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Crystal structure of the human carbonic anhydrase II adduct with
1-(4-sulfamoylphenyl-ethyl)-2,4,6-triphenylpyridinium perchlorate,
a membrane-impermeant, isoform selective inhibitor
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ABSTRACT
Pyridinium containing sulfonamides have been largely investigated as carbonic anhydrase inhibitors (CAIs),
showing interesting selectivity features. Nevertheless, only few structural studies are so far available on
adducts that these compounds form with diverse CA isoforms. In this paper, we report the structural char-
acterization of the adduct that a triphenylpyridinium derivative forms with hCA II, showing that the substi-
tution of the pyridinium ring plays a key role in determining the conformation of the inhibitor in the
active site and consequently the binding affinity to the enzyme. These findings open new perspectives on
the basic structural requirements for designing sulfonamide CAIs with a selective inhibition profile.

ARTICLE HISTORY
Received 17 October 2017
Revised 8 November 2017
Accepted 11 November 2017

KEYWORDS
X-ray crystallography;
carbonic anhydrase;
membrane-impermeant
inhibitors

Introduction

Heterocyclic/aromatic sulfonamides such as dorzolamide, brinzola-
mide, acetazolamide, methazolamide, ethoxzolamide, and dichloro-
phenamide (Figure 1) represent the first generations of clinically
used inhibitors of the metalloenzyme carbonic anhydrase (CA) (EC
4.2.1.1)1–3. They are very strong, typically low nanomolar inhibitors,
of most of the 15 CA isoforms presently known in humans2.
Dorzolamide and brinzolamide are widely used, topically-acting
antiglucoma agents4, ethoxzolamide5 has fewer clinical applications,
whereas acetazolamide, methazolamide, and dichlorophenamide

are systemically used antiglaucoma drugs, still employed clinically,
even if they were discovered decades ago4. The latter compounds
also show clinical benefits for the treatment of other conditions
such as epilepsy6–8, idiopathic intracranial hypertension9, obes-
ity10–12, and as diuretics13, but their applications are severely lim-
ited due to a range of side effects connected with inhibition of CA
isoforms not involved in those specific pathologies2. For this rea-
son, the development of isoform-selective CA inhibitors (CAIs) rep-
resented an important drug design challenge for the last two
decades2,14, leading to interesting developments, with several
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classes of compounds identified so far, which show selective inhib-
ition of the different CA isoforms. They belong to sulfonamide15,
coumarin16–18, sulfocoumarin19,20, polyamine21, dithiocarba-
mate22,23, carboxylate24,25 chemotypes, among others. Such iso-
form-selective compounds opened new scenarios for the
applications of CAIs as antitumor drugs26–29, anti-neuropathic pain
agents30,31, or even for the management of cerebral ischemia32,
arthritis33, or bacterial/fungal/protozoan infections34,35.

One of the most interesting class of isoform-selective sulfona-
mide CAIs is constituted by the pyridinium salts, obtained by reac-
tion of amino-benzenesulfonamides with pyrylium salts36–38. These
compounds represent the first class of CAIs, which were demon-
strated to possess a high selectivity for inhibiting membrane-asso-
ciated (CA IV, IX, XII, and XIV) over cytosolic or mitochondrial CA
isoforms36,37,39. Furthermore, due to their cationic nature, they are
also membrane-impermeant36–38, which makes them highly
attractive for targeting extracellular CAs26,39,40. Among the pyridi-
nium containing sulfonamides, compounds 1 and 2, which incorp-
orate 2,4,6-trisubstituted pyridinium moieties, were shown by our
group to possess low nanomolar affinity for CA IX, a tumour-asso-
ciated enzyme validated as an antitumor target26, and also to be
less effective inhibitors of widespread, off target isoforms CA I, II,
and IV36,37,39.

Despite the interesting selectivity features of the pyridinium
containing sulfonamides as CAIs, only few structural studies are so
far available on the adducts that these compounds form with
diverse CA isoforms, with the hCA II/1 complex being the only
one characterized by X-ray diffraction studies41. In order to get
more insights into the CA binding mechanism and the interesting
selective inhibition profile of these molecules, we report here the
crystal structure of the hCA II/2 adduct and compare it with
the previously described structure of the hCA II/1 complex41. The
inhibition of the second tumour-associated isoform, hCA XII, with
derivatives 2 is also reported here for the first time.

