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In this paper, analytical and numerical studies of the influence of the long-range interaction parameter on the 
excitability threshold in a ring of FitzHugh-Nagumo (FHN) system are investigated. The long-range interaction 
is introduced to the network to model regulation of the Gap junctions or hemichannels activity at the connexins 
level, which provides links between pre-synaptic and post-synaptic neurons. Results show that the long-range 
coupling enhances the range of the threshold parameter. We also investigate the long-range effects on the 
network dynamics, which induces enlargement of the oscillatory zone before the excitable regime. When 
considering bidirectional coupling, the long-range interaction induces traveling patterns such as traveling waves, 
while when considering unidirectional coupling, the long-range interaction induces multi-chimera states. We also 
studied the difference between the dynamics of coupled oscillators and coupled excitable neurons. We found 
that, for the coupled system, the oscillation period decreases with the increasing of the coupling parameter. For 
the same values of the coupling parameter, the oscillation period of the Oscillatory dynamics is greater than 
the oscillation period of the excitable dynamics. The analytical approximation shows good agreement with the 
numerical results.
1. Introduction

In neural circuits, network operations and communication are sup-

ported by action potentials [1, 2]. The mechanism of generation of 
action potentials is a key component in the regulation of information 
flow [3] and it is initiated at the gap junction (GJ) level. For this reason, 
GJs have been regarded as an important component within the neuronal 
networks that underlie synchronous neuronal activity and field poten-

tial oscillations [4]. Soon after GJs were identified as structural and 
functional components of intercellular junctions, attempts were made 
to discover their protein makeup. Results showed that GJs are formed 
by the interaction of 2 hemichannels (HCs), one contributed by each 
of the adjacent cells [5, 6]. Each HC is composed of connexins in ver-

tebrates or innexins in invertebrates [7, 8]. Gap junctions of identical 
HCs are known as homo-typic GJs, while those of different HCs are 
known as hetero-typic GJs [9, 10]. A human presents more than 20 
different connexins species [11, 12]. They are all named after their pre-

dicted molecular weight, expressed in kilodaltons (e.g., connexing43 
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call Cx43, has a molecular weight of 43 kilodaltons). Gap junctions 
permit the intercellular diffusion of ions, metabolites, and cytoplasmic 
messenger molecules smaller than 1 kilodalton. This short route connec-

tion serves as a powerful cell function coordinator in complex tissues 
like the heart and brain. But HC activity can be regulated by phospho-

rylation [13, 14, 15], redox potential [16, 17, 18, 19], pH [20, 21], and 
other conditions [22]. Exposition to low extracellular Ca2+ concentra-

tion [22], mechanical stress [23], or positive membrane voltages [22] 
has been observed to increase the open probability of different Cx HCs. 
This regulation affects the membrane fluidity of the GJs [24].

However, studies regarding the transmission of the information tak-

ing into account the regulation of HC activity still lack, the same as 
the studies on the influence of this regulation on the chimera state [25, 
26, 27, 28, 29, 30, 31]. Chimera state represents a peculiar collective 
behavior of coupled identical oscillators characterized by the coexis-

tence of coherent or synchronized and incoherent or unsynchronized 
groups. After its discovery in 2002 by Kuramoto and Battogtokh [32], 
the chimera state has been investigated in several neuronal processes, 
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and some particular patterns have been found such as multi-chimera 
[25, 33, 34] and traveling chimera [25, 35, 36, 37, 38, 39].

In this work, we will study the effects of the regulation of HC activity 
on the electrical current at the connexins level of electrical synapses.

We hypothesized that a specific long-range parameter represents the 
regulation parameter of HC activity on the communication in the brain 
areas. It characterizes the coupling between cells at different sites. The 
variation of the long-range parameter can be related to the variation 
of the temperature or of the fluidity of the milieu, or redox potential, 
etc. In recent years, many studies on the effect of long-range interac-

tions have been carried out on different approaches [40, 41]. It has 
been shown that long-range interactions have effects on calcium-wave 
propagation [42] or on chimera patterns [43, 44]. We will also study 
the difference between the dynamics of coupled oscillators [45] and 
coupled excitable neurons.

