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Abstract

Transmembranal G Protein-Coupled Receptors (GPCRs) transduce extracellular chemical

signals to the cell, via conformational change from a resting (inactive) to an active (canoni-

cally bound to a G-protein) conformation. Receptor activation is normally modulated by

extracellular ligand binding, but mutations in the receptor can also shift this equilibrium by

stabilizing different conformational states. In this work, we built structure-energetic relation-

ships of receptor activation based on original thermodynamic cycles that represent the con-

formational equilibrium of the prototypical A2A adenosine receptor (AR). These cycles were

solved with efficient free energy perturbation (FEP) protocols, allowing to distinguish the

pharmacological profile of different series of A2AAR agonists with different efficacies. The

modulatory effects of point mutations on the basal activity of the receptor or on ligand effica-

cies could also be detected. This methodology can guide GPCR ligand design with tailored

pharmacological properties, or allow the identification of mutations that modulate receptor

activation with potential clinical implications.

Author summary

The design of new ligands as chemical modulators of G protein-coupled receptors

(GPCRs) has benefited considerably during the last years of advances in both the struc-

tural and computational biology disciplines. Within the last area, the use of free energy

calculation methods has arisen as a computational tool to predict ligand affinities to

explain structure-affinity relationships and guide lead optimization campaigns. However,

our comprehension of the structural determinants of ligands with different pharmacologi-

cal profile is scarce, and knowledge of the chemical modifications associated with an ago-

nistic or antagonistic profile would be extremely valuable. We herein report an original

implementation of the thermodynamic cycles associated with free energy perturbation
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(FEP) simulations, to mimic the conformational equilibrium between active and inactive

GPCRs, and establish a framework to describe pharmacological profiles as a function of

the ligands selectivity for a given receptor conformation. The advantage of this method

resides into its simplicity of use, and the only consideration of active and inactive confor-

mations of the receptor, with no simulation of the transitions between them. This model

can accurately predict the pharmacological profile of series of full and partial agonists as

opposed to antagonists of the A2A adenosine receptor, and moreover, how certain muta-

tions associated with modulation of basal activity can influence this pharmacological pro-

files, which enables our understanding of such clinically relevant mutations.

Introduction

G Protein-Coupled Receptors (GPCRs) are membrane proteins that transduce the signals of

hormones, neurotransmitters and metabolites into an appropriate cellular response [1]. The

canonical intracellular signalling pathways are mediated by heterotrimeric G proteins, though

alternative pathways exist like those involving β-arrestin proteins. GPCRs are widely involved

in human physiology, where over 800 genes encode six GPCR classes [2] and they constitute

the main target of approximately 34% of marketed drugs [3]. Our knowledge of the structure-

function relationships of GPCRs has increased tremendously in the last decades, largely fuelled

by a growing number of GPCR structures. The first crystal structures corresponded to inactive

states, following strategies such as fusing the receptor with stabilizing proteins [4] or the intro-

duction of state-specific thermostabilizing mutations [5]. The last approach allowed obtaining

the first structures in a pseudo-active state in complex with an agonist, where the receptor

showed the initial conformational changes characteristic of activation but still lacking any

intracellular binding partner [6]. The structures of ternary GPCR complexes, including the

intracellular signalling G proteins or β-arrestin in addition to an orthosteric agonist, were

resolved in recent years mainly due to advances in cryo-EM [7,8]. Traditionally, GPCR activa-

tion has been described as a two-state model, where the receptor would transition from an

inactive (R) to an active (R�) conformation (Fig 1A) [9]. This relatively simplistic model

becomes more realistic when considering the influence on the receptor equilibrium of chemi-

cal modulators (Fig 1B), receptor mutations (Fig 1C) or even the intracellular signalling pro-

tein [10].

The four adenosine receptors (ARs), namely A1, A2A, A2B and A3, constitute one of the best

structurally characterized GPCR families [11]. With more than 50 entries in the PDB, the

A2AAR was one of the first receptors to be captured in the three different conformational states

(inactive, active-like, ternary complex) [12–14], and was later accompanied by the inactive and

ternary complexes of the A1AR [15,16]. Structural and mutational data of A2AAR revealed that

conformational changes associated with activation involve a widening of the ‘ribose pocket’,

lined by residues T883.36, S2777.42 and H2787.43 [upper case numbers refer to Ballesteros-Wein-

stein numbering] [17,18]. All adenosine receptor full agonists known to date contain a ribose

moiety (Fig 2), with the hydroxy substituents forming hydrogen bonds with these residues. As

such, the stereospecificity of the ribose group is important in receptor activation. On the other

hand, partial agonists are molecules that display a reduced maximum efficacy as compared to

the full agonists. In the case of A2AAR, partial agonists have been reported bearing as most as

one hydroxy substituent, which is supposed to form a single hydrogen bond interaction with

one of these residues in the ribose pocket (Fig 2). Even compounds with no hydroxyl can

behave as partial agonists (i.e. LUF5833, Fig 2), in which case the mechanistic hypothesis for
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Fig 1. Thermodynamic cycles and receptor activation states. (A) Two-state model of GPCR activation between the inactive (orange) and active structure bound to a G

protein (blue). (B) Thermodynamic cycle linking ligand efficacy to relative affinities for a given receptor conformation. The experimental (horizontal) legs represent the

effect of a neutral antagonist (L2) on the receptor equilibrium (with no expected conformational selection, CS), and the induced shift towards the active state (R�) due to

agonist (L1) binding (represented by a thinner line towards the inactive conformation). (C) the receptor basal equilibrium can be shifted by a certain point mutation

(mut), in this example a CIM that selectively stabilizes the inactive state (thicker line). Each thermodynamic cycle can be closed with vertical legs, representing the

corresponding FEP calculations between the ligand pair (B) or the receptor mutation (C), allowing to estimate the differences in experimental values as the calculated

difference in the FEP legs.

https://doi.org/10.1371/journal.pcbi.1009152.g001
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Fig 2. Chemical structures of the compounds considered in this work, classified according to their experimental pharmacological

profile.

https://doi.org/10.1371/journal.pcbi.1009152.g002
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its partial efficacy could rely on an optimal steric fitting of the phenyl substituent in the

enlarged ribose pocket of the active state.