Materials and methods

CA inhibition

Inhibition constants reported in Table 1 were previously deter-
mined1,39 with the exception of KI of 2 against hCA XII which has
been determined here. In detail, an applied photophysics stopped-
flow instrument has been used for assaying the CA catalyzed CO2

hydration activity42. Phenol red (at a concentration of 0.2mM) has
been used as indicator, working at the absorbance maximum of
557 nm, with 20mM Hepes (pH 7.5) as buffer and 20mM Na2SO4

(for maintaining constant the ionic strength), following the initial
rates of the CA-catalyzed CO2 hydration reaction for a period of
10–100 s. The CO2 concentrations ranged from 1.7 to 17mM for
the determination of the kinetic parameters and inhibition con-
stants. Six traces of the initial 5–10% of the reaction have been
used for determining the initial velocity. The uncatalyzed rate was
determined in the same manner and subtracted from the total
observed rate. Stock solution of inhibitors (0.1mM) were prepared

Figure 1. Chemical structures of clinically used CAIs and pyridinium containing sulfonamides 1 and 2.

Table 1. Inhibition of isozymes hCA I, hCA II, hCA IV, hCA IX, and hCA XII with
the pyridinium salts 1, 2, and the standard, clinically used sulfonamide CAIs.

KI (nM)

Compound hCA I hCA II hCA IV hCA IX hCA XII

1 4000a 21a 60a 14a 7.0a

2 270,000b 419b 1830b,d 95b 12.5c

Dorzolamide 50,000a 9a 8500a 52a 3.5a

Brinzolamide 45,000a 3a 3950a 37a 3.0a

Acetazolamide 250a 12a 74a 25a 5.7a

Methazolamide 50a 14a 6200a 27a 3.4a

Ethoxzolamide 25a 8a 93a 34a 22a

Dichlorophenamide 1200a 38a 1500a 50a 50a

aFrom Ref. (1).
bFrom Ref. (39).
cThis work.
dThis Ki value refers to bCA IV.
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in distilled–deionized water and dilutions up to 0.01 nM were
done thereafter with the assay buffer. Inhibitor and enzyme solu-
tions were preincubated together for 15min at room temperature
prior to assay, to allow for the formation of the E–I complex. The
inhibition constants were obtained by non-linear least-squares
methods using PRISM 3 (GraphPad Software Inc., San Diego, CA,
USA) and the Cheng–Prusoff equation and represent the mean
from at least three different determinations.

X-ray crystallography

The hCA II/2 adduct was obtained using a procedure previously
described for other hCA II/inhibitor complexes43,44. In detail, a
50-fold excess of the inhibitor was added to a 0.2mg/mL enzyme
solution in 20mM Tris-HCl pH 8.0. After incubation overnight at
4 �C, the complex was concentrated to 10mg/mL by using a 5-kDa
cutoff ultrafiltration device (VivaspinVR 500; Sartorius, G€ottingen,
Germany). Crystals were obtained at 20 �C using the hanging drop
vapour diffusion technique by equilibrating drops containing 1 mL
of complex solution and an equal volume of precipitant solution
consisting of 1.3M sodium citrate, 0.1M TRIS-HCl, pH 8.5, over a
reservoir containing 0.5mL of precipitant solution. Crystals
appeared after 3 days. Diffraction data were collected to 1.65 Å
resolution, in-house at �180 �C, using a Rigaku MicroMax-007 HF
generator producing Cu Ka radiation and equipped with a Saturn
944 CCD detector. Cryoprotection of the crystals was achieved

transferring the crystals into the precipitant solution with the add-
ition of 10% (v/v) glycerol. Data were indexed, integrated, and
scaled using HKL200045. Crystal parameters and data collection
statistics are summarized in Table 2.

A previously solved structure of hCA II (PDB code 5O07)46, with
inhibitor and non-protein atoms omitted, was used as starting
model for rigid body refinement in CNS47,48. Initial refinement was
continued in CNS using positional and slow cooling protocols fol-
lowed by restrained B-value refinement. The inhibitor molecule
was identified from peaks in jFoj � jFcj maps and gradually built
into the model over several rounds of refinement. Composite
simulated-annealing omit maps were used regularly during the
building process to verify and correct the model47,48.
Crystallographic refinement was carried out against 95.1% of the
measured data. The remaining 4.9% of the observed data, which
was randomly selected, was used for R-free calculations to monitor
the progress of refinement. Topology files of the inhibitor were
generated using the PRODRG2 server49. Restraints on inhibitor
bond angles and distances were taken from similar structures in
the Cambridge Structural Database50, whereas standard restraints
were used on protein bond angles and distances throughout
refinement. The correctness of stereochemistry was finally checked
using PROCHECK51. The refinement statistics of final model are
summarized in Table 2. Coordinates and structure factors were
deposited in the Protein Data Bank (accession code 6EQU).