The aim of the present work is embedded in the following twofold 
questions, considering [46] in which the electrical coupling between 
neurons has been elaborated, and [42] in which long-range interaction 
has been defined:

- Firstly, what are the effects of long-range coupling on the gener-

ation of action potentials in the electrically coupled excited neurons? 
Furthermore, how do these action potentials differ from the ones of 
coupled oscillators?

- Secondly, how does long-range interaction influences the chimera 
state?

The paper is organized as follows: Section 2 introduces the mathemati-

cal model of long-range interaction. Section 3 describes the mathemati-

cal model of the threshold parameter of electrical coupling, considering 
long-range interaction and exploiting the FitzHugh-Nagumo (FHN) neu-

ron model used for most of the studies in the literature. Section 4

and Section 5 study the effects of the long-range coupling on the bidi-

rectional coupling and the unidirectional coupling respectively. In the 
concluding section, we summarize our main results, present possible 
applications, and discuss open problems.

2. Model description

While electrical synapses are known to be the target of the neu-

romodulatory transmitters, increasing evidence indicates that they are 
profoundly influenced by the activity of the networks in which they are 
embedded. It is in this order that the HC activity of transmission of the 
information could be affected. We use a long-range coupling to model 
this influence. The model of the long-range coupling between neurons j 
and k is given by the following relation [42, 47]:

𝜎(𝑟) = 𝜎0
1 − 𝑟

𝑟
𝑟|𝑘−𝑗| (1)

In this relation, 𝜎0 represents the system’s coupling parameter, and 
𝑟 defines the range of interaction. This 𝑟 can represent the parameter 
that regulates the HC activity during the interaction. According to the 
nature of this regulation parameter, the long-range coupling could be 
optimal for the proper choice of the range 𝑟. For example, the human 
brain’s suitable temperature is taken very near 37 °C [20]. Far from this 
value, it does not work conveniently.

The absolute value |𝑘 − 𝑗| represents the measure of the distance be-

tween neurons 𝑗 and 𝑘.

However, Eq. (1) is more adapted for |𝑘 − 𝑗| ≥ 2 to ensure that the 
long-range would be equal to zero when 𝑟 → 0. To manage even the 
case of |𝑘 − 𝑗| = 1 we will consider in this work the following model of 
long-range:

𝜎(𝑟) = 𝜎0(1 − 𝑟)𝑟|𝑘−𝑗|. (2)

The model of Eq. (2) is similar to that of Eq. (1) when |𝑘 − 𝑗| ≥ 2.

The graphical model of the long-range coupling is given by (Fig. 1) 
representing its variation with the range of interaction 𝑟 and the dis-

tance |𝑘 − 𝑗|. It shows that the coupling between cells decreases gradu-

ally as the distance |𝑘 − 𝑗| increases. For the same HC activity, the near 
2

Fig. 1. Influence of the distance between neurons |𝑘 − 𝑗| on the long-range cou-

pling 𝜎 for 𝜎0 = 1. The long-range coupling decreases with the distance between 
neurons.

neighbors’ long-range coupling parameter is greater than that of far 
neighbors. This description characterizes that as the signals propagate 
in the milieu, the number of receptors in the considered cells decreases.

3. Mathematical model

3.1. Network model

In order to properly predict certain biological processes that are 
associated with the neuronal behavior, R. FitzHugh and J. Nagumo sug-

gested the FitzHugh-Nagumo (FHN) model [2, 48]. It is an example of 
a relaxation model.

The mathematical form of the individual system describing the process 
of activation and deactivation dynamics of a spiking neuron is given by 
the following set of ordinary differential equations:

⎧⎪⎨⎪⎩
𝑏
𝑑𝑥

𝑑𝑡
= 𝑥− 𝑥3

3 − 𝑦

𝑑𝑦

𝑑𝑡
= 𝑥+ 𝑎

. (3)

Here 𝑥 and 𝑦 represent the activator (the membrane potential) and 
inhibitor (slow variable for current) variables. 𝑏 is the small parameter 
characterizing the time scale separation of fast activator and slow in-

hibitor. In the present paper, we fix it at 𝑏 = 0.01. The system exhibits 
limit cycle relaxation oscillations for the proper choice of the excitabil-

ity threshold 𝑎. Otherwise, it exhibits either oscillatory behavior for |𝑎| < 1 or excitable behavior for |𝑎| > 1.