Site-directed mutagenesis has been traditionally used in GPCR research to characterize the

shifts in ligand binding affinities induced by point mutations, and used to assist the elucidation

of ligand binding modes as recently reviewed for the AR family [18]. Two positions invariably

affect both agonist and antagonist ligand binding, namely N2536.55 and F168EL2, which were

later confirmed as anchoring points for all heterocycles present in currently described orthos-

teric ligands [18]. Point mutations can also influence the thermal stability of the receptor,

either its overall stability or selectively increasing the stability of one receptor state or confor-

mation (Fig 1C). Moreover, one mutation can simultaneously affect ligand affinity whilst also

shifting the receptor conformational equilibrium. For instance, mutations S2777.42A and

T883.36A, positioned in the ribose pocket, increase the affinity of antagonists while the efficacy

of agonists is reduced. In addition to this effect, S2777.42A increases the efficacy of some partial

agonists [19], while the T883.36A mutation effectively shifts the receptor equilibrium to the

inactive state, being classified as a constitutively inactive mutation (CIM) since the basal activ-

ity is concomitantly decreased [20]. Thus, the overall effect on ligand binding affinity can be a

consequence not only of direct interactions with the ligand, but also of the increased stability

(and thus availability) of the receptor conformation that preferably binds a pharmacological

class of ligand.

Based on the available collection of experimental structures, reliable models of AR-ligand

complexes can be generated via computational methods [21,22]. While docking algorithms

can be very useful for this goal, they typically fail to describe free energies of binding correctly

[23]. Instead, the increased availability of computational power and algorithms have enabled a

routine use of first-principle methods such as free energy perturbation (FEP) to accurately esti-

mate ligand-binding free energies, also for GPCRs [24]. In this scenario, we have recently

developed robust FEP protocols that were thoroughly applied in the context of GPCR ligand-

binding investigations: QligFEP [25] allows to systematically compute relative binding affinity

changes between a series of ligands, while QresFEP [26] was designed to evaluate the binding

affinity shifts due to single point mutations. The synergistic combination of both approaches

recently led to the elucidation of the binding mode of a series of A2AAR antagonists [27]. In

this work, we extend the applicability of these methods to study the effects of chemical modifi-

cations of ligands, as well as receptor mutations, on the conformational equilibrium of the

receptor, which we relate to efficiency of the ligand as an agonist modulator. First, we analyse

the structure-efficacy determinants of series of full and partial agonists. Thereafter, we eluci-

date the role of the S2777.42A and T883.36A mutations in the associated conformational equilib-

rium of the A2AAR receptor, to finally determine the specific role of these mutations on the

efficacy of selected partial and full agonists. The outcome of this study can not only aid the

design of chemical modulators with tailored pharmacological properties, but also be broadly

applicable to characterize GPCR mutations with clinically relevant effects.

Results

Conformational selectivity of ligands depends on their pharmacological

profile

In this first section, we explore the predicted conformational selectivity for a number of

ligands, as a function of their pharmacological profiles. To do this, a thermodynamic cycle was

designed to estimate, for a given molecular pair of e.g. agonist and antagonist, the relative

affinities between the two relevant conformational states of the A2AAR. The cycle is solved by

subtracting the corresponding binding free energies (ΔGb), calculated via an FEP

PLOS COMPUTATIONAL BIOLOGY Conformational selectivity of the A2A GPCR from free energy simulations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009152 November 24, 2021 5 / 20

https://doi.org/10.1371/journal.pcbi.1009152


transformation (agonist! antagonist) performed in the inactive state (ΔGb,R), from the same

transformation performed in the active state (ΔGb,R�, vertical legs in Fig 1B). The difference

between these estimated affinities would correspond to the difference in the conformational

selectivity between these two ligands (ΔΔGcs(L1−L2)) as:

DDGcsðL1� L2Þ ¼ DGcs;L1 � DGcs;L2 ¼ DGb;R� � DGb;R

Such model assumes that the pharmacological profile of a ligand (i.e. agonist, antagonist) is

dictated by a more or less biased selectivity towards the active conformation, respectively. In

each case, the pair of agonist and antagonist molecules to compare should share enough chem-

ical similarity (e.g. bearing the same chemical scaffold) while maintaining a sufficiently distinct

pharmacological profile. This scheme was consequently used to investigate the variability in

the pharmacological profile within three chemical scaffolds: i) the classical ribose-containing

agonists, such as NECA; ii) 2-phenylaminothiazolo[5,4-d]pyrimidines, which were recently

characterized as partial agonists depending on the substituent in position 7 [28]; and iii) partial

agonists derived from the 4-phenylpyridine scaffold of LUF5834 [29]. In each case, the (par-

tial/full) agonist was compared to a chemical analog that behaves as a (neutral) antagonist

(Fig 2).