Results and discussion

Sulfonamides 1 and 2 were previously described by our groups,
and were obtained by reaction of 4-aminoethyl-

Table 2. Data collection and refinement statistics for the hCA II/2 complex.

Crystal parameters
Space group P21

a (Å) 42.1
b (Å) 41.3
c (Å) 71.9
c (�) 104.2

Number of independent molecules 1
Data collection
Resolution (Å) 25.3–1.65
Wavelength (Å) 1.54178
Temperature (K) 100
R-merge (%)a 5.9 (26.6)
<I>/<r(I)> 25.7 (3.8)
Total reflections 172066
Unique reflections 27539
Redundancy 6.2 (2.7)
Completeness (%) 94.5 (79.6)

Refinement
Resolution (Å) 25.3–1.65
R-work (%)b 17.5
R-free (%)b 21.0
RMSD from ideal geometry:

Bond lengths (Å) 0.010
Bond angles (�) 1.6

Number of protein atoms 2076
Number of water molecules 195
Number of inhibitor atoms 36
Average B factor (Å2):

All atoms 15.0
Protein atoms 14.2
Inhibitor atoms 26.5
Water molecules 22.2

Ramachandran statistics (%):
Most favoured 88.2
Additionally allowed 11.4
Generously allowed 0.5
Disallowed 0

Values in parentheses are statistics for the highest resolution shell (1.68–1.65 Å).
aR-merge¼RhklRijIi(hkl)�<I(hkl)>j/ RhklRiIi(hkl), where Ii(hkl) is the intensity of
an observation and <I(hkl)> is the mean value for its unique reflection; sum-
mations are over all reflections.
bR-work¼RhkljjFo(hkl)j � jFc(hkl)jj/RhkljFo(hkl)j calculated for the working set of
reflections. R-free is calculated as for R-work, but from 4.9% of the data that
was not used for refinement.

Figure 2. Active site region of the hCA II/2 adduct, showing rA-weighted
j2Fo� Fcj simulated annealing omit map (contoured at 1.0r) relative to the
inhibitor molecule. Active site Zn2þ coordination (red continuous lines) and
hydrogen bonds (red dotted lines) are also reported.
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benzenesulfonamide with 2,4,6-trisubstituted pyrylium salts36,38. In
Table 1, the CA inhibitory action of these two positively-charged,
membrane-impermeant sulfonamides, as well as those of the six
clinically used drugs shown in Figure 1, are presented. From the
table it is evident that acetazolamide, methazolamide and ethox-
zolamide are promiscuous CAIs, inhibiting effectively at least four
of the five investigated isoforms, whereas dichlorophenamide, dor-
zolamide, and brinzolamide possess a more selective inhibition

profile, as their activity against hCA I and hCA IV are modest,
being however effective inhibitors of three isoforms, hCA II, IX,
and XII. A different inhibition profile is observed for the two pyri-
dinium-containing sulfonamides. Indeed, whereas the trimethylpyr-
idinium derivative 1 is a low nanomolar inhibitor of hCA IX and
XII, effectively inhibits hCA II and hCA IV, but it is less effective as
hCA I inhibitor, the triphenylpyridinium 2 is a quite effective hCA
XII inhibitor, it also inhibits hCA IX, but its affinity for the other iso-
forms is in the micromolar range (see Table 1). Thus, sulfonamide
2 shows the most isoform-selective inhibition profile among the
eight compounds considered here. Connected to the fact that it is
a membrane-impermeant compound36,37, and that the presence of
the three phenyl moieties may induce also a better lipophilic char-
acter compared to 1, this compound constitutes an interesting
lead for obtaining molecules to be investigated in detail for the
selective inhibition of the tumour associated CA isoforms. The
most interesting feature of 2 with respect to 1 is its reduced abil-
ity to inhibit the ubiquitous hCA II, although maintaining good
inhibition constants against hCA IX and hCA XII. Indeed, due to
the fact that hCA II is an ubiquitous, house-keeping isoform, its
inhibition may be detrimental when the targeting of the tumour-
associated isoforms CA IX and XII is envisaged, leading to many
undesired side effects2. Thus, to get more insights into the
molecular basis responsible for the reduced affinity for hCA II of
compound 2 with respect to compound 1, the X-ray crystal struc-
ture of the hCA II/2 adduct was solved and compared with that
previously reported of the hCA II/1 complex41.

