analysis. Genome-
wide ligand-receptor analysis revealed APOE-TYROBP as the strongest
tumor microenvironment interaction, suggesting a regulatory axis
from tumor cells to suppressive TAMs. The TREM2/TYROBP complex
acts as a receptor for amyloid-beta protein 42, a cleavage product of
the amyloid-beta precursor protein APP93 and APOE113. Consistently,
both APP and APOE showed higher expression in SLS AML cells com-
pared to IS type. Since expression of known immune checkpoint
ligandswas extremely low on tumor cells in both SLS- and IS-dominant
tumors, T-cell function and proliferation/differentiation may be
inhibited indirectly by the SLS tumor cells via induced suppressive
TAMs. While tumor mutation burden has been associated with
response to immune checkpoint therapy in multiple cancer types, it is
not a perfect marker of response, and suppressive myeloid cells have
gained attention as a critical determinant of therapeutic resistance in
multiple cancer types114. Our work suggests that in TSC tumors, which
are known to have an extremely lowmutational burden19, suppressive
myeloid cells may drive immune suppression, and blocking tumor-
myeloid cell crosstalk may provide enhance immune regulation of
these tumors.

The relatively small sample size in this study, despite a large
number of tumor cells analyzed (6596 cells), is an important limitation
of our findings. Additional analysis with larger numbers of samples for
these rare diseases will help to validate these findings. However, we
note that the very similar findings in AML and LAM provide some
degree of cross-validation, including robust identification of the same
two distinct cell states: stem cell-like and inflammatory. Interestingly, a
recent study found a positive correlation between MDK expression
and poor prognosis in melanoma patients and revealed that MDK-
educated melanoma secretome promotes immunosuppressive mac-
rophages leading to T-cell dysfunction80. Given the striking similarity
between TSC tumors and melanoma, such as high expression of mel-
anocyte genes CTSK and MITF and similar tumor microenvironment
crosstalk revealed by this study, the regulatory axis from SLS tumor
cells to T-cell dysfunction via TREM2+/TYROBP+ M2-like macrophages
identified in this study might be a conserved mechanism across
tumor types.

In addition to macrophages, B cells were enriched in tumors
compared to matched normal kidneys. Detailed analysis revealed a
general downregulation of cell growth and inflammation pathways in
tumor-infiltrating B cells, which suggests exhaustionof thoseB cells. In
addition, cross-presenting dendritic cells were enriched in tumors
compared to matched normal kidneys. Cross-presenting dendritic
cellsplay an important role in the tumormicroenvironment bypriming
T cells to target tumor cells. A groupofproliferating dendritic cells was
identified, presumably induced by tumor recognition, that showed
high expression of immune checkpoint TIM3, likely contributing to the
suppression of T-cell priming. Finally, mappingmolecular interactions
between tumor and tumor microenvironment in TSC highlights con-
served tumor microenvironment interactions and potential ther-
apeutic targets. For example, ligand-receptor-mediated tumor-

Fig. 7 | Molecular interactions between tumor and immune compartment
inferred by ligand-receptor co-expression. a tSNE plot of 1620 B cells colored by
cluster (left) or the origin (right). b Feature plot showing expression of follicular
B-cellmarker genesMS4A1 andCXCR5. c Featureplot showing expression of plasma
B-cell marker genes. d tSNE plot of dendritic cells from AML tumors which are
colored by cluster. e High expression of MKI67 in proliferating dendritic cells.
f High expression of TIM3 (HAVCR2) in proliferating dendritic cells. g Circos-plot
showing ligand-receptor pairs identified across pairs of cell types (cutoff value for
interaction is 1). Red lines indicate pairs only identified in SLS-dominant tumors;
green lines indicate pairs only identified in IS-dominant tumors. h Schematic
showing the main discoveries from this study: identification of two cell states (SLS