The experimentally determined coordinates of classical agonists binding to the A2AAR (Fig

3A and 3B) were used as a starting configuration for the active-state simulations (denoted with

an asterisk), while the corresponding binding mode to the inactive A2AAR was generated by

receptor superposition. The binding mode of 9-cyclopentyadenine (Cyp-Ade) antagonist

where the ribose group of adenosine is replaced by a cyclopentane [30], was generated using a

flexible ligand alignment strategy (see Methods). The initial configuration of the two partial

agonist chemotypes was generated via docking to the A2AAR�, showing occupancy of the

ribose pocket (Fig 3C and 3D), while the corresponding antagonist analogues were modeled in

an analogous binding orientation in the A2AAR inactive structure. All compounds shared sim-

ilar interactions with N2536.55 and F168EL2, irrespective of the receptor conformation or ligand

chemotype.

The full agonists NECA and adenosine (ADO) show different experimental efficacies for

the activation of A2AAR. Consequently, NECA was set as a reference with a maximum efficacy

of 100%, with adenosine having 45% efficacy relative to NECA [29], and the neutral antagonist

Cyp-Ade having 0% efficacy. A qualitative descriptor, Δ-efficacy, can be defined as the positive

difference in % efficacy values between pairs of (partial) agonist and antagonist compounds. In

analogy, the thermodynamic cycle depicted in Fig 1B allows to estimate the relative preference

for the active conformation for the same pair of molecules, a property that we will try to corre-

late with the corresponding efficacy shifts. Here, one has to note that, due to their fundamen-

tally different formulation, a full quantitative correlation between the experimental (Δ-efficacy,

percentage) and the calculated (ΔΔG, logarithmic) descriptors is not expected. However, a

qualitative correlation would indicate that our end-state modeling of ligand efficacy would be

useful to explain efficacy shifts between molecule pairs, and thus be of potential interest to fur-

ther predict ligand pharmacological profiles. In other words, the differences in the calculated

ΔΔG might be used to classify the compounds on the basis of their expected efficacy gain from

a reference molecule. According to the scheme in Fig 1B, an expected positive value in the cal-

culated ΔΔG would indicate the expected preference of the agonist for the active state. This

was indeed the case for the NECA and ADO perturbations to the antagonist Cyp-Ade (Fig 4

and S1 Table). Moreover, the magnitude of the calculated ΔΔG value is double for the NECA

transformation as compared to the case of adenosine, which indicates the correct ranking of

this class of compounds according to their expected efficacy.
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Fig 3. Binding mode of four adenosine A2AAR agonists with different efficacies. (A, B) Top panels show the experimental pose of full agonists adenosine (A, PDB

code 2YDV [31]) and CGS21680 (B, PDB code 4UG2 [13]). (C, D) Bottom panels show the docking model obtained for partial agonists LUF5834 (C) [29] and 10n (D)

[28]. The key residues common for ligand-receptor interactions (N2536.55, E169EL2 and F168EL2) [18] are shown in sticks. The ribose binding site is denoted in a dotted

circle, with interacting residues associated with ligand activation shown in sticks.

https://doi.org/10.1371/journal.pcbi.1009152.g003
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We then moved on to examine the molecular determinants of the agonistic properties for a

series of 7-(prolinol-N-yl)-2-phenylaminothiazolo[5,4-d]pyrimidines on the A2AAR [28]. The

SAR and earlier molecular modeling of these series revealed that the prolinol substituent was

essential to maintain the partial agonist profile, presumably by partially mimicking the ribose

interactions (see compounds, 10b, 10d, 10g, 10j, 10l, 10n, Fig 2), in contrast to the corre-

sponding pyrrolidine substituted compounds (10a, 10c, 10f, 10i, 10k and 10m, Fig 2) which

are all neutral antagonists (i.e. with efficacy not significantly different from 0%) [28]. Following

our preliminary results on this chemotype [32], we systematically applied the thermodynamic

cycle in Fig 1B to all corresponding partial agonist/antagonist pairs within this series, the

results shown in Fig 4 and S1 Table. A deeper look into the experimental data shows that the

efficacy of the partial agonists is modulated by decorations of the exocyclic amino group (R,

see Fig 2). Our calculations indicate that compound 10m would show the highest preference

for the active state of the receptor, followed by compound 10k (Fig 4), in line with their efficacy

rank experimentally observed. Our modeling shows a tendency on prolinol-containing com-

pounds to favor the binding to the active receptor, as compared to their pyrrolidine substituted

compounds, with the exception of the pairs and 10g/f and, to some extent, 10b/a where no sig-

nificant conformational selection is calculated (Fig 4). Explaining the role of this substituent in

the partial agonist profile of this chemotype. The structural interpretation of this data rein-

forces the role of the hydroxyl group in the 7-prolinol in engaging the residues that trigger

Fig 4. Calculated relative affinities for the active vs inactive receptor conformation. Relative affinities expressed as

ΔΔG = ΔGb,R� -ΔGb,R (kcal/mol, blue bars, average values ± SEM) for pairs of agonists/antagonist of analogous

chemotype (depicted in the top, with the chemical groups varied along the FEP simulations in red). For each ligand

pair, the relative shift in experimental efficacy is shown as Δ-efficacy (orange bars, Emax,ago-Emax,antago, in % ± SEM),

with corresponding Emax values reported relative to the reference full agonists NECA [28], or CGS21680 -for the LUF

chemotype [29], see text.

https://doi.org/10.1371/journal.pcbi.1009152.g004
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A2AAR activation (Fig 3), explaining the importance of this substituent for a partial agonist

profile.

