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A brain-computer interface (BCI) based on electroencephalography (EEG) can provide

independent information exchange and control channels for the brain and the outside

world. However, EEG signals come from multiple electrodes, the data of which

can generate multiple features. How to select electrodes and features to improve

classification performance has become an urgent problem to be solved. This paper

proposes a deep convolutional neural network (CNN) structure with separated temporal

and spatial filters, which selects the raw EEG signals of the electrode pairs over the

motor cortex region as hybrid samples without any preprocessing or artificial feature

extraction operations. In the proposed structure, a 5-layer CNN has been applied to

learn EEG features, a 4-layer max pooling has been used to reduce dimensionality,

and a fully-connected (FC) layer has been utilized for classification. Dropout and batch

normalization are also employed to reduce the risk of overfitting. In the experiment, the

4 s EEG data of 10, 20, 60, and 100 subjects from the Physionet database are used

as the data source, and the motor imaginations (MI) tasks are divided into four types:

left fist, right fist, both fists, and both feet. The results indicate that the global averaged

accuracy on group-level classification can reach 97.28%, the area under the receiver

operating characteristic (ROC) curve stands out at 0.997, and the electrode pair with

the highest accuracy on 10 subjects dataset is FC3-FC4, with 98.61%. The research

results also show that this CNN classification method with minimal (2) electrode can

obtain high accuracy, which is an advantage over other methods on the same database.

This proposed approach provides a new idea for simplifying the design of BCI systems,

and accelerates the process of clinical application.

Keywords: brain computer interface (BCI), electroencephalography (EEG), electrode pairs, motor imagery (MI),

convolutional neural network (CNN)

1. INTRODUCTION

Motor imagery electroencephalography (MI-EEG) is a self-regulated EEG without an external
stimulus, which can be detected by electrodes. It was suggested in a literature survey that MI is
consistent with changes caused by actual exercise in the motor cortex region (Jenson et al., 2019;
Kwon et al., 2019).

A brain-computer interface (BCI) is a communication channel between the brain and the
outside world, and various types of thinking activities in the brain can be detected through EEG
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(Atum et al., 2019; Mebarkia and Reffad, 2019; Meziani et al.,
2019). The application of BCI in rehabilitation training can help
normal thinking patients with paralysis of the neuromuscular
system interact with the outside world (Leeb et al., 2015; Rupp
et al., 2015; Müller-Putz et al., 2017; Wang L. et al., 2019).
In addition, EEG studies were conducted on the control of an
intelligent wheelchair (Zhang et al., 2016; Pinheiro et al., 2018),
robotic arm (Meng et al., 2016), and other external devices
(He et al., 2015; Edelman et al., 2019). A major challenge of
the BCI is to interpret movement intention from brain activity.
Efficient neural decoding algorithm can significantly improve
the decoding accuracy, which can improving the performance
of BCI. The low signal-to-noise ratio of EEG leads to low
classification accuracy. Therefore, effective feature extraction and
classification methods have become an important research topic
of MI-EEG (Li et al., 2019). Commonly used feature extraction
algorithms include wavelet transform (WT) (Xu et al., 2018),
common spatial patterns (CSP) (Kumar et al., 2016), variations of
CSP (Kim et al., 2016; Sakhavi and Guan, 2017), empirical mode
decomposition (EMD) (Kevric and Subasi, 2017), and so on.

Deep learning (DL) has attracted attention in many areas for
its superior performance. DL can effectively deal with nonlinear
and non-stationary data, and learn underlying features from
signals. Some deep learning methods are employed for the
classification of EEG signals (Cecotti and Graser, 2010; Bashivan
et al., 2015; Corley and Huang, 2018). Convolutional neural
networks (CNNs) have been widely used inMI-EEG classification
on account of their ability to learn features from local receptive
fields. Because the trained detector can be used to detect abstract
features by convolutional layer repetition, CNNs are suitable for
complex EEG recognition tasks, and have achieved good results
and been widely used by many scholars (Amin et al., 2019; Hou
et al., 2019; Jaoude et al., 2020; Zhang et al., 2020).