In the following parts, we assume identical elements in the excitable 
regime. We consider a network with a ring of non-locally coupled topol-

ogy. In the network, we let N nodes be uniformly distributed on the ring 
and let each node be connected with its nearest neighbors. Each node 
represents a neuron where the interaction between two neurons can 
only be implemented through the connected connexins. The fluidity at 
the level of connexins is represented by the long-range coupling given 
below:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑏
𝑑𝑥𝑗

𝑑𝑡
= 𝑥𝑗 −

𝑥3
𝑗

3 − 𝑦𝑗

+ 1
2𝑅

𝑗+𝑅∑
𝑘=𝑗−𝑅

𝜎(𝑟)[𝑏𝑥𝑥(𝑥𝑘 − 𝑥𝑗 ) + 𝑏𝑥𝑦(𝑦𝑘 − 𝑦𝑗 )]

𝑑𝑦𝑗

𝑑𝑡
= 𝑥𝑗 + 𝑎

+ 1
2𝑅

𝑗+𝑅∑
𝑘=𝑗−𝑅

𝜎(𝑟)[𝑏𝑦𝑥(𝑥𝑘 − 𝑥𝑗 ) + 𝑏𝑦𝑦(𝑦𝑘 − 𝑦𝑗 )]

. (4)

Neuronal networks are often structured in topologies where strong 
interconnections between different neurons are found within a range 
𝑅, but much fewer connections exist at longer distances [49, 50]. We 
approximate this feature by coupling with a strength 𝜎(𝑟) within the 𝑅
nearest neighbors from both sides. 2𝑅 is the total number of connections 
in the network for node 𝑗. Another important feature of Eq. (4) is that 
it contains not only direct 𝑥 − 𝑥 and 𝑦 − 𝑦 couplings, but also cross-

couplings between the membrane potential (𝑥) and the slow variable 
for current (𝑦). For the sake of simplicity, a rotational coupling matrix 
depending on a single parameter 𝜙 has been defined [49, 51] to model 
this feature as:

𝐵 =
(

𝑏𝑥𝑥 𝑏𝑥𝑦

𝑏 𝑏

)
=
(

𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙

−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

)
𝑤𝑖𝑡ℎ𝜙 ∈ [−𝜋,𝜋]. (5)
𝑦𝑥 𝑦𝑦
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Fig. 2. Variation of the excitability threshold 𝑎, when 𝜎0 = 5, (a) with 𝑟, for 𝑅 = 10 (black dashed line), 𝑅 = 15 (blue dashed line), 𝑅 = 20 (red dashed line), 𝑅 = 65
(green dashed line), (b) with 𝑅 for 𝑟 = 0.8.

Fig. 3. Variation of the excitability threshold 𝑎, (a) with 𝑟 for 𝑅 = 10 and 𝜎0 = 5, (b) with 𝜎0 for 𝑅 = 10 and 𝑟 = 0.8.
In this section, we address the question of the influence of long-

range coupling on the excitability threshold 𝑎 by taking the parameter 

𝜙 near to 𝜋

2 as suggested in [49]. For 𝜙 ≃ 𝜋

2 , 𝐵 =
(

0 1
−1 0

)
,

Eq. (4) is reduced to:

⎧⎪⎪⎨⎪⎪⎩
𝑏

𝑑𝑥𝑗

𝑑𝑡
= 𝑥𝑗 −

𝑥3
𝑗

3 − 𝑦𝑗 +
1
2𝑅

𝑗+𝑅∑
𝑘=𝑗−𝑅

𝜎(𝑟)[(𝑦𝑘 − 𝑦𝑗 )]

𝑑𝑦𝑗

𝑑𝑡
= 𝑥𝑗 + 𝑎− 1

2𝑅

𝑗+𝑅∑
𝑘=𝑗−𝑅

𝜎(𝑟)[(𝑥𝑘 − 𝑥𝑗 )]
. (6)

This yields the following approximation when considering only the 
node 𝑗 in the network:

⎧⎪⎨⎪⎩
𝑏

𝑑𝑥𝑗

𝑑𝑡
= 𝑥𝑗 −

𝑥3
𝑗

3 − 𝑦𝑗 − 𝑦𝑗𝑆(𝑟)
𝑑𝑦𝑗

𝑑𝑡
= 𝑥𝑗 + 𝑎+ 𝑥𝑗𝑆(𝑟)