and IS), their differential cellular ecosystem with active crosstalk between tumor
cells and microenvironment, and association with rapamycin resistance and
immune modulation. In SLS tumor cells, upregulated APOE may modulate tumor-
associated macrophages toward an immune-suppressive state by directly binding
to TREM2/TYROBP receptor complex, leading toT-cell dysfunction and diminished
T-cell clonal expansion; upregulatedMDKexpressionmay induce angiogenesis and
drive persistence in response tomTORC1 inhibition.MDK is identified as a potential
therapeutic target combined with rapamycin for persisting SLS tumor. In contrast,
IS tumors with upregulated inflammatory pathways exhibit higher T-cell cytotoxi-
city/proliferation and sensitivity to rapamycin treatment. Figure is created with
BioRender.com.
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microenvironment interactions recapitulate many interactions
observed in melanoma. Strikingly, indirect cell–cell interaction map-
ping revealed that interactions between T cells and other cell types
were primarily enriched in IS tumors, whereas interactions of endo-
thelial cells were primarily enriched in SLS tumors. Therefore, in the
future, it may be possible to personalize therapeutic design based on
these molecular interactions.

In summary, ourworkprovides an atlasofneoplastic, stromal, and
immune cells with important insights into TSC biology. The link
between the drug-resistant stem cell-like state and suppressed T-cell
dynamics via tumor-educated macrophages revealed by this work has
important translational implications. The insights revealed here may
have broad relevance for understanding the molecular mechanisms
underlying other mTORC1 hyperactive tumors.

Methods
Experimental model and subject details
Patient samples. LAM specimens, AML tumor samples, and matched
normal kidneys were collected under IRB approved by the Brigham
and Women’s Hospital (Protocol #2008P002071). All patients pro-
vided informed written consent. None of these patients received
rapalog treatment for six months prior to surgery. AML samples were
obtained locally from Massachusetts General Hospital, Brigham and
Women’s Hospital/Dana-Farber Cancer Institute, or Beth Israel
Deaconess Medical Center in Boston. LAM samples were obtained
either locally from Brigham and Women’s Hospital or from National
Disease Research Interchange (NDRI). All samples were immediately
dissociated and subjected to single-cell analysis upon receipt. No
specific sampling was performed for AML or LAM samples. The entire
piece was analyzed for scRNA-seq.

Cell lines. The following cell lines were maintained in our lab:
patient-derived TSC2-deficient cell line 621-101, TSC2-add back cell
line 621-103, mouse kidney-derived TSC2-null cell line TTJ (the gift
of Vera Krymskaya), and TSC2-add back cell line TTJ-TSC2. The
normal human lung fibroblasts NHLF (CC-2512) was purchased from
Lonza Group (Switzerland). All cells were cultured in DMEM sup-
plemented with 10% FBS (Thermofisher Scientific), and were cul-
tured at 37oC in a humidified chamber with 5% CO2 during the
experiments. TSC2-null and TSC2-add back cell lines are routinely
authenticated using western immunoblotting and qPCR to confirm
TSC2 protein loss and expression before any experiment. All cells
used in this study were tested negative for mycoplasma con-
tamination. All cells in our laboratory are monthly tested for
mycoplasma contamination.

Mice. Animal studies were approved by the Brigham and Women’s
Hospital Animal Care and Use Committee (IACUC). All husbandry and
experiment procedures with mice were conducted in accordance with
protocols approved. Mice were provided water and food ad libitum
andwerehoused on a standard light (12 h) and dark (12 h) cycle at 72 °F
and 40% humidity. Athymic nude mice (Crl:NU(NCr)-Foxn1nu, Charles
River Laboratories, Wilmington, MA) were all seven-week-old female
mice at the time of TTJ cell injection for allograft experiments. In all
mice experiments, maximal tumor sizes were not exceeded 1500mm3,
the maximal tumor size permitted by IACUC.