Preprocessing raw EEG signals can improve the signal-to-
noise ratio of EEG and the classification accuracy, but it is
not necessary. CNNs are the biologically inspired variants of
multilayer perceptrons designed to use minimal preprocessing
(LeCun et al., 1998). For example, Dose et al. (2018) and Tang
et al. (2017) used CNN to directly classify raw EEG signals.
Shen et al. (2017) combined RNNs with CNN to enhance the
feature representation and classification capabilities of raw MI-
EEG, which was inspired by speech recognition and natural
language processing. Schirrmeister et al. (2017) established a
deeper layer of the neural network to decode imagine or
perform tasks from raw EEG signals. Hajinoroozi et al. (2016)
proposed an improved CNN with raw EEG signals to predict
a driver’s cognitive state related to driving performance, which
achieved good results. It can be seen that using the original
signals can also obtain a good MI-EEG classification effect.
CNNs can take multidimensional data as input directly, avoiding
the complicated artificial feature extraction process, which can
extract distinctive feature information.

The number of electrodes affects the classification accuracy.
In general, higher accuracy can be achieved with more electrodes
based on the comparison results of Yang et al. (2015) and Cecotti
and Graser (2010). Karácsony et al. (2019) further explained that
increasing the number of electrodes can improve the accuracy

of classification and recognition without changing the data
set and classification method. However, the increase of the
number of electrodes will increase the complexity of BCI systems.
Although some BCIs have better recognition accuracy, the system
structures are complex (Chaudhary et al., 2020; Tang et al., 2020).

In this paper, we proposed a CNN architecture with separated
temporal and spatial filters, which classifies the raw MI-EEG
signals of the left and right brain symmetric electrodes, without
any preprocessing and artificial feature extraction operations. It
has a 5-layer CNN, in which four layers are convoluted along
the temporal axis, and the other layer is convoluted along the
spatial axis. It uses 4-layer max pooling to reduce dimensionality,
and a fully-connected (FC) layer to classify. Dropout and batch
normalization are used to reduce the risk of overfitting.

CNNs have made remarkable achievements in the field of
image classification. Multi-channel EEG data are also two-
dimensional, but the time and channel of EEG have different
units. Different from other CNN methods used EEG data as
images for classification, ourmethod uses separate time and space
filters, and focuses on the detection of time-related features in
EEG signals, which helps to improve the accuracy.

Deep learning usually provides better classification
performance by increasing the size of training data. On the
basis of Physionet database, we also set up a hybrid dataset
including 9 pairs of electrode samples of 100 subjects. Each
sample only contains information from a single pair of electrodes
from a single subject. So the dimension of a sample and the
processing difficulty are reduced.

The remainder of this paper is organized as follows: section
2 briefly introduces the dataset. In section 3, the CNN theory,
construction and classification are described. Details of the
experimental results and analysis are discussed in section 4.
Finally, section 5 concludes this paper.

2. MATERIALS AND METHODS

2.1. The Framework
The system framework of the proposed method is demonstrated
in Figure 1.

(1) We downloaded the data of each subject, shuffled randomly
according to the trial, and then divided the data into 10
pieces. For each subject’s data, our operation process was
like this.

(2) We took one piece as the test set and the other nine as
the training set. In the test set and training set, we pieced
together the data from multiple subjects. The MI-EEG raw
signals of nine pairs of symmetrical electrodes over themotor
cortex region were extracted from each trial, and the signals
of each pair constituted a sample.

(3) We trained our proposed CNNmodel using the training set.
The 5-layer CNN learned EEG features, and the 4-layer max
pooling reduced the dimensions. The FC layer divided MI
into four types: left fist, right fist, both fists, and both feet.
Then, comparing with the four types of labels, the optimal
training model can be obtained. Finally, we verified the
validity of the model on the test set.
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FIGURE 1 | The system framework of the simplified CNN classification method for MI-EEG via the electrode pairs signals, including extraction of raw signals of nine

pairs of symmetric electrodes, 5-layer CNN, 4-layer max pooling, and the FC layer.

(4) Adopting 10-fold cross validation, model training and
testing were carried out 10 times, thus providing us with
10 results. Their average values are used as the global
average accuracy.

