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Abstract

Resumo

The discipline of radiology and diagnostic imaging has evolved greatly in recent years. We have observed an exponential increase 
in the number of exams performed, subspecialization of medical fields, and increases in accuracy of the various imaging methods, 
making it a challenge for the radiologist to “know everything about all exams and regions”. In addition, imaging exams are no longer 
only qualitative and diagnostic, providing now quantitative information on disease severity, as well as identifying biomarkers of 
prognosis and treatment response. In view of this, computer-aided diagnosis systems have been developed with the objective of 
complementing diagnostic imaging and helping the therapeutic decision-making process. With the advent of artificial intelligence, 
“big data”, and machine learning, we are moving toward the rapid expansion of the use of these tools in daily life of physicians, 
making each patient unique, as well as leading radiology toward the concept of multidisciplinary approach and precision medicine. In 
this article, we will present the main aspects of the computational tools currently available for analysis of images and the principles 
of such analysis, together with the main terms and concepts involved, as well as examining the impact that the development of 
artificial intelligence has had on radiology and diagnostic imaging.

Keywords: Artificial intelligence; Machine learning; Computer aided diagnosis; Radiomics.

A disciplina de radiologia e diagnóstico por imagem evoluiu sobremaneira nos últimos anos. Temos observado o aumento expo-
nencial do número de exames realizados, a subespecialização das disciplinas médicas e a maior acurácia dos métodos, tornando 
um desafio para o médico radiologista “saber tudo sobre todos exames e regiões”. Além disso, os exames de imagem deixaram de 
ser somente qualitativos e diagnósticos e passaram a fornecer informações quantitativas e de gravidade de doença, identificando 
biomarcadores prognósticos e de resposta ao tratamento. Diante disso, sistemas computadorizados de auxílio diagnóstico vêm 
sendo desenvolvidos com o objetivo dar suporte ao diagnóstico por imagem e à decisão terapêutica. Com o advento da inteligência 
artificial, do big data e do aprendizado de máquina, caminhamos para a rápida expansão do uso dessas ferramentas no dia-a-dia 
dos médicos, tornando cada paciente único, levando a radiologia ao encontro do conceito de abordagem multidisciplinar e medicina 
de precisão. Neste artigo serão abordados os principais aspectos das ferramentas computacionais atualmente disponíveis para 
análise das imagens médicas, apresentando os princípios de análise das imagens, os principais termos e conceitos envolvidos 
nesses processos, assim como o impacto do desenvolvimento da inteligência artificial na radiologia e diagnóstico por imagem.

Unitermos: Inteligência artificial; Aprendizado de máquina; Diagnóstico auxiliado por computador; Radiômica.

specialists(1–3). Those challenges have increased in re-
cent years, with the exponential increase in the number 
of exams performed, subspecialization of medical fields, 
and increased accuracy of imaging methods, making it 
difficult for radiologists to “know everything about all 
exams and regions”. In addition, imaging exams are no 
longer only qualitative and diagnostic, having begun to 

INTRODUCTION

The discipline of radiology and diagnostic imaging 
has evolved greatly in recent years. Radiological imaging 
can be extremely complex, and it is recognized that the 
analysis of exams that produce hundreds of images, such 
as computed tomography (CT) and magnetic resonance 
imaging (MRI), poses challenges, even for experienced 
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provide quantitative information on disease severity, as 
well as identifying biomarkers of prognosis and treatment 
response(4–6). Those changes have been especially promi-
nent in oncology, showing that the information provided 
by imaging studies can go far beyond determining whether 
a lesion is benign or malignant, now being able to indicate 
the histological type of the tumor, staging, presence of 
mutations, chance of treatment response, risk of recur-
rence, and expected survival(7–9).

Computer-aided diagnosis (CAD) systems have been 
developed with the objectives of improving the accuracy 
of exams, increasing consistency in interpretation of im-
ages, helping the prognostic evaluation, and supporting 
the therapeutic decision-making process. Although such 
tools have enormous potential, there are still limitations 
to their use in routine clinical practice. With the advent 
of artificial intelligence and “big data”, we are moving 
toward reducing those limitations, homogenizing and ex-
panding the use of CAD tools in daily routine of physi-
cians, making each patient unique, and leading radiology 
toward the concepts of a multidisciplinary approach and 
precision medicine(10–14).