, (7)

with

𝑆(𝑟) = 1
2𝑅

𝑗+𝑅∑
𝑘=𝑗−𝑅

𝜎(𝑟) =
𝜎0
𝑅

𝑟(1 − 𝑟𝑅). (8)

The system exhibits either oscillatory behavior for |𝑎| < 1 + 𝑆(𝑟) or 
excitable behavior for |𝑎| > 1 +𝑆(𝑟). The bifurcation points are obtained 
for each value of 𝑟, 𝑅 and 𝜎0 by:

𝑎 = ±(1 +
𝜎0
𝑅

𝑟(1 − 𝑟𝑅)). (9)

The maximum value of 𝑎 for each value of 𝑅 is obtained for:

𝑟 = ± 𝑅

√
1

1 +𝑅
. (10)

The analytical result has revealed that by increasing 𝑅, the interval 
of values of 𝑎 allowing oscillatory behavior is reduced (Fig. 2a), and 
its maximum is translated to the right way on 𝑟−line as presented in 
Fig. 2b. But whatever values of 𝑅 and 𝜎0, the bifurcation point tends to 
1 when 𝑟 tends to 0 or when 𝑟 tends to 1. By taking 𝑟 values near to 0 or 
near to 1 the slopes at the right side in Fig. 3a and b decrease and are 
closed to 𝑎 = ±1.

For the numerical simulation, we have considered a ring of neurons 
in which a signal can be reproduced after 𝑁 = 120 neurons and thus the 
boundary conditions are taken to be cyclic and defined as 𝑥(𝑗+𝑁) = 𝑥(𝑗)
and 𝑦(𝑗 +𝑁) = 𝑦(𝑗).

Under random initials conditions and to be able to compare the 
analytical approximations’ results (Fig. 3a) with those of numerical 
calculations (Fig. 4), we considered the following parameters’ values: 
3

𝑏 = 0.01, 𝜙 = 𝜋

2 , 𝜎0 = 17, and 𝑅 = 5. The maximum value of 𝑎 is analyt-

ically equal to 𝑎𝑚𝑎𝑥 = 1.278, obtained for 𝑟 = 0.8. From Fig. 4a, when 𝑟
tends to 0 or to 1, 𝑎 is greater than the bifurcation value at this level, 
and the nodes are in an excitable state. By taking suitable values of 𝑟, 
values of 𝑎 are less than the bifurcation value as seen in (Fig. 4b, c, d), 
so the nodes are in the oscillatory state after transition time from ex-

citable state. The duration of transition decreases when 𝑟 tends to its 
value corresponding to the bifurcation maximum value. The analytical 
approximation (Fig. 3a) is then in good agreement with the numerical 
interpretation (Fig. 4).

3.2. Period of network of neurons

This part aims to compare the oscillation period of a non-coupled 
oscillator and coupled oscillators for |𝑎| < 1 with the oscillation period 
of coupled excitable neurons for |𝑎| > 1.

Considering a single oscillator (Fig. 5), or coupled system (Fig. 6) 
for |𝑎| < 1, the local dynamics are then periodically oscillating. The tra-

jectories are linked to the nullcline at the right branch 𝐵 → 𝐶 (firing 
phase, from 𝑥+ = 2 to 𝑥− = 1) and at the left branch 𝐷 → 𝐴 (refractory 
phase, from −𝑥+ = −2 to −𝑥− = −1). The cycle approximated by four 
points 𝐴, 𝐵, 𝐶 , and 𝐷 corresponds to one period 𝑇 . The approximation 
of the period for a single neuron when |𝑎| < 1 is given by the following 
equation [52, 53]:

𝑇𝑠𝑜 = (𝑎2 − 1) ln 𝑎2 − 4
𝑎2 − 1

+ 3. (11)

Where 𝑇𝑠𝑜 denotes the period of single oscillator.

In the case of coupled oscillators when |𝑎| < 1, the approximation of 
the period is given by the following equation [45]:

𝑇𝑐𝑜 =
1

(1 + 𝜎)2
(𝑥2

+ − 𝑥2
− + ( 𝑎2

(1 + 𝜎)2
− 1) ln

𝑎2 − (1 + 𝜎)2𝑥2
+

𝑎2 − (1 + 𝜎)2𝑥2
−
) (12)

Where the parameter 𝜎 denotes the coupling strength, 𝑇𝑐𝑜 is the 
period of coupled oscillators. The period 𝑇𝑐𝑜 decreases with increasing 
of 𝜎 [45].