Method details
Single-cell RNA-Seq
Tissue dissociation. Fresh tumor and matched normal samples were
dissociated into single-cell suspension using human tumor dissocia-
tion kit (Miltenyi Biotec) and gentleMACS™ Dissociator (Miltenyi Bio-
tec), according to manufacturer’s manual. Red blood cells were
removed by Red Blood Cell Lysis Solution kit (Miltenyi Biotec). Cell
suspensions were washed with cold PBS. Viability of all samples were

confirmed with trypan blue staining (Invitrogen) to be above 70%
before loading to 10x Chromium controller.

Single-cell RNA sequencing
Droplet emulsions were immediately recovered for reverse transcrip-
tion reaction using Bio-rad thermocycler. Single-cell expression
libraries were constructed using 10x genomicsChromium5’barcoding
reagents (v1) following manufacturer’s manual. The quality of ampli-
fied cDNA and constructed libraries were confirmed by BioAnalyzer
(Agilent, High Sensitivity DNA Kit). Library sequencing was performed
by NextSeq 500 (Illumina). QC files are provided in Supplementary
Information.

Paired single-cell TCR sequencing
Aliquots of 2μl amplified cDNA from the single-cell expression library
construction workflow were used for TCR library construction
according to 10x genomics manufacturer’s manual. Quality of ampli-
fied cDNA and constructed libraries were confirmed by BioAnalyzer
(Agilent, High Sensitivity DNA Kit). Library sequencing was performed
by NextSeq 500 (Illumina). Sequencing depth for V(D)J enriched
libraries were at least 5000 read pairs per cell. Standard Illumina
sequencing primers were used for both sequencing and index reads
following 10x manufacturer’s protocol.

Nanostring whole transcriptome digital spatial profiling
Two tumors were profiled using Nanostring digital spatial profiler for
whole transcriptome analysis. Resected tumor samples were washed
with cold PBS and fixed in 50ml 10% Formalin for 24 hours before
embedding. All antibody staining and whole transcriptome sequen-
cing were performed on freshly cut FFPE slides. ROIs were selected
based on immunofluorescence staining using Nanostring validated
antibodies againstα-SMA (green) obtained from Invitrogen (clone 1A4,
Cat. 53-9760-82, 1:400), CD3e (pink) obtained from Origene (clone
UMAB54, Cat. UM500048, 1:200) and CD68 (yellow) obtained from
Santa Cruz (clone KP1, Cat. sc-20060AF594, 1:400). Each ROI was
uniquely indexed then pooled for sequencing. Sequencing data were
Q3 normalized by a standard Nanostring pipeline. Q3 (3rd quartile of
all selected targets) normalization was used for all targets that are
above the limit of quantitation. Q3 normalization uses the top 25% of
expressed genes to normalize across ROIs/segments.

10x Visium spatial transcriptomics profiling
Fresh tumor sample and matched normal kidney were immediately
OCT embedded within 1 hour after surgery. OCT blocks was cryosec-
tioned at −10 °C and placed on chilled Visium tissue optimization slide
(PN: 3000394, 10x Genomics) or spatial gene expression slide (PN:
2000233, 10x Genomics). Slides were kept chilled during sectioning
and transportation processes. H&E staining, tissue optimization and
gene expression library construction were performed as per manu-
facturer’s manual. Briefly, tissue permeabilization time was set to
18min for gene expression experiment after time-course optimization
experiment followingmanufacturer’s protocol. BrightfieldH&E images
were taken using Keyence BZX800 microscope with a ×20 objective.
Images were stitched by Keyence BZX800 stitching function. Fluor-
escent images were taken with dsRed2 filter cube from Chroma
Technology (ex/em: 545/30, 620/60) using a ×10 objective. Libraries
were sequenced on illumina NovaSeq 6000 at 300 pM concentration.