The third chemotype here explored is derived from the 4-phenylpyridine scaffold, charac-

teristic of a family of A2AAR partial agonists represented by LUF5833 (Fig 2) [29]. Hydroxy

decorations on the phenyl ring have been shown to affect ligand efficacy: the p-OH-phenyl in

LUF5834 is equipotent to the unsubstituted LUF5833 (55% ± 15% as compared to the efficacy

of the reference full agonist CGS21680), while the m-OH-phenyl in LUF3835 results in an

increased value of this relative efficacy of 80% ± 10% (see Fig 2) [19]. In their original report,

Lane et al. postulated that these compounds bind with the phenyl substituent deep in the bind-

ing pocket of the A2AAR, making different interactions with activation-related residues as

compared to ribosidic agonists [19]. We herein examined if such a binding mode hypothesis

(Fig 3) could explain the differences in ligand efficacy following the FEP approach outlined in

Fig 1B. In this case, the dehydroxylated partial agonist LUF5833 was used as the reference

ligand in two pair comparisons. Since the three compounds show comparable experimental

binding affinities for the A2AAR, the experimental increase in efficacy for a given derivative

can be directly correlated with its increased relative affinity for the active (R�) over inactive (R)

receptor conformation, which is precisely the output of our calculations. The results (Fig 4 and

S1 Table) indicate that the introduction of a m-OH-phenyl in LUF5835 would lead to a signifi-

cant conformational selection for the active receptor, in line with the experimental gain of

approximately 30% efficacy [19]. The structural interpretation of this predicted efficacy

increase is located on the hydrogen bond between the OH group in meta position of LUF5835

with T883.36, observed in the simulations with R�, an interaction that is well known to be

involved in agonist recognition [18]. However, the introduction of a p-OH-phenyl substitution

in the reference ligand leads to a reduced predicted efficacy, since this substituent would not

be making any preferred interaction in the active state as compared to the inactive, with the

experimental data showing equipotency of this compound pair.

During the preparation of this manuscript, a new crystal structure of compound LUF5833

in complex with the inactive conformation of the A2AAR was published [33]. Comparison of

our model with this structure revealed an almost identical inactive conformation for the recep-

tor (RMSDA2AAR = 0.78 Å for the Cα trace). The ligand position was also in good agreement

with our MD simulations with an overall RMSDLUF5833 = 2.20 ± 0.45 Å, calculated over the

last 10% of the FEP trajectories. Specifically, most variability was located on the flexible 1H-

imidazol- 2-ylmethylsulfanyl substituent oriented towards the extracellular cavity, with the

core moiety being more stable along the MD simulation (RMSDLUF5833_core = 1.38 ± 0.51 Å).

The structure also demonstrates that the partial agonist LUF5833 can actually bind to the inac-

tive conformation of the receptor, which supports the line of reasoning of this study.

The effect of point mutations on basal activity and conformational selectivity

According to the experimental mutagenesis data, the activation trigger induced by the partial

agonist LUF5834 would involve different interactions with residues in the ribose binding site,

as compared to ribose-containing full agonists [19]. In that study, CGS21680, a C2-substituted

variation of NECA (Figs 2 and 3), was used as a reference full agonist in the pharmacological

characterization of the LUF series of compounds. Particularly intriguing was the effect of two

mutations, T883.36A and S2777.42A, on the modulation of the efficacy of these two molecules.

While the binding affinity and potency of CGS21680 was severely reduced by both mutations,

the potency of LUF5834 was unaltered or even slightly increased [19].

Consequently, we wondered about the molecular mechanism of the different mutational-

induced shifts on the internal efficacy of the two ligands. This is indeed a complex question, as
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one can imagine two mechanisms via which a mutation can modulate the efficacy of an ago-

nist: On the one hand, the mutation might affect the basal activity of the receptor, by selectively

stabilizing one conformation. The T883.36A mutant is a CIM that reduces the basal activity

[19], by selective thermal stabilization of the antagonist-bound conformation [20]; however no

significant effect was observed on the basal activity for the S2777.42A mutant [19]. On the other

hand, the same mutation can directly modulate the binding affinity of the (partial) agonist for

the effective, active conformation. While there is no experimental data for the conformational

affinity, our approach allows to model each of these effects independently and combine them a

posteriori, taking advantage of the possibility of combining two thermodynamic cycles if they

share a common leg.

As shown in Fig 1C, the effect of a mutation on the predicted basal activity can be modeled

by designing a thermodynamic cycle that represents the effect of the corresponding Ala muta-

tion on the conformational selectivity. The cycle can be solved through FEP simulations of the

vertical legs, i.e. annihilation of the sidechain of interest (wt! Ala perturbation) in each

receptor state (ΔGm,R and ΔGm,R� for the inactive and active state, respectively) as:

DDGR!R� ¼ DGcs;wt � DGcs;mut ¼ DGm;R� � DGm;R

Such model assumes that the mutational effects on the GPCR basal activity are indeed due

to differences on the conformational selection of the receptor (ΔGcs, for wt or mut versions of

the receptor). This model can be combined with a second thermodynamic cycle, accounting

for the mutational shifts in ligand binding affinity for the active conformation, which we exten-

sively used to explain mutagenesis effects on A2AAR agonist binding [34]. The addition of

these two cycles (Fig 5A) should yield as a net result the effect the mutation on the ligand inter-

nal efficacy, estimated as the difference between the two vertical legs delimiting the combined

thermodynamic cycle in Fig 5A, i.e. DDGcalc
EC50
¼ DGR�þL � DGR (Fig 5B, solid blue columns). It

should be noted that, in this case, the experimental parameter that we are trying to match with

these relative free energy calculations is not the maximum efficacy (%Emax), but the internal

efficacy of each compound (EC50), which can vary upon receptor mutations. Thus, a numerical

(quantitative) correlation between calculated and experimental values can be attempted in this

case, by expressing the experimental shift in EC50 values induced by a mutation as DDGexp
EC50
¼

RTlnEC50ðwtÞ=EC50ðmutÞ
(Fig 5B, solid orange columns). Finally, the additional calculation of the

shared vertical leg, ΔGR�, which is canceled in the combined cycle, allows to separate the effect

on basal activity (ΔΔGR�, Fig 5A, left side, Fig 5B, dense dashed columns) and on ligand affinity

for R� (ΔΔGL-R�, Fig 5A, right side; Fig 5B, light dashed columns). As we will see, this can pro-

vide valuable information for the interpretation of the calculated data.

We first looked into the effects on the basal activity of the receptor of the T883.36A and

S2777.42A mutations. According to our model, the CIM T883.36A should increase the relative

stability of the inactive receptor, which is precisely the outcome of the corresponding FEP sim-

ulations (Fig 5B). The active state of the T883.36A mutant is significantly less stable than the wt,

with ΔΔGR� !R = 3.98 kcal/mol (S1 Table). In contrast, a similar analysis of the S2777.42A

mutation shows a negligible value for the calculated values of ΔΔGR� !R, (Fig 5B and S1

Table), meaning that the conformational equilibrium should not be affected by the mutation,

in line with the experimentally observed neutral effect of this mutation on the basal activity of

the receptor [19].

The overall mutational effects on the modulation of ligand internal efficacies were then cal-

culated and compared to the experimental efficacy shifts in each case (Fig 5B, solid columns).

One can observe that the modeled T883.36A mutation does not significantly affect the predicted

internal efficacy of LUF5834 (DDGcalc
EC50
¼ � 0:23 kcal=mol, Fig 5A and S2 Table) in line with
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the experimental data (DDGexp
EC50 ¼ � 0:13 kcal=mol) [19]. A deeper look at the data allows us to

envisage a mechanism for this neutral effect, since the relative increase in affinity for the active state

is compensated by a decrease in the population of this active state induced by the mutation (light

and dense dashed bars, respectively, in Fig 5B). Conversely, the model indicates that the S2777.42A

mutation does not affect the conformational equilibrium of the receptor, and in this case the pre-

dicted increase in affinity of LUF5834 for the active state is translated into a net increase of the effi-

cacy of this ligand upon mutation (DDGcalc
EC50
¼ � 1:94 kcal=mol), in qualitative agreement with the

experiment data (DDGexp
EC50 ¼ � 0:55 kcal=mol,) [19]. For the full agonist CGS21680, both muta-

tions resulted in a similar decrease in estimated ligand affinities, in agreement with our previous

computational modeling of the mutagenesis data for ribose-containing ligands [34]. However, this

effect is amplified by the diminished availability of the active state upon T883.36A mutation, result-

ing in a much more drastic estimated reduction of CGS21680 efficacy (DDGcalc
EC50
¼ 6:15 kcal=mol)

as compared to the S2777.42A mutant (DDGcalc
EC50
¼ 1:75 kcal=mol). These results allow a correct

ranking of this pair of mutations in terms of how they affect the internal efficacy of this ligand, in

line with the experimental observation where the reduction in the EC50 of CGS21680 was 10 times

higher for the T883.36A mutant [19].

Discussion

The use of FEP simulations coupled to a combination of thermodynamic cycles to study the

effect of mutations on binding and catalysis of subtilisin, was first presented in a seminal paper

of Rao et al. in the late eighties [35]. Starting from that idea, in this work we introduce a novel

approach to estimate the modulation of GPCR activation, based on an original design of ther-

modynamic cycles connecting receptor conformations. These thermodynamic cycles (Figs 1

and 5) resemble the pharmacological representation of GPCR activation, which are the basis

for the estimation of the corresponding equilibrium constants [10]. In our case, we compare

the effect on the activation pathway between chemically related species, these being either

pairs of ligands or single-point mutants vs the wt receptor. The combination of this approach

with the use of spherical boundary conditions around the binding results in very efficient

computational modeling of the modulation of GPCR activation. Indeed, with such reduction-

ist model one can indistinctively use any active-like structure of the receptor (i.e., with or with-

out the bound G-protein, the last being our choice), since the RMSD of the binding site is

typically very low (in the case of A2AAR, 0.69 Å for the Cα atoms). It is worth mentioning that

this model is not intended to model the activation pathway per se, but instead the variations in

the activity of the receptor induced by different types of modulators (i.e., external ligands,

mutations).