Crystals of the hCA II/2 complex were obtained as previously
described for other sulfonamide CA inhibitors43,44 and the struc-
ture was solved and refined using a previously reported proced-
ure46,52–55. The final refined model had an R-work and R-free value
of 17.5% and 21.0%, respectively, and was of high overall quality
with 88.2% of the non-glycine residues located in the most fav-
oured regions of the Ramachandran plot (Table 2). Since the initial
stages of crystallographic refinement, electron density maps
showed the presence of the inhibitor molecule bound within the
enzyme active site. However, these maps were very well defined
for the 4-ethylbenzenesulfonamide part of the inhibitor but poorly
defined for the 2,4,6-triphenylpyridinium group, indicating that
this region was flexible within the active site cavity (Figure 2).

Figure 3. Structural superposition between 1 (cyan, PDB code 1ZE8)41 and 2
(green) when bound to hCA II active site.

Figure 4. (A) Solvent accessible surface of hCA II/1 active site41. Residues delimiting the hydrophobic pocket, where the trimethyl-pyridinium ring is located, are high-
lighted in red (Ile91, Gln92, Phe131). Compound 1 and residues Ile91, Gln92, and Phe131 are represented as ball-and-stick. (B) Solvent accessible surface of hCA II active
site. Colour code is as in (A). The hypothetical conformation that compound 2 would have had if its pyridinium ring was positioned in the same hydrophobic pocket of
1 is shown. Yellow arrows indicate protein residues which clashes with inhibitor (Ile91, Gln92, Val121, Phe131).
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Accordingly, B-factor values of this region (33.9 Å2) were higher
with respect to those observed for the 4-ethylbenzenesulfonamide
moiety (11.7 Å2). The binding of the inhibitor within the active site
did not cause significant changes in the enzyme structure as dem-
onstrated by the low value of the RMSD calculated by superposing
the Ca atoms in the adduct and the non-inhibited enzyme (0.3 Å).

As expected for a benzenesulfonamide inhibitor, compound 2
was bound to the enzyme with its sulfonamide group coordinated
to the zinc ion in a tetrahedral geometry2. This group was also
involved in two hydrogen bond interactions with residue Thr199,
as already described for all hCA II/benzenesulfonamide adducts so
far structurally characterized (Figure 2)2. No other polar interac-
tions were observed between the enzyme and the inhibitor.
Indeed, the ethylbenzene moiety was located in the middle of the
active site establishing several hydrophobic interactions with
Leu198, whereas the 2,4,6-triphenylpyridinium moiety did not
establish strong interactions with enzyme (see above).

Figure 3 reports the structural superposition of compounds 2
and 1 when bound to the hCA II active site, showing that even if
the benzenesulfonamide groups of the two inhibitors are quite
perfectly superimposable, the two trisubstituted pyridinium moi-
eties are oriented toward different regions of the active site. In
particular, the 2,4,6-trimethylpyridinium moiety of 1, which was
described as perfectly defined in the electron density maps41, fits
perfectly into a hydrophobic pocket, defined by residues Ile91,
Gln92, and Phe131, where it is involved in a strong face-to-face
stacking interaction with the Phe131 aromatic ring (Figure 4(A)).
On the contrary the 2,4,6-triphenylpyridinium moiety of 2,
although oriented toward the hydrophilic part of the active site, is
flexible and does not establish many stabilizing interactions with
enzyme’s residues. Interestingly, the only differences between the
two inhibitors are the substituents of the pyridinium ring, namely
three methyl groups for compound 1 and three phenyl moieties
for compound 2, which make it much more bulky and do not
allow its accommodation into the hydrophobic pocket defined by
residues Ile91, Gln92, and Phe131. Indeed, in this position the sub-
stituted ring would strongly clash with residues which delimit the
pocket (Figure 4(B)). The impossibility for the pyridinium ring of 2
to be accommodated within the aforementioned hydrophobic
pocket leads to the loss of the strong face-to-face interaction with
Phe131 and is most likely responsible of its lower affinity for hCA
II with respect to compound 1.

Conclusions

The X-ray data presented here explain why the triphenylpyridi-
nium-substituted sulfonamide 2 is a much weaker hCA II inhibitor
compared to its structural analogue 1 incorporating three methyl
moieties at the pyridinium ring. Although there is a decreased
affinity of 2 also towards the tumour-associated isoforms hCA IX
and XII, compared to compound 1 (acting as a very potent inhibi-
tor against both these isozymes), the triphenyl derivative 2
showed a selective inhibition profile for the tumour over cytosolic
isoforms, which represents a valuable feature for compounds to
be investigated as antitumor agents. Thus, understanding the
detailed interactions between inhibitors belonging to similar struc-
tural classes, as 1 and 2 discussed here, may shed new light on
the basic structural requirements for designing sulfonamide CAIs
with a selective inhibitory profile.
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