In this article, the main aspects of the computational 
tools currently available for image analysis will be dis-
cussed, as will the impact of the development of artificial 
intelligence and the role of imaging in precision medicine. 
Table 1 presents the main terms that will be used through-
out this text, together with a brief definition of each.

PRINCIPLES OF COMPUTER-AIDED IMAGE 
ANALYSIS IN MEDICINE

Digital medical imaging is an f (x, y) function in a 
spatial coordinate-partitioned gray scale that can be rep-
resented by a matrix in which the intersection of each 

row and column identifies a single point (pixel) within an 
image. As depicted in Figure 1, the value of each pixel in 
the matrix identifies the gray level at that point (x, y) on 
a scale of integer values that represent black (the low-
est value), white (the highest value), and shades of gray 
(intermediate values). With CT and MRI, images can be 
acquired volumetrically, in form of a volume of parallel, 
evenly spaced slices, so that a point in the image repre-
sents a voxel, with a “height” equal to the thickness of 
the slice(15–17). The processing and analysis tools work 
with this matrix of numerical values that represent the 
image(18).

There was a major technological revolution in radi-
ology in the late 1990s and early 2000s, when filmless 
radiological environments that were fully digitized and in-
tegrated with other information systems were established 
within a model known as a digital hospital(19). The founda-
tion of filmless radiology is the picture archiving and com-
munication system (PACS), which is a mean of receiving 
images in the standard digital imaging and communica-
tion in medicine (DICOM) format from the various ac-
quisition devices (conventional radiography, ultrasound, 
CT, and MRI), making them available for specialists or 
other computer systems to access, and storing them in an 
organized way in large databases(20). The integration of 
the PACS with the clinical information systems known as 
hospital information systems (HIS) and radiology infor-
mation systems (RIS) has also enabled the development 
of various CAD models(21,22).

One of the key steps in image processing and analy-
sis is segmentation, which often represents major chal-
lenges. The main objective of segmentation is to divide 
the image into parts that represent normal anatomy and 
those that are abnormal; to segment is to separate tissues 

Table 1—Key terms that have been used throughout the text, together with their short definitions.

Term

Machine learning

Deep learning

Features of the image

Big data

Computer aided diagnosis/detection

Content based imaging retrieval

Artificial intelligence

Precision medicine

Radiomics

Artificial neural network

Convolutional neural network

Definition

Field of computer science that involves the evolution of pattern recognition systems, allowing computers to learn from 
errors and predict outcomes.

Branch of machine learning that attempts to model large amounts of data using multiple processing layers.

Image characteristics used in computational analysis, classified into three groups: gray levels, texture, and shape.

Set of data and information that can be stored and analyzed by modern computational analysis tools—large in volume, 
speed, and variety.

Medical diagnosis/detection using the results of automated quantitative image analyses as a “second opinion”.

System that enables images or exams to be retrieved from information based on the pictorial content of a reference 
image or exam.

Human-like intelligence displayed by machines or computer programs.

Model of medicine that proposes the personalization of health care, with individualized diagnoses and treatments for 
each patient.

Massive extraction of measurable imaging data and their integration into multidisciplinary predictive models for the 
management of the diagnosis, treatment, and prognosis of patients.

Machine learning method based on the human central nervous system, with computational models made up of layers, 
each layer being composed of neurons.

Class of artificial neural network designed to require as little preprocessing as possible..
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and structures on the basis of their anatomical character-
istics(23). In some cases, segmentation can be simplified 
by using shapes that are predefined (circles or rectangles) 
or outlined in the image, representing a region of inter-
est (ROI) that does not necessarily encompass all of the 
tissue, structure, or organ. Techniques for the segmenta-
tion of images are generally based on basic properties of 
gray levels, discontinuity (edges), or similarity (after set-
ting thresholds or using a region-growing algorithm), as 
shown in Figures 2 and 3. The segmentation process can 
be manual, semiautomated (the user intervenes at some 
point in the process), or fully automated(24).