Multiplex immunofluorescence, RNA in situ hybridization, and
immunohistochemistry
FFPE tissue blocks were freshly cut at thickness of 5μm. The following
primary antibodies were used for multiplex immunofluorescence
staining performed by iHisto company: MDK [EP1143Y] (ab52637,
Abcam, 1:100) (FITC labeled, green), TAGLN (ab14106, Abcam, 1μg/ml)
(cy5 labeled, red) and CTSK (PB9856, Boster, 0.5μg/ml) (cy3 labeled,
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pseudo-colored pink for visualization). Nuclei were stained with DAPI.
Slide images were scanned at ×10 magnification.

RNA in situ hybridization (ISH) was performed at Brigham and
Women’s Hospital Pathology Core according to ACD user manual
usingRNAscope® 2.5 LS Probe -Hs-MDK-O1 (586478, ACD, Bio-techne).
All RNA in situ hybridization experimentswereperformed on the same
samples subjected to single-cell analysis.

All immunohistochemistry staining were performed at Brigham
and Women’s Hospital Pathology Core with validated antibodies
against CD68 (clone PG-M1, M0876, Dako, 1:100), CD3 (clone F7.2.38,
A0452, Dako, 1:50), CD31(clone JC70A, M0823, Dako, 1:50).

MDK ELISA assay
Human and mouse MDK ELISA assays were performed using Human
Midkine ELISA Kit PicoKine™ (EK1235, BOSTER) and Mouse MDK/
Midkine (Sandwich ELISA) ELISA Kit (LS-F12048-1, LSBio) respectively
following manufacturers’ manuals. Standards were prepared immedi-
ately prior to performing the experiment. For human patient samples,
frozen serum samples were thawed to room temperature and cen-
trifuged at 15min at 1000×g immediate before assessment. For cell
culture assays, 621-101 cells, 621-103 cells, TTJ cells and TTJ-TSC2 cells
were cultured to90%confluence. Culture supernatantswere collected,
centrifuged at 500×g for 5min, and assayed immediately.

Quantitative PCR assay
Probes Hs00171064_m1 (human, ThermoFisher), Mm00440280_g1
(mouse, ThermoFisher), and TaqMan™ Universal Master Mix II, with
UNG kit (4440038, ThermoFisher) were used for Quantitative PCR
assays.

Allograft tumors
Seven-week-old female athymic nude mice (Crl:NU(NCr)-Foxn1nu,
Charles River) were subcutaneously injected with three million TTJ
cells (75 µl cellsmixedwith 75 μlMatrigel, Corning 356237) on the front
flank. All treatments started at day 8 after tumor inoculation when
average tumor volume reached around 300mm3. Mice were rando-
mized in groups for treatment. Mice were treated 3 times per week for
a total of 11 treatments with intraperitoneal injections of DMSO vehi-
cle, the small molecule 3-[2-[(4-Fluorophenyl)methyl]imidazo[2,1-b]
thiazol-6-yl]−2H-1-benzopyran-2-one (iMDK; TOCRISBio-techne, 9mg/
kg), rapamycin (Sirolimus A8167, APExBIO; 3mg/kg), or combined
iMDK (9mg/kg) and rapamycin (3mg/kg). Tumor volume was mea-
sured immediately before each treatment using a caliper.

Rapamycin treatment and scRNA-Seq of tumor-derived primary
culture
Resected tumor tissue was dissociated into single-cell suspension as
described above. Aliquots of 100μl were dispensed into 10 cm dishes
with fresh DMEM supplemented with 10% FBS. Primary cultures were
maintained at 37 °C in a humidifiedchamberwith 5%CO2 for 2weeks to
allow to reach 80% confluence. Fresh media were changed every
3 days. Primary cultures were treated with rapamycin (20 nM) or
vehicle for 24 hours before subjecting to droplet scRNA sequencing as
described above.

Cell line estradiol treatment and scRNA-Seq
Patient-derived TSC2-deficient 621-101 cells were grown in phenol-free
DMEM supplemented with 10% charcoal-stripped FBS for 72 hours,
then treatedwith 100nMestradiol or ethanol vehicle for 24 hours, and
subjected to single-cell RNA sequencing as described above.