In the case of excitable dynamics, by example for 𝑎 = 1.35, for a sin-

gle neuron, the neuron does not oscillate, it stays constant at the value 
of 𝑎 as shown in Fig. 4a. By coupling excitable neurons, it appears oscil-

lation as shown in Fig. 7. However, contrarily for the precedents cases, 
the blue trajectory is not linked to the nullcline at the right branch 
𝐵 → 𝐶 (firing phase) and the left branch 𝐷 → 𝐴 (refractory phase). The 
slow phases of the trajectory are separated from the nullcline by a cer-

tain gap. Since it is the coupling of excitable neurons, the trajectory 
starts to the value of 𝑎 = 1.35, and performs a transient phase before 



G.B. Soh, R. Tchitnga and P. Woafo Heliyon 7 (2021) e07026

Fig. 4. Influence of the long-range coupling on the appearing of oscillations at the excitable state when 𝑎 = 1.27, (a) for 𝑟 = 0.1 or for 𝑟 = 0.98, (b) for 𝑟 = 0.72, (c) for 
𝑟 = 0.8, (d) for 𝑟 = 0.85.

Fig. 5. (𝑎) Phase portrait (trajectories in red line and nullclines in blue dashed line) of a single FitzHugh-Nagumo system and (𝑏) the corresponding time series of 
activator 𝑥(𝑡) for 𝑎 = 0.1.

Fig. 6. (𝑎) Phase portrait (trajectories in red line and nullclines in blue dashed line) of coupled oscillatory FitzHugh-Nagumo neurons and (𝑏) the corresponding time 
series of activator 𝑥𝑗 (𝑡) for 𝑎 = .35.
adopting the permanent trajectory Fig. 8. The cycle approximated by 
four points 𝐴, 𝐵, 𝐶 , and 𝐷 corresponds to one period 𝑇 .

In the following, we consider the excited coupled FHN system as de-

scribed by Eq. (4). Its phase portrait and the corresponding time series 
of activator plotted in Fig. 7 are different from those of single neu-

rons plotted in Fig. 5 and those of coupled oscillators plotted in Fig. 6. 
Nevertheless, the snapshot of each neuron of the system (Fig. 8) shows 
that each node spends the most significant part of its time in the firing 
(𝐵 → 𝐶) and the refractory (𝐷 → 𝐴) phases.
4

Similar to [45, 52, 53], we employ an analytic approximation for 
the period of neurons defined by Eq. (7) when 𝜙 ≃ 𝜋

2 . We have:

𝑑𝑡 =
1 − 𝑥2

𝑗

(1 +𝑆(𝑟))2𝑥𝑗 + (1 +𝑆(𝑟))𝑎
𝑑𝑥𝑗 , (13)

with 𝑆(𝑟) defined by Eq. (8).

One of the differences between coupled oscillators’ dynamics and 
that of coupled excited neurons resides at the time series of activator 
𝑥𝑗 (𝑡) level. For the first case (Fig. 6b), oscillations are produced between 
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Fig. 7. (𝑎) Phase portrait (trajectories in red line and nullclines in blue dashed line) of coupled excitable FitzHugh-Nagumo neurons and (𝑏) the corresponding time 
series of activator 𝑥𝑗 (𝑡) for 𝑎 = 1.35.
Fig. 8. Snapshot of coupled excitable FitzHugh-Nagumo neurons for 𝑎 = 1.35.

±2, that is why to express the period, authors of [45], for integration, 
used ±2 as the maximum and the minimum.