The process of feature extraction consists in calcu-
lating numerical values (descriptors) that represent the 

visual content of an image. Features are obtained by ex-
ecuting algorithms known as feature extractors. Feature 
extraction algorithms perform quantitative imaging pro-
cedures such as histogram construction, texture classi-
fication, shape recognition, and contour recognition, as 
well as area and volume estimates. After features have 
been extracted by these algorithms, the values are stored 
in a feature vector.

Features are basically classified into three main 
groups: gray level, texture, and shape. The extraction of 
gray-level features is the most widely used technique, 
which can be performed directly or by analysis of the 
histogram. As can be seen in Figure 4, a histogram is a 
description of the number of gray levels present in the 

Figure 1. Representation of the function (matrix) of a gray-scale digital image (axial slice of a chest CT).

Figure 3. Semiautomated segmentation, with region growing, of a neoplastic pulmonary nodule on chest CT after placement of a user-defined seed pixel (point at 
the center of the nodule in the first image on the left).

Figure 2. Semiautomated segmentation of the lung on a CT scan of the chest with 256 gray levels and a user-defined threshold of 115 Hounsfield units: the original 
CT image (image on the left) is thresholded (to detect the edges) and transformed into a binary image (to separate the lungs).
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Figure 5. Segmentation of pulmonary nodules on chest CT in two different patients, both nodules having irregular contours and being in proximity with adjacent 
vessels or chest wall, factors that make it difficult to segment the edges of lesions properly. In such cases, texture analysis can facilitate proper segmentation.

(Squamous cell carcinoma)

image, and that calculation involves only the pixel/voxel 
count with the gray-scale intensities(3,7,25). However, using 
only gray-level descriptors or histograms does not provide 
information on the spatial distribution of the content of 
an image, which can be determined by analyzing texture 
features(24,26). In some images, regions that have similar 
pixels/voxels are distinguishable because of their different 
textures (Figure 5). Texture features have become partic-
ularly important because they can reflect the details of a 
lesion identified in an image(1,2). Shape features describe 
the edge of the image and the geometric features extract-
ed from the segmented object, such as its contours, junc-
tions, curves, and polygonal regions(2,27). Characterizing 
object shapes quantitatively is a complicated task because 
it depends on efficiency of the segmentation algorithms. 

Lesions seen in radiological images of the lung, for ex-
ample, often have adjacent opacities or structures such as 
vessels and the mediastinum (Figure 5), which can lead 
to poor segmentation and, consequently, poorer charac-
terization by shape features.

Selection of relevant features is another important 
step, given the wide range of features that can be extract-
ed from the image. In many cases, some characteristics 
are irrelevant for a given analysis or data are redundant, 
introducing noise or inconsistencies into the feature vec-
tor(28). Therefore, it is necessary to select the most rel-
evant characteristics according to clinical investigation 
class (diagnosis or outcome). Various algorithms have 
been created in order to reduce spatial dimensionality of 
the vector and can be classified into three main types: 

Figure 4. Example of the histogram of an axial CT scan of the chest with 256 gray levels. The histogram shows the distribution of pixels or voxels according to the 
gray levels (or Hounsfield units, if necessary).
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filter, wrapper, and embedded. Most algorithms use ma-
chine learning (ML) resources, and some perform feature 
selection by using artificial neural networks (ANNs), de-
cision trees, and random forests(11).

IMAGE CLASSIFICATION, MACHINE LEARNING, 
AND DEEP LEARNING

Image classification typically involves defining the 
image within a pre-established category, such as normal 
versus pathological. One of the most widely studied areas 
in artificial intelligence and image classification is ma-
chine learning. Machine learning allows the identifica-
tion of patterns seen in previous cases and experiments, 
as occurs with human intelligence(29).

Machine learning methods have been applied to clas-
sifying images acquired with various imaging modalities, 
using a variety of features, for various diseases, and with 
tools such as CAD and radiomics(25,29,30). Developing a 
machine learning method involves creating a training 
function for a dataset (the feature vectors, in the case of 
image classification) and making use of logical inference. 
When classes (diagnoses or clinical outcomes) for final 
decision of the model are pre-established, the training 
process is supervised. When there is no defined class, the 
process is unsupervised. In the latter case, the algorithm 
is aimed at the formation of clusters of similar samples 
(“exams with a similar pattern”), which may or may not be 
related to a known condition or disease(31,32).