Combination treatment and proliferation assay of cell lines
621-101 cells, TTJ cells, or normal human fibroblasts NHLF cells were
seeded in 12-well plates in DMEM with 10% FBS at 20–30% confluency.
Cells were treated with DMSO (control), iMDK (1μM), rapamycin

(20nM), or combined iMDK (1μM) and rapamycin (20nM) until the
control group reached over 100% confluency. Drugs were refreshed
every 2 days to ensure maximum activity. Cell proliferation was asses-
sed using Crystal violet Assay Kit (Cell viability) (ab232855, abcam).

Quantification and statistical analysis
Statistical analyses were performed with R, MATLAB, or GraphPad
Prism (GraphPad Software). Statistical parameters are reported at
appropriate places in main text, supplemental materials, figures, and
figure legends, including sample numbers, measures of center, stan-
dard deviation, or standard error (mean ± SD or SEM), statistical
significance.

Single-cell RNA-sequencing data processing
Cell Ranger pipeline (10x Genomics) was used for reference genome
alignment and generating gene-cell counts matrices. Raw sequencing
data was aligned to GRCh38 reference genome using Cell Ranger
pipeline (10x Genomics) to generate gene counts matrix by cell bar-
codes. Sequencing depth was on average 30,285 reads/cell. Data nor-
malization and integration were performed using the Seurat (v4.0.2) R
package34. Cells were filtered from downstream analysis with the cri-
teria of <200 genes or >6000 genes detected and >0.1 fraction of
mitochondrial gene. Samples were normalized individually and inte-
grated with the IntegrateData function. The integrated Seurat object
was further scaled by regressing out UMI count and fraction of mito-
chondrial genes. Optimal principal components used for dimension-
ality reduction was determined empirically for each analysis by the
drop off in PC variance. Cell cycle regression was not performed given
small proliferating cell clusters identified in this study. Differential
gene expression was analyzed using Seurat ‘FindAllMarkers’ or ‘Find-
Marker’ functions.

Cell type annotation
We first used an automatic cell type annotation R package SingleR23

to annotate cell types. Briefly, this algorithm computes the spearman
correlation between the transcriptome of the test cell and reference
data (i.e., bulk RNA-seq of a pure cell type or cell state) to define cell
type label. The reference datasets used in this study include Human
Primary Cell Atlas (HPCA) and Blueprint-Encode. We then manually
refined cell type annotation based on marker genes identified using
unsupervised clustering and differential expression analyses34. All
cell type marker genes used in this study were from literature.
Expression of major cell type marker genes are shown in Supple-
mentary Fig. 1.

Tumor cell population analysis
Tumor cells were identified as expressing at least two of the five lit-
erature reported marker genes25–30 above median value across all
mesenchymal cells with non-zero values. Clustering and tumor cell
state annotation were performed using normalized raw data. The
tumor stemness score was calculated using Seurat AddModuleScore
function based on relative expression of 50 tumor stem cell marker
genes described previously57.