For the second case (Fig. 7b), the maximum and the minimum are 
respectively greater than 2 and less than −2. We can integrate Eq. (13) 
analytically from ±𝑥+ to ±𝑥− defined by 𝑥+ = 2 + 𝛼 and 𝑥− = 2. 𝛼 is 
the distance between the firing phase of the trajectory of uncoupled 
oscillators and coupled excitable neurons. It increases with increasing 
𝑎, for the chosen value 𝑎 = 1.35, 𝛼 ≃ 0.23. Let consider 𝑇1 as a time of 
the firing phase and 𝑇2 the time of the refractory phase:

𝑇1 = ∫ 𝑥+
𝑥−

1−𝑥2
𝑗

(1+𝑆(𝑟))2𝑥𝑗+(1+𝑆(𝑟))𝑎 𝑑𝑥𝑗 =
1

(1+𝑆(𝑟))2 ∫
𝑥+

𝑥−

1−𝑥2
𝑗

𝑥𝑗+
𝑎

(1+𝑆(𝑟)) 𝑑𝑥𝑗
, or

𝑇1 =
1

(1 + 𝑆(𝑟))2
(
𝑥2
+ − 𝑥2

−
2

+( 𝑎2

(1 +𝑆(𝑟))2
−1) ln

𝑎− (1 +𝑆(𝑟))𝑥+
𝑎− (1 +𝑆(𝑟))𝑥−

− 𝑎

1 +𝑆(𝑟)
),

(14)

and 𝑇2 = ∫ −𝑥−
−𝑥+

1−𝑥2
𝑗

(1+𝑆(𝑟))2𝑥𝑗+(1+𝑆(𝑟))𝑎 𝑑𝑥𝑗 =
1

(1+𝑆(𝑟))2 ∫
−𝑥−
−𝑥+

1−𝑥2
𝑗

𝑥𝑗+
𝑎

(1+𝑆(𝑟)) 𝑑𝑥𝑗
, or

𝑇2 =
1

(1 + 𝑆(𝑟))2
(
𝑥2
+ − 𝑥2

−
2

+( 𝑎2

(1 +𝑆(𝑟))2
−1) ln

𝑎+ (1 +𝑆(𝑟))𝑥+
𝑎+ (1 +𝑆(𝑟))𝑥−

+ 𝑎

1 +𝑆(𝑟)
).

(15)

The time duration of one cycle of a coupled excitable neuron when 
we neglect the fast motions 𝐴 → 𝐵 and 𝐶 → 𝐷 is then given by 𝑇𝑐𝑒𝑛 =
𝑇1 + 𝑇2:

𝑇𝑐𝑒𝑛 =
1

(1 +𝑆(𝑟))2
(𝑥2

+ − 𝑥2
− + ( 𝑎2

(1 +𝑆(𝑟))2
− 1) ln

𝑎2 − (1 +𝑆(𝑟))2𝑥2
+

𝑎2 − (1 +𝑆(𝑟))2𝑥2
−
), (16)

where 𝑇𝑐𝑒𝑜 denotes the period of coupled excited neurons.

The analytical approximations of the period for an FHN system in 
the case of coupled oscillators (blue line) and of coupled excitable neu-

rons (red line) are plotted in Fig. 9 considering the coupling parameter 
(𝑆(𝑟) = 𝜎) constant. It comes out from Fig. 9 and from [45, 52, 53] that 
for the same value of 𝑎 ∈] −1, 1[, the oscillation period of a single oscilla-

tor (𝑇𝑠𝑜) is greater than the oscillation period of coupled ones (𝑇𝑐𝑜). For 
the coupled system (oscillatory or excitable states), the oscillation pe-

riod decreases when 𝜎 increases. For the same values of 𝜎 the oscillation 
period of the Oscillatory dynamics (𝑇𝑐𝑜) is greater than the oscillation 
period of the excitable dynamics (𝑇𝑐𝑒𝑛). This analytical approximation 
is in good agreement with the numerical results from Figs. 5b, 6b, 7b.

It is important to notice that, the amplitude of the time series of 
activator 𝑥𝑗 (𝑡) of coupled excitable neurons increases as 𝑎 increases far 
from ±1.

The analytical approximations of the period of excitable coupled 
FHN in term of the long-range parameter 𝑟 are plotted in Fig. 10. The os-

cillation period firstly decreases for the range of 𝑟 from 0+ to 0.8 which 
5

Fig. 9. Analytical approximations of the period for an FHN system. (a) Oscilla-

tory dynamics for 𝑎 = 0.35 (blue line), (b) excitable dynamics for 𝑎 = 1.35 (red 
line).

Fig. 10. Analytical approximations of the period of excitable coupled FHN in 
term of the long range parameter 𝑟 for 𝑎 = 1.35.