2.2. Dataset
This paper used the Physionet MI-EEG database, which was
recorded by the developers of the BCI2000 system (Goldberger
et al., 2000; Schalk et al., 2004). According to the international
10-10 system (excluding electrodes NZ, F9, F10, FT9, FT10, A1,
A2, TP9, TP10, P9, and P10), the original data are extracted from
64 electrodes, including 4 MI tasks. The database contains more
than 1,500 one-minute and two-minute EEG records from 109
different subjects, with a sampling frequency of 160 Hz.

EEG data acquisition typically uses 32 or 64 electrodes. There
are many reasons for reducing the number of electrodes used
(Tam et al., 2011). First, fewer electrodes can save more time
on preparation for electrode placement. Second, fewer electrodes
will reduce the cost of acquisition hardware. Third, and most
importantly, when running the BCI systems, the overfitting risk
of classifiers and spatial filters will increase with the number of
irrelevant electrodes.

It is important to select proper electrodes and their locations
in BCI systems. Fewer electrodes but incorrect locations may lose
important information, while too many electrodes may produce
redundant information, thereby reducing system performance.
Therefore, electrode selection is of great significance for EEG
analysis. In this paper, nine pairs of symmetrical electrodes (FC5-
FC6, FC3-FC4, FC1-FC2; C5-C6, C3-C4, C1-C2; CP5-CP6, CP3-

CP4, CP1-CP2) over the motor cortex region were selected as the
research objects, which are displayed in Figure 2A.

Each subject conducted four MI tasks: left fist, right fist, both
fists, and both feet, which are called T1, T2, T3, and T4, and 21
trials were performed for each MI task. The timing diagram of

the trial is shown in Figure 2B. The trial start time is t = −2
s, the subject relaxes for 2 s. At t = 0 s, the target appears on
the screen:

(1) L indicates motor imagination of opening and closing
left fist;

(2) R indicates motor imagination of opening and closing
right fist;

(3) LR indicates motor imagination of opening and closing
both fists;

(4) F indicates motor imagination of opening and closing
both feet.

The subject was cued to execute corresponding MI task for 4 s.
At t = 4 s, the target disappeares, and this trial finished. After 2 s
rest, a new trial begins (Dose et al., 2018).

Because the motor imagination were performed around 4 s
each time, and the sampling frequency is 160 Hz, then the
effective data size of each electrode per trial is 640. A sample
contains a pair of symmetrical electrodes, and their data are
combined in series, so the data size of a sample is 1,280.

Each subject carried out 21 trials on each MI task, a total
of 84 trials. In this paper, 10-fold cross validation was carried
out on the datasets. We divided all trials of a subject into 10
parts. For each task class, we used 2 trials for test, and the rest
for training. Therefore, there are 8 trials in the test set, and
76 trials in the training set. There are 840 trials in 10 subjects
dataset (S1∼S10), 760 for training and 80 for testing. There are
1,680 trials in 20 subjects dataset (S1∼S20), 1,520 for training
and 160 for testing. There are 5,040 trials in 60 subjects dataset
(S1∼S60), 4,560 for training and 480 for testing. There are 8,400
trials in 100 subjects dataset (S1∼S100), 7,600 for training, and
800 for testing. In addition, we extracted 9 samples in each trial.
Ten subjects dataset with 7,560 samples, 20 subjects dataset with
15,120 samples, 60 subjects dataset with 45,360 samples, and 100
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FIGURE 2 | EEG 64 Electrode placement and timing diagram for the Physionet MI-EEG database according to the international 10-10 system. (A) Nine pairs of

symmetrical electrodes over the motor cortex region are selected. (B) 6 s timing diagram of the trial.

subjects dataset with 75,600 samples were selected for model
training and generalization performance verification.

2.3. CNN Theory and Structure
2.3.1. CNN Theory
CNN structure can imitate the complex cerebral cortex of the
human brain. It only relies on a large training dataset to train
a complex model, which uses backpropagation and gradient
descent optimization algorithm to learn features, and uses a series
of filtering, normalization, and nonlinear activation operations to
extract features (Wu et al., 2019; Mohseni et al., 2020).