One of the most traditional machine learning meth-
ods involves ANNs, which are widely used in image clas-
sification tasks(25,29,30). These neural networks were pro-
jected with the structures of the human central nervous 
system as a reference(33), the mathematical models being 
described in the form of layers, each layer consisting of N 
neurons. The best known type of ANN is the multilayer 
perceptron (MLP). Traditionally, the MLP network has 

an input layer (whose neurons correspond to features of 
the image), an output layer (whose neurons correspond to 
classes/outcomes), and a set of intermediate hidden lay-
ers (whose neurons correspond to fit points of the activa-
tion functions), as depicted in Figure 6.

One of the areas of artificial intelligence that has 
been gaining attention in the scientific community most 
recently is deep learning(16). Traditional machine learn-
ing methods have limitations in data processing, mainly 
related to the need for segmentation and development of 
feature extractors to represent images and serve as input 
for the classifiers(34). Therefore, researchers began to de-
velop algorithms that integrated the processes of feature 
extraction and image classification within the ANN itself. 
Therefore, in deep learning technique, the need for pre-
processing or segmentation is minimized. However, the 
method also has disadvantages, such as the need for a 
very large set of images (hundreds to thousands); greater 
dependence on exam quality and clinical data; and dif-
ficulty in identifying the logic used (“processing black 
box”). The most widely known method of deep learning in 
medicine is that involving a convolutional neural network 
(CNN). A CNN is basically composed of three types of lay-
ers(35): the first (convolutional layer) detects and extracts 
features; the second (pooling layer) selects and reduces 
the amount of features; and the third (fully connected 
layer) serves to integrate all of the features extracted by 
the previous layers, typically by using an MLP-like neural 
network to perform the final image classification, which is 
given by the prediction of the most likely class (Figure 7).

Another important step in the machine learning pro-
cess is validation and performance assessment. Given 
a set of images, a machine learning classifier must use at 
least two different subsets to perform algorithm training 
and predictive model validation. A widely used strategy in 
radiology is cross validation. In cross validation, the samples 

Figure 6. Architecture of a multilayer ANN. 
The input layer receives the feature informa-
tion. The output layer represents classes or 
outcomes (e.g., normal versus pathological).

Input
layer

Intermediate
layers

Output
layer
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are separated into N subsets(13,36): N − 1 for training; and 
1 for testing. Another strategy, which reduces the risk of 
model overfitting, is based on three subsets(29,37): one for 
training, one for validation, and one (independent subset) 
for testing only. Performance is typically evaluated by cal-
culating the accuracy, sensitivity, specificity, and area under 
the receiver operating characteristic (ROC) curve for the 
method in question. An area under the curve (AUC) closer 
to 1 (on a scale from 0 to 1) indicates greater the accuracy 
of the method (Figure 8).

Tools that employ artificial intelligence, machine 
learning, and deep learning can be used in different ways 
to analyze images. In the field of radiology and diagnostic 
imaging, such tools have been applied primarily in CAD, 

content-based image retrieval (CBIR), and radiomics/ra-
diogenomics.

COMPUTER AIDED DETECTION

Tools of CAD were initially developed to aid in the 
interpretation of radiological findings and early identifica-
tion of diseases, especially breast and lung cancer(7,10).The 
aim of CAD is to improve the accuracy and consistency 
of diagnostic imaging by using suggestion of a response 
(“second opinion”) provided primarily by image processing, 
computer vision, and machine learning techniques(1,3,38). 
Historically, the first CAD systems emerged in the late 
1980s and were based on the processing of digitized radi-
ography films. They were fundamentally designed to work 
as a second reading of exams in population-based cancer 
screening programs (helping detect nodules and microcal-
cifications on mammograms). Subsequently, similar sys-
tems were used in order to detect and classify pulmonary 
nodules on conventional radiographies and CT scans of 
the chest. More recently, these systems have been used to 
facilitate the diagnosis of Alzheimer’s disease in nuclear 
medicine exams. In these traditional CAD models(25,29), 
the idea is for the second reading to be done by the com-
puter rather than by a second radiologist (Figure 9).