T-cell population analysis
Four AML tumors and paired normal kidneys were analyzed for T-cell
function, two of which were SLS-dominant and two of which were IS-
dominant. T-cell population was downsampled to have equal number
of cells from SLS or IS samples. We calculated an exhaustion score for
each cell based on relative expression of known checkpoint genes,
including TIGIT, LAG3, and KLRG1; and a cytotoxic score based on
relative expression of cytotoxic effectors, including GZMB, IFNG, and
TNF. Cells with expression of at least one checkpoint gene or one
cytotoxic effector gene were calculated for the scores and were
regarded as exhausted or cytotoxic respectively.
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Single-cell T-cell receptor and T-cell clonotype analysis
Raw FASTQ reads were mapped to human GRCh38 V(D)J reference
genome (v3.1.0, 10x Genomics) using Cell Ranger pipeline (10x
Genomics). Sequencing depth was on average 20,876 reads/cell.
The filtered contig annotation file was used for downstream analysis
that contains high-confident contigs. For clonotype analysis, we
downsampled to roughly equal number of cells derived from SLS
and IS tumors. After normalizing the cell numbers, we detected
4667 unique clonotypes in two IS-dominant tumors and 220 unique
clonotypes in two SLS-dominant tumors. Clonotype size ranged
from 1 to 632 cells in IS-dominant tumors and 1 to 23 cells in SLS-
dominant tumors. We further defined clonotype expansion as that a
clonotype shared by at least three cells within individual sample,
and clonotype sharing as that a clonotype detected in any two or
more T-cell subtypes within individual sample. we detected that
69% of clonotypes were expanded in IS-dominant tumors, and 18%
clonotypes were expended in SLS-dominant tumors. In IS-dominant
tumors, we identified 229 and 319 shared clonotypes in CD8+ and
CD4+ T cells respectively, whereas, in SLS-dominant tumors, we
identified 5 and 0 shared clonotypes in CD8+ and CD4+ T cells,
respectively. One-sided Fisher’s exact test followed by Benjamini-
Hochberg correction was used to assess statistical significance of
clonotype sharing among T-cell subtypes on cluster-by-cluster
contingency tables.

RNA velocity analysis
RNA velocity was calculated using scVelo (v0.2.2, python package)85

to infer the differentiation trajectory directionality and future cell
state from ratio of unspliced and spliced mRNAs within a single-cell.
Individual loom file was generated for each sample based on Cell
Ranger output file using velocyto python package115. Then loom files
were merged together for SLS samples and IS samples, respectively.
For visualization, we used Seurat-generated single-cell UMAP coor-
dinates to project RNA velocity vectors onto the two-dimension
embeddings.

Regulon and pathway analysis
Transcription factor enrichment and regulon activity were assessed
using SCENIC package45 and human cisTarget databases: hg19-500bp-
upstream-7species.mc9nr.feather and hg19-tss-centered-10kb-7spe-
cies.mc9nr.feather. Seurat normalized expression matrix was used as
input. Only the protein-coding genes were analyzed for motif enrich-
ment. We used GSVA (version 1.36.3) for pathway enrichment analysis
with default parameters. The database used was Hallmark Gene Set
from Molecular Signatures Database (MsigDB)116.

Visium spatial transcriptomics data processing
Raw FASTQ files were aligned to human GRCh38 reference genome
using SpaceRanger pipeline (10xGenomics). Rawdatawereprocessed
using Seurat (v4.0.2) for normalization using SCTranform function.
Custom scripts were used to map normalized spot-level data to his-
tology images for visualization. Tumor enriched spots were identified
as spots with averaged value of CTSK and PMEL higher thanmedian of
average value across all spots.We then calculated scores for SLS and IS
cell states on tumor-enriched spots using the marker genes MGP (for
SLS) and ACTA2 (for IS) as these two marker genes were identified as
most robust markers for these two distinct cell types in scRNA-Seq
data. We used a stringent criterion to annotate SLS cell state: spots
with value of MGP (SLS marker) higher than 75% across all spots and
value of ACTA2 (IS marker) lower than 75% across all spots. Vice versa,
IS state was identified as spots with value of ACTA2 (IS marker) higher
than 75%across all spots and value ofMGP (SLSmarker) lower than 75%
across all spots. SLS enriched island or IS enriched island were iden-
tified as island that only contain SLS state (blue) or IS state (green)
tumor enriched spots. Since the expression levels of TREM2 and

TYROBP were within similar range, values of these two genes were
simply averaged for each spot and plotted.