Fig. 11. Oscillation period of excitable coupled FHN in term of the coupling 
parameter for 𝑎 = 1.35. Period obtained from numerical simulations (black cir-

cles), period obtained from analytical approximation of Eq. (16) (solid red line), 
period obtained from analytical approximation of Eq. (18) with the parameter 
𝑒 = 0.22 (solid black line).

corresponds to the interval where the coupling parameter increases. 
Secondly, from 𝑟 ≃ 0.8 until 𝑟 ≃ 1, the oscillation period increases which 
corresponds to the interval where the coupling parameter decreases.

However, as in [52, 53], the transition from the left to the right 
branch or from the right to the left branch is not directly made. To 
account for the delay of transition, authors of [52, 53] modified the 
period of Eq. (11) by introducing a small parameter 𝑒 as follows:

𝑇 = ((𝑎2 − 1) ln |𝑎2 − 4
𝑎2 − 1

|+ 3)(1 + 𝑒). (17)

In the light of the above, our expression of the period becomes:

𝑇𝑐𝑒𝑛 =
1

(1 +𝑆(𝑟))2
(𝑥2

+ − 𝑥2
− + ( 𝑎2

(1 +𝑆(𝑟))2
− 1) ln

𝑎2 − (1 +𝑆(𝑟))2𝑥2
+

𝑎2 − (1 +𝑆(𝑟))2𝑥2
−
)(1 + 𝑒).

(18)

In Fig. 11, we compare the analytical results with numerical simula-

tions of the excitable coupled FHN system. For 𝑎 = 1.35, and for 𝑒 = 0.22, 
the analytical approximation (Solid red line) is in good agreement with 
the numerical results (black circles).
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Fig. 12. Traveling wave by increasing the long-range 𝑟. (a) For 𝑟 = 0.53 and (b) for 𝑟 = 0.54.

Fig. 13. Traveling patterns generated by increasing the long-range r. Panels present the space-time plot of the node variables 𝑥𝑗 and their corresponding snapshot. 
(a) For 𝑟 = 0.55, (b) for 𝑟 = 0.56.
4. Effect of the range of interactions on the bidirectional coupling

In this section, we study the influence of the long-range parameter 
in the system described by Eq. (4). Elements are in excitable dynamics 
and parameters are set as 𝑁 = 500, 𝑎 = 1.02 and 𝜙 = 𝜋

4 − 0.1.

Fig. 12 is made of two columns for 𝑟 = 0.53 (𝑎), and 𝑟 = 0.54 (𝑏). In 
the first row, the space-time plot of the node variables 𝑥𝑗 is depicted, 
and their corresponding snapshot at two different time 𝑡𝑖𝑚𝑒1 = 15000
(red color) and 𝑡𝑖𝑚𝑒2 = 15100 (blue color) are figured out in the second 
row. The last row presents the times series of the membrane potential 
𝑥𝑗 at the nodes 𝑗 = 290 (red color) and 𝑗 = 300 (black color). We can 
see that nodes are organized into spatial traveling groups of elements, 
interrupted by regions of oscillating elements that travel from the last to 
the first node. As the moving fronts on the panels indicate, the velocity 
of the oscillating regions around the ring increases with 𝑟.

The time series confirm the traveling behavior for two different 
times. Since incoherent domains are moving from the right side to the 
left, the node 𝑗 = 300 oscillates before the node 𝑗 = 290. Even looking 
at the snapshot panels of the node variables 𝑥𝑗 at two different times, 
𝑡𝑖𝑚𝑒1 = 15000 (red color) and 𝑡𝑖𝑚𝑒2 = 15100 (blue color), the incoher-

ent behaviors in red are at the right side of the incoherent behaviors 
in blue. That is with respect to the time of the snapshot. The increas-

ing of 𝑟 facilitates the generation of new incoherent regions, and the 
number of spikes that form the spatial profile of the wave increases. It 
6

is to notice that those incoherent domains travel around the ring using 
a constant velocity [26, 31], as clearly indicated by the corresponding 
space-time plot.

For greater values of 𝑟, the area of traveling coherent regions de-

creases while the number of traveling waves increases. This traveling 
patterns behavior is illustrated by the Fig. 13. The area of the coherent 
regions in Fig. 13b for 𝑟 = 0.56, is smaller than the area of the coherent 
regions in Fig. 13a for 𝑟 = 0.55.