With the development of artificial intelligence and 
new machine learning tools, auxiliary diagnostic systems 
have expanded greatly and have been used in many dif-
ferent tasks, with all medical imaging modalities. We can 
cite, for example, the surprising number of presentations 
(seminars, abstracts, and oral presentations) related to 
such systems at the 2018 Annual Meeting of the Radio-
logical Society of North America, currently the largest 
radiology conference in the world, in terms of number 
of participants and number of presentations. That year, 
there were 237 registered events related to artificial  

Figure 7. Chest CT image with a pulmonary nodule as input into a CNN for analysis using deep learning technique.

Input image
(contrast-enhanced CT)

Hidden layers
(max pooling, convolutional, and features map)

Output
(classifier)

A = benign
B = malignant

Figure 8. Example of ROC curves: curve 1 represents a test with perfect perfor-
mance (AUC = 1.0); curve 2 represents a test with intermediate performance 
(AUC = 0.75); and curve 3 represents a random test (AUC = 0.50).
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intelligence, machine learning, or deep learning (https://
rsna2018.rsna.org/program/index.cfm). Examples include 
the following: automated detection of pulmonary nod-
ules, pneumonia, pneumothorax, and pleural effusion on 
conventional chest radiography; detection and quantifi-
cation of emphysema, estimation of lung nodule malig-
nancy risk, chance of local invasion by lung cancer, and 
cardiovascular risk on chest CT; and automated analysis 
of cardiac function on cardiac MRI. Therefore, possibili-
ties for developing computerized auxiliary diagnostic tools 
have become almost unlimited(39,40).

CONTENT-BASED IMAGE RETRIEVAL

The concept of CBIR refers to the search for images 
whose contents are similar to a reference case by using in-
formation derived from the images themselves, represented 
by their intrinsic content (feature vector), rather than as-
sociated texts (reports) or external annotations(41). Because 
it has potential for clinical application, as well as for appli-
cation in teaching and research, CBIR has been described 
as one of the most promising computational tool(42,43). It 
can be a very useful tool in daily clinical practice, because 
it can aid radiologists in diagnostic interpretation of exams, 
or increase their confidence level, because it uses a deci-
sion model based on similar exams(22). Currently, the most 

common scenario is that the physician, in a case of a di-
agnostic uncertainty, searches the Internet via a browser 
or on specialized radiology sites for similar texts or cases, 
using keywords or using their diagnostic suspicion (e.g., 
Google searches for “lung nodule on chest CT” or “pul-
monary hamartoma”). The use of CBIR takes the place 
of such strategies and is more effective, rapidly providing 
physicians with cases similar to that represented by the 
image for which they seek definition. Therefore, whereas 
CAD systems perform image classification tasks, generally 
providing a single response (lesion or no lesion, benign or 
malignant), CBIR systems perform image searches for sim-
ilarity, providing a set of cases similar to an unknown case 
indicated by the physician.

RADIOMICS AND RADIOGENOMICS

The suffix -omics was first used in the field of mo-
lecular biology, to describe the detailed characterization 
of molecules such as DNA (genomics) and proteins (pro-
teomics). Radiomics has been described as an extension 
of CAD that associates the quantitative characteristics 
(features) of images with patient data and clinical out-
comes, not only allowing the diagnosis to be made but also 
providing information regarding the prognosis and treat-
ment response(7,25). In view of recent advances in targeted 

Figure 9. Example of a CAD tool for de-
tection and analysis of pulmonary nod-
ules. The program not only indicates the 
presence of a right apical pulmonary 
nodule but also provides quantitative 
and three-dimensional information re-
garding that nodule.
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treatment and immunotherapy, particularly in the treat-
ment of malignancies, the need for a robust approach to 
imaging analysis has become clear, and radiomics has the 
potential to provide this in a noninvasive, rapid, timely, 
and affordable manner(12). Radiomic analysis is a process 
of massive extraction of features from tens to hundreds 
of exams, inserting these features into databases with pa-
tient clinical information, allowing them to be shared and 
analyzed(44).