Taking additional advantage of the increased structural information of GPCRs in different

conformations, as is the case of the A2AAR, one can solve the vertical legs of the designed cycles

via automated FEP protocols tailored for ligand [25] or residue [26] perturbations,

Fig 5. Effect of protein mutations on ligand efficacy. (A) Binding mode of the agonist CGS21680 to the WT A2AAR (left),

T88A (center) and S277A (right) mutant forms of this receptor (mutations indicated in red), simulated by FEP simulations (H-

bonds in yellow dashed lines with residues involved in sticks). (B) Thermodynamic cycles representing the effect of a point

mutation (mut) on the distribution of inactive (R) and active (R�) states of the receptor (left side, dense dashed), and on the

affinity of a ligand (L) for the active state (right side, light dashed). The combination of the two thermodynamic cycles would

yield the net effect of the mutation ligand efficacy. (C) Calculated effects of point mutations on the A2AAR constitutive activity

(ΔΔGR� !R, dense dashed columns), and on the ligand relative affinity for R� (ΔΔGL-R�, light dashed columns), following the

corresponding thermodynamic cycles depicted in (A). The overall effect of the mutation on the shift in ligand efficacy,

(DDGcalc
EC50

, solid blue) is calculated by combination of these two values, showing correlation with the experimental values

(DDGexp
EC50

, solid orange, see text).

https://doi.org/10.1371/journal.pcbi.1009152.g005
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respectively. Following the scheme depicted in Fig 1B, we demonstrate the validity of this

approach with the calculation of structure-efficacy relationships for three series of A2AAR

ligands, resulting in significant discrimination of full and partial agonists from neutral antago-

nists (Figs 3 and 4). Indeed, the qualitative correlation between the calculated ΔΔG and the Δ-

efficacy is achieved in up to 70% of the pair comparisons performed, including those where

the agonist/antagonist profile differences are more significant (i.e. NECA, ADO as full ago-

nists, or LUF5835 and compound 10n as the most potent partial agonists within their chemo-

type). The agonistic profile is modeled as the capacity of a molecule to achieve the desired

conformational selectivity for the active configuration, opening the door to the structure-

based computational design of compounds with tailored pharmacology, with additional poten-

tial to provide insights in pharmacogenomics of drugs [36].

Using the analogous approach depicted in Fig 1C, we show how to estimate the effect of

protein mutations on the conformational equilibrium of the receptor, which can be translated

to variations on its basal activity. The approach is applied to characterize a constitutively inac-

tive mutation (CIM, Thr883.36A) as well as a neutral mutation (Ser2777.43A), finding the same

discrimination as the experimental data available in both cases (Fig 5B). Moreover, taking

advantage of the additive property of the thermodynamic cycles, one can model ligand efficacy

as the estimation of the ligand affinity for the active (R�) conformation weighted by the acces-

sibility of the ligand to R�. The combined cycle, shown in Fig 5A, allowed a successful discrim-

ination of the different effects exerted by each of these two mutations on the efficacy of a full

and a partial agonist. The relevance of this result goes beyond the successful correlation of the

computed ranking of the mutational shifts in ligand efficacy with the experimental values, and

additionally provides a structural and mechanistic framework to interpret these results. Thus,

it was found that the CIM T883.36A, by displacing the equilibrium towards the inactive confor-

mation, can neutralize the predicted increase in affinity for the partial agonist LUF5834 or,

conversely, display a synergistic effect on the predicted decrease in the R� affinity for the full

agonist CGS21680, explaining the dramatic decrease on its efficacy for the A2AAR (Fig 5B).

The mutation S2777.43A was found to be neutral with regards to the receptor conformational

equilibrium, in agreement with its negligible effect on the basal activity of the receptor. Conse-

quently, the correctly predicted net effect in increasing or decreasing the ligand efficacy of the

partial and full agonist, respectively, is directly correlated to the predicted effects of the muta-

tion on the affinity for R� in each case (Fig 5B).

The presented approach provides a generally applicable framework, as long as the underly-

ing pharmacological problem can be based on clear structural endpoints (in the present study,

an active and inactive structure of the receptor). The rapidly expanding arsenal of GPCR struc-

tures [37], with various states available for a number of receptors [16, 38], will widen the appli-

cability of our workflow to cover a large extent of the GPCR-ome. These structures not only

include G protein ternary complexes, but lately also e.g. β-arrestin bound structures [39], or

nanobody derived structures of intracellular binding partners [40]. As such, the method is not

limited to the prediction of agonist profiles of compounds, but could potentially be extended

to the design of biased ligands [41]. Moreover, there is now strong evidence from HDX [42] or

NMR [43] experiments of intermediate conformational states of GPCRs, including recent pro-

posals that the partial agonists of the A2AAR could preferentially bind one of these intermedi-

ate states with compromised G-protein coupling [43,44]. One could expect that the precise

structures of those states could be structurally revealed in the near future, and consequentially

be used to build more precise thermodynamic cycles representing revised pharmacological

models of receptor activation [43,45]. Alternatively, the derivation of activation states from

inactive receptors via MD approaches can provide structural insights into receptor activation

mechanisms [46], and identify intermediate states along the receptor activation path. In
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addition, the experimental structures available provide excellent starting points for the genera-

tion of reliable homology models [47], which can be also useful starting structures for FEP sim-

ulations, as we recently showed in the case of the orphan GPR139 [48], the neuropeptide Y

receptor family [26,49] or the A2BAR [50].