Spatial correlation analysis
For the major cell types identified in scRNA-seq analysis (Tumor cells,
T cells, B cells, macrophages, lymphatic endothelial cells, blood
endothelial cells, NK cells, and dendritic cells), we re-defined cell type
marker genes with the criteria that the relative average expression is
three times higher than any other cell types and expressed in at least
50% of cells of the given cell type. The Nanostring spatial tran-
scriptomics data were Q3 normalized and log2 transformed. Then, we
calculated the relative frequency of each cell type in the Nanostring
spatial transcriptomicsdatasets (12 bulk RNA-seqof ROIs of SLS tumor,
and 12 bulk RNA-seq ROIs of IS tumor) by the average expression of
scRNA-Seq re-defined cell type marker genes. To identify genes that
may mediate cell-cell interactions, we performed Pearson correlation
analysis of expression of genes that are primarily expressed in one cell
type in the single-cell data with the predicted frequency/activity of
another cell type in theNanostring spatial transcriptomicsdata of each
ROI, followed by correlation test for significance assessment of the
correlation coefficient. The assumption is that if a gene is highly
expressed in one cell type and highly correlated with frequency/
activity of another cell type, the given gene may mediate the interac-
tion of these two cell types as previously described90.

Ligand-receptor interaction analysis
Ligand-receptor interaction analysis was performed to infer potential
cell-cell interactions via direct ligand-receptor binding using algorithm
described previously86 (https://github.mit.edu/mkumar/scRNAseq_
communication). The set of ligand-receptor pairs were obtained
from previous study117. Wemanually addedmore ligand-receptor pairs
discovered more recently, including immune checkpoints and innate
immune regulation. Briefly, interaction score of given ligand-receptor
interaction between two cell types was calculated as the product of
average ligand expression across all cells of one cell type and the
average receptor expression across all cells of another cell types as
previouslydescribed86.We calculated average expressionof ligand and
receptor in all cell types using normalized expression data of the
aggregated scRNA-Seq dataset. The statistical significance of pairs of
interaction was determined by one-sided Wilcoxon rank-sum test.

Kinetic modeling of purine metabolic pathway
As previously described60, we employed a kinetic model of purine
metabolism59 that has the format of a GMA system,where all processes
are represented as products of power-law functions. The model con-
tains 16 metabolites and 37 fluxes and a large number of regulatory
signals60. The diagram of themodel structure was drawn using custom
scripts. We generated pseudo-bulk expression data from scRNA-Seq
data by averaging expression of each gene across all non-zero cells in a
given cell type. We used the differential expression of each gene in the
tumor cells compared to matched normal mesenchymal cells as a
corresponding change in enzyme amount. The enzyme activities were
lumped into apparent rate constants in theoriginalmodel formulation.
Therefore, the differential expression of each gene was modeled as a
corresponding change in its respective reaction rate constant para-
meter. All other parameters were retained the same as at the original
steady state. The equations of themodel were then integrated to get a
new steady state where the variable concentrations and fluxes of the
system were studied.

Bulk RNA-seq analysis
Bulk RNA-seq data were downloaded from dbGaP (phs001357.v1.p1),
including 10 TSC samples and 4 healthy controls. Genes with missing
data in more than five samples were removed from downstream ana-
lysis. Raw data were log2 normalized.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw scRNA-seq data of five LAM samples, six AML, and four
matched normal kidney samples generated in this study are available
in GEO (GSE190260). The raw scTCR-seq data of four tumors and 10X
Genomics spatial transcriptomics data generated in this study are
available in GEO (GSE208262). The raw Nanostring whole tran-
scriptome digital spatial profiling data generated in this study are
available in GEO (GSE210755). The publicly available bulk RNA-seq
data from TSC patients8 used in this study are available in the Data-
base of Genotypes and Phenotypes (dbGaP) under the accession
code phs001357.v1.p1 GRCh38 reference genome: https://support.
10xgenomics.com/single-cell-gene-expression/software/downloads/
latest. Source data are provided with this paper.
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