The volume of health data has been growing at a rap-
id pace in recent years, characterizing what some authors 
call the “big data era” of health, and those electronic data 
are available in large quantities in information systems of 
large hospitals and other health care centers(45).

Given the large number of features and numerous 
processing possibilities, some authors have started to de-
velop and suggest the use of a radiomic signature, in 
which the most significant features of different categories 
are chosen, analyzed, and tested with accurate protocols 
and reproducible algorithms(46).

In the medical literature, there are already many stud-
ies using radiomics in different types of imaging studies 
to evaluate different diseases. Most of those studies are 
related to oncology, such as the study of lung and kidney 
neoplasms on CT and positron-emission tomography/CT 
scans, as well as prostate cancer, breast cancer, glioma, 
and hepatocellular carcinoma on MRI(7,14,36).

When the focus of radiomics is the study of correla-
tion between radiological and genomic patterns (a set of 
genes), the process is known as radiogenomics(47). Many 
studies have shown that imaging features are significantly 
associated with patterns of gene expression and genetic 
mutations, demonstrating that radiogenomic analysis 
can identify different biological mechanisms by means 
of mathematical and computational devices, enabling 
the decoding of disease phenotypes by noninvasive meth-
ods(48,49). Radiogenomics has also been used in studies 
that analyze tumor heterogeneity (i.e., the presence of 
multiple tissue and genetic subregions within the same 

tumor), which is related to disease recurrence and treat-
ment resistance. Radiogenomics is able to quantify the 
spatial complexity of the tumor and identify these phe-
notypic/genotypic subregions(50), as shown in Figure 10.

CONCLUSION

Radiology has undergone significant advances due to 
the technological revolution that is taking place in the 
world. First, there was the digitization of radiological 
environments. Then, evolution of computer vision tech-
niques and artificial intelligence led to the development 
of auxiliary diagnostic systems. More recently, matura-
tion of computational models has provided support to the 
clinical decision-making and prognostic prediction pro-
cesses. In this paper, we have presented and discussed the 
main concepts related to computer-aided image analysis, 
including aspects of artificial intelligence applied to pre-
cision medicine.

We believe that artificial intelligence, machine learn-
ing, computer-aided diagnosis, and radiomics will change 
the way radiologists and other imaging specialists work 
and will likely, in the very near future, change the per-
spective that everyone in the health care field has on their 
work. However, some people fear that radiologists and 
other specialists will be completely replaced by computer 
algorithms. Although simple tasks and exams (e.g., the 
evaluation of scoliosis or bone age on conventional radi-
ographies) might be performed and interpreted entirely by 
such algorithms, the role of the physician in verifying/val-
idating the outcome, making the clinical-epidemiological 
correlation, and determining the best treatment regimen 
are unlikely to be threatened. Of course, there are also 
ethical and legal issues related to medical exam liability. 

Artificial intelligence will certainly help “reduce the 
backlog” of exams; shorten the time to action in urgent 
cases; streamline interpretation and reporting; increase 
diagnostic confidence; make image analysis more objec-
tive and reproducible; offer more reliable prognostic in-
formation; assist in the teaching and learning of imaging 

Figure 10. Quantification of the heterogeneity 
of a pulmonary adenocarcinoma on a CT scan 
of the chest by radiomic/radiogenomic evalu-
ation. Color scale refers to a feature extracted 
from the image, reflecting tissue and genetic 
subregions of the tumor.
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techniques; and lead radiology definitively toward the 
concepts of precision medicine and multidisciplinary pa-
tient assessment. In practice, it is thought that the first 
change will be that the radiologists of today, who mostly 
use a workstation with two computer screens (one with 
the imaging tool, the other with the system for emitting 
the report and access to clinical and radiological data) 
will begin to work with three screens, the third being one 
that includes the artificial intelligence analysis. Rather 
than fearing what the future will bring, radiologists need 
to prepare, learn, and adapt, because change is inevitable.
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