We found in Fig. 13 the traveling patterns in which the proportion of 
coherent domain is reduced when 𝑟 increases. It is on this base that the 
coherent domains disappear; from 𝑟 = 0.58, the whole system becomes 
completely unsynchronized. It starts to form the oblique stripes, and 
another typical pattern of traveling waves appears as shown in Fig. 14.

We conclude from the above results that long-range coupling takes 
a key role in the formation of different traveling patterns of Eq. (4).

5. Effect of the range of interactions on the unidirectional 
coupling

In this section, we study the influence of the long-range parameter 
in the system unidirectionally coupled described by Eq. (19). Elements 
are in excitable dynamics and parameters are set to 𝑁 = 500, 𝑎 = 1.02
and 𝜙 = 𝜋 − 0.1.
4



G.B. Soh, R. Tchitnga and P. Woafo Heliyon 7 (2021) e07026

Fig. 14. Traveling action potential for 𝑟 = 0.7. (𝑎) The space-time plot of the node variables 𝑥𝑗 . (𝑏) The times series of membrane potential 𝑥𝑗 .

Fig. 15. Multi-chimera states. (a) For 𝑟 = 0.53. (b) for 𝑟 = 0.54.
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑏
𝑑𝑥𝑗

𝑑𝑡
= 𝑥𝑗 −

𝑥3
𝑗

3 − 𝑦𝑗

+ 1
𝑅

𝑗+𝑅∑
𝑘=𝑗

𝜎(𝑟)[𝑏𝑥𝑥(𝑥𝑘 − 𝑥𝑗 ) + 𝑏𝑥𝑦(𝑦𝑘 − 𝑦𝑗 )]

𝑑𝑦𝑗

𝑑𝑡
= 𝑥𝑗 + 𝑎

+ 1
𝑅

𝑗+𝑅∑
𝑘=𝑗

𝜎(𝑟)[𝑏𝑦𝑥(𝑥𝑘 − 𝑥𝑗 ) + 𝑏𝑦𝑦(𝑦𝑘 − 𝑦𝑗 )]

(19)

Fig. 15 has two columns for 𝑟 = 0.53 (left side), and 𝑟 = 0.54 (right 
side). In the first row, the space-time plot of the node variables 𝑥𝑗 is 
presented, and their corresponding snapshot at the time 𝑡𝑖𝑚𝑒1 = 12000
is depicted in the second row. The last row presents the times series of 
membrane potential 𝑥𝑗 . We can see that nodes are organized into co-

herent groups of elements, separated by regions of incoherent elements. 
This behavior of the coexistence of multiple synchronized and unsyn-

chronized regions is well known as the multi-chimera states.

6. Conclusion

The main objective of this work was to investigate the dynamic of 
excitable coupled FitzHugh-Nagumo oscillators in a ring for which we 
have introduced the long-range interactions. We have reported how the 
long-range interactions can modify the excitability threshold 𝑎 in an 
electrical coupled excitable neurons for each coupled parameter 𝜎0. For 
an appropriate choice of the rotational coupling matrix, the position of 
the maximum of 𝑎 for each coupled neuron 𝑗 on the 𝑟 − 𝑙𝑖𝑛𝑒 depends 
only on the number of neurons 𝑅 which are coupled to 𝑗. The above 
results are in accordance with the results of the (Fig. 4) presenting the 
influence of the long-range coupling on the appearing of oscillations 
at the excitable state. We also study the difference between the dy-

namics of coupled oscillators and coupled excitable neurons. We found 
that, for the coupled system (oscillatory or excitable states), the oscil-
7

lation period decreases with the increasing of 𝜎. For the same values 
of 𝜎 the oscillation period of the Oscillatory dynamics (𝑇𝑐𝑜) is greater 
than the oscillation period of the excitable dynamics (𝑇𝑐𝑒𝑛). The ana-

lytical approximation is in good agreement with the numerical results. 
We also demonstrated that the combination of the parameter 𝜙 and the 
long-range interaction 𝑟 can produce different traveling patterns such as 
traveling waves in the case of bidirectional coupling and multi-chimera 
in the case of unidirectional coupling.

These findings strongly suggest that the long-range coupling applied 
to the neurons’ activities could play a critical role in the dynamics of 
cerebral activities.
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