To the best of our knowledge, this is the first time that the regulation of the activation of a

GPCR is modeled with the use of thermodynamic cycles coupled to FEP simulations. The gen-

erated framework is easily extensible to other GPCRs, offering a computational approach to

design ligands with tailored pharmacological properties or to predict the effect of point muta-

tions on the receptor conformational equilibrium. The last question is gaining interest as we

see increasing examples of GPCR point mutations related to disease, as is the case of the

A2BAR in cancer [51], by the mechanism of shifting the basal activity to either constitutively

inactive or constitutively active mutations. An additional advantage of our end-point

approach, besides the computational efficiency, is its modularity, allowing the combination of

thermodynamic cycles to predict e.g. shifts in ligand efficacy induced by point mutations.

Moreover, the protocol could potentially be extended to, e.g., DFG in and out kinases [52],

open and closed state of ion channels [53] or single solute carrier (SLC) transporters [54], pro-

vided that the chemical space of the studied cases sufficiently overlap (i.e. point mutations or

related chemotypes).

Methods

Structure preparation, membrane insertion and equilibration

The high-resolution crystal structure of the A2AR with antagonist ZM241385 (PDB code 4EIY

[12]) was used as receptor starting structure for the inactive state, whereas the same receptor

in complex with agonist NECA (PDB code 2YDV [31]) was used for the active (like) state. In

the first case, the engineered BRIL fusion protein was removed and missing loops (C-terminal

fragment of EL2 and most of EL3) were modelled, and protonation states of residues assigned,

as described elsewhere [55]. Notably, this included the allosteric sodium ion and the charged

form of the coordinating residue Asp502.50. The active-like structure, on the other side, cannot

accommodate this sodium ion though the protonation state of Asp502.50 remains charged [55].

The structure used here (2YDV) contained four thermostabilizing mutations L48A2.46,

A54L2.52, T65A2.63 and Q89A3.37, which we reverted prior to a similar assignment of proton-

ation states as described previously [56], and finally it was aligned to the inactive structure of

the receptor. The selection of this simpler structure to represent R� in our models over the fully

active G-protein bound A2AAR (available with PDB code 5G53), was based on the fact that the

RMSD between both binding sites (i.e. considering the spheres to simulate for FEP calculations,

see next section) was as low as 0.69 Å for the Cα trace. In addition, it proved previously a very

useful framework to reproduce, with high correlation, the effect of point mutations to agonist

binding on this same structure [34, 56]. The 3D coordinates for the ligands were generated with

LigPrep and subsequently docked to the prepared A2AAR structure using Glide [57], and the

antagonists structures by flexible ligand alignment to their reference agonist compound. Apo

structures were generated by removing the ligand, but keeping crystallographic waters, and sub-

sequently embedded in a solvated membrane environment using PyMemDyn [58]. This proto-

col embeds a structure in a pre-equilibrated POPC (1- palmitoyl-2-oleoyl phosphatidylcholine)

membrane model such that the TM bundle is parallel to the vertical axis of the membrane. The

system is then soaked with bulk water and inserted into a hexagonal prism-shaped box that is

energy-minimized and carefully equilibrated during 5 ns, following the PyMemDyn protocol

described elsewhere [58]. The standard OPLS all-atom (OPLS-AA) force field is used for all resi-

dues [59], and parameters for membrane lipids were taken from the Berger united-atom model
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[60]. The corresponding equilibrated holo structures were generated by restoring the docked

ligands and removing overlapping water molecules.

FEP simulations

The receptor-ligand structures in the equilibrated membrane were subsequently transferred to

the MD package Q (version used available at https://github.com/esguerra/q6), in order to per-

form FEP calculations under spherical boundary conditions [61]. A 50 Å diameter sphere was

centered on the center of geometry of ZM241385 (or equivalent point in the remaining struc-

tures), where solvent atoms are subject to polarization and radial restrains using the surface

constrained all-atom solvent (SCAAS) model to mimic the properties of bulk water at the

sphere surface [62]. Atoms lying outside the simulation sphere are tightly constrained (200

kcal/mol/Å2 force constant) and excluded from the calculation of non-bonded interactions.

Within the simulation sphere, long range electrostatics interactions beyond a 10 Å cut off were

treated with the local reaction field method [63], except for the atoms undergoing the FEP

transformation, where no cutoff was applied. Solvent bond and angles were constrained using

the SHAKE algorithm [64]. All ionizable residues outside the sphere and those within the

boundary were considered in their neutral form as described elsewhere [25]. Residue parame-

ters were translated from the latest version of the OPLSAA/M force field [59], whereas ligand

OPLS2005 parameters were retrieved from Schrodinger’s ffld_server [65], and translated to Q

following the QligFEP protocol [25]. The simulation sphere was heated from 0.1 to 298 K during

a first equilibration period of 0.61 nanoseconds, where the initial restraint of 25 kcal/mol�Å2

imposed on all heavy atoms was slowly released. Thereafter the system was subject to unre-

strained MD simulations, starting with a 0.25 nanosecond unbiased equilibration period which

is followed by the FEP sampling, applying different protocols for sidechain and ligand perturba-

tions as detailed below. In both cases, atom transformations occur between initial and ending

states, evenly divided into a number of λ windows that depend on the FEP protocol adopted

(see below). This sampling is replicated in 10 independent MD simulations with different initial

velocities, each of them consisting of 10 ps sampling per λ window using a 1 fs time step in all

cases.

The generalized FEP protocol for amino acid mutations, QresFEP [26,66] was used to esti-

mate the effects of single point mutations on ligand binding (available at https://github.com/

qusers/qligfep). Briefly, QresFEP is a single-topology FEP protocol that divides the sidechain

perturbation to alanine into separate stages, where atom annihilations occur gradually for each

charge group (as defined on the OPLS force field), starting from the most topologically distant

from the Cβ atom, in four consecutive stages [66]: 1) the partial charges are initially removed,

2) van der Waals potentials are transformed into smoother soft-core potentials, 3) annihilation

of the corresponding group of atoms., 4) restoring the partial charges of the final species. The

number of perturbation stages needed for the full annihilation depends on the nature of the

sidechain involved, in this case ranging from four (Ser) to five (Thr), where each of the subse-

quent stages is evenly divided into 20 λ windows. To fulfill a thermodynamic cycle, the same

sidechain annihilation is simulated in the apo structure of the protein, so that the energetic dif-

ference between these two processes equals the binding affinity shift due to the mutation. It fol-

lows that the sampling time for the sidechain perturbation here considered was 8–10 ns. These

sampling times have been repeatedly shown to be sufficient for conformational sampling at

equilibrium [26,66], assuming that only minor local conformational changes occur as is the

case of the models here presented.

All ligand perturbations were performed with our dual-topology QligFEP protocol [25],

where the full transformation of one ligand into another is performed along a linear λ
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sampling consisting of 50 windows (code available at https://github.com/qusers/qligfep). In

order to fulfill the thermodynamic cycle, the simulation is performed in the two receptor states

to compare, i.e. active (R�) and inactive (R), and in this case the difference between the ligand

transformation in the two states equals the difference in relative binding affinity between the

two ligands.

In both residue and ligand transformations, the sampling time was considered sufficient as

judged from the low s.e.m. estimated over replica simulations (see Results). Relative binding

free energies were estimated by solving the thermodynamic cycle utilizing the Bennet accep-

tance ratio method (BAR) [67] as

DGi ¼ � b
� 1ln
h1þ e� bðDUDli� CiÞiiþ1

h1þ eþbðDUDli � CiÞii
þ Ci ð1Þ

where the constants Ci are optimized iteratively so that the two ensemble averages become

equal, yielding ΔGi = Ci. Average values ± SEM are reported from the 10 independent MD sim-

ulations in each relevant state.

Starting structures, input files and submission scripts needed to reproduce the simulations,

together with raw output data, are available at https://zenodo.org/record/5602896#.

YXlGHZ5ByF4.

Supporting information

S1 Table. Calculated and experimental relative binding free energies (kcal/mol) of the

pairs of agonist/antagonist compounds of the A2AAR (data corresponding to Fig 4 in the

main text).

(PDF)

S2 Table. Calculated effects of point mutations on the constitutive activity (expressed as

the shift in the distribution between R and R�, ΔΔGR� !R), and on the relative affinity of

each ligand for the active receptor (ΔΔGbind, R�). The effect of the mutation on the change

in efficacy is calculated by adding these two values, according to the thermodynamic cycle

shown in Fig 5 (ΔΔGEC50).

(PDF)
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3. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery:

New agents, targets and indications. Nat Rev Drug Discov [Internet]. 2017; 16(12):829–42. Available

from: https://doi.org/10.1038/nrd.2017.178 PMID: 29075003

4. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, et al. High-resolu-

tion crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science

[Internet]. 2007 Nov 23; 318(5854):1258–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/

17962520 https://doi.org/10.1126/science.1150577 PMID: 17962520

5. Robertson N, Jazayeri A, Errey J, Baig A, Hurrell E, Zhukov A, et al. The properties of thermostabilised

G protein-coupled receptors (StaRs) and their use in drug discovery. Neuropharmacology. 2011; 60

(1):36–44. https://doi.org/10.1016/j.neuropharm.2010.07.001 PMID: 20624408

6. Lebon G, Bennett K, Jazayeri A, Tate CG. Thermostabilisation of an agonist-bound conformation of the

human adenosine A2A receptor. J Mol Biol. 2011; 409(3):298–310. https://doi.org/10.1016/j.jmb.2011.

03.075 PMID: 21501622

7. Hilger D, Masureel M, Kobilka BK. Structure and dynamics of GPCR signaling complexes. Nat Struct

Mol Biol. 2018; 25(1):4–12. https://doi.org/10.1038/s41594-017-0011-7 PMID: 29323277

8. Garcı́a-Nafrı́a J, Tate CG. Cryo-EM structures of GPCRs coupled to G s, G i and G o. Mol Cell Endocri-

nol [Internet]. 2019; 488:1–13. Available from: https://doi.org/10.1016/j.mce.2019.02.006 PMID:

30930094

9. Leff P. The two-state model of receptor activation. Trends Pharmacol Sci. 1995 Mar; 16(3):89–97.

https://doi.org/10.1016/s0165-6147(00)88989-0 PMID: 7540781

10. Kenakin T. Principles: receptor theory in pharmacology. Trends Pharmacol Sci [Internet]. 2004; 25

(4):186–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15063082 https://doi.org/10.1016/j.

tips.2004.02.012 PMID: 15063082

11. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE. International union of basic and clinical

pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—An update. Pharma-

col Rev. 2011; 63(1):1–34. https://doi.org/10.1124/pr.110.003285 PMID: 21303899

12. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, et al. Structural basis for allosteric regula-

tion of GPCRs by sodium ions. Science. 2012 Jul; 337(6091):232–6. https://doi.org/10.1126/science.

1219218 PMID: 22798613

13. Lebon G, Edwards PC, Leslie AGW, Tate CG. Molecular determinants of CGS21680 binding to the

human adenosine A. 2015;
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