Each convolutional layer in CNNs consists of multiple
convolutional kernels of the same size for feature extraction.
Each kernel is a two-dimensional matrix with weights. The
value of each neuron in the convolutional layer is the result
obtained by multiplying the data of the previous input layer with
a convolution kernel, and then adding the corresponding offset.
When performing the feature extraction operation, the kernel
sequentially scans the input data of the upper layer according
to a certain step and mode setting. In addition, the kernels and
the data in the previous layer are dot multiplied to obtain the
convolution subgraph (Zhang X. et al., 2019; Zheng et al., 2020).

In the operation of the convolutional layer, two important
characteristics of local connection and weight sharing are used
(Dai et al., 2019; Sun et al., 2019). The local connection is
similar to the local receptive area. It is mainly used to extract
features with appropriate granularity and reduce the number of
CNN parameters. Weight sharing means that all neurons in the
same convolution subgraph have the same weight and bias value,
which can reduce the number of network parameters, the amount
of calculation and the risk of overfitting (Acharya et al., 2018;
Podmore et al., 2019; Zhang X. et al., 2019).

The mathematical expression of the convolutional layer is:

ymn = f (

J−1∑

j=0

I−1∑

i=0

xm+i,n+jwij + b) (1)

where x is the input two-dimensional data; y is the output of
M × N; 0 ≤ m ≤ M, 0 ≤ n ≤ N; w is the convolutional kernel
with J × I; b is the bias; and f is the activation function.

CNNs use themultidimensional original signals as the input of
the network, and rely on the backpropagation learning algorithm
to turn the hidden layers into suitable feature extractors so as
to avoid the complex artificial feature extraction process. CNNs
are suitable for signals such as EEG that change greatly over time
(Zhang Y. et al., 2019; Zuo et al., 2019).

2.3.2. CNN Structure
We selected 10 subjects as the dataset, with a total of 7,560
samples, in which the training set was 6,840, and the test set
was 720. We performed a series of experiments to determine
the number of layers and their parameters in the structure.
Leaky ReLU (Dose et al., 2018; Macdo et al., 2019) was chosen
as the activation function to avoid the vanishing gradient
problem. The optimizer adopted the Adam algorithm (Dose et al.,
2018; Chang et al., 2019), which updated the weights and bias
through the backpropagation algorithm, and the learning rate
was 1× 10−5.

In the experiments, each network structure was repeated 10
times, and the number of iterations was 2,000 each time. Finally,
we have identified 5-layer CNN and 4-layer max pooling. This
model also used dropout and batch normalization to reduce the
risk of overfitting.

The selected CNN architecture is shown in Table 1: the first
layer is the input layer; the second, third, fifth, seventh, and ninth
layers are the convolutional layers; the fourth, sixth, eighth, and
tenth layers are the max pooling layers; and the eleventh layer is
the FC layer.

The input data format of CNN is: T × N, where T refers to
the sampling amount of each channel and N is the number of
electrodes used. In this paper, T = 640, N = 2.

The block diagram of CNN is given in Figure 3. This
paper mainly uses a one-dimensional convolution, which is
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TABLE 1 | Proposed CNN architecture.

Layer Type Size Kernel size Stride Padding

L1 Input 640× 2

L2 Convolution1 (1, 630, 2, 25) [11, 1, 1, 25] [1, 1, 1, 1] VALID

Activation

Spatial dropout

L3 Convolution2 (1, 630, 1, 25) [1, 2, 25, 25] [1, 1, 1, 1] VALID

Batch

Normalization

Activation

L4 Max-Pooling1 (1, 210, 1, 25) [1, 3, 1, 1] [1, 3, 1, 1] VALID

L5 Convolution3 (1, 200, 1, 50) [11, 1, 25, 50] [1, 1, 1, 1] VALID

Activation

Spatial dropout

L6 Max-Pooling2 (1, 66, 1, 50) [1, 3, 1, 1] [1, 3, 1, 1] VALID

L7 Convolution4 (1, 56, 1, 100) [11, 1, 50, 100] [1, 1, 1, 1] VALID

Batch normalization

Activation

Spatial dropout

L8 Max-Pooling3 (1, 18, 1, 100) [1, 3, 1, 1] [1, 3, 1, 1] VALID

L9 Convolution5 (1, 8, 1, 200) [11, 1, 100, 200] [1, 1, 1, 1] VALID

Batch normalization

Activation

L10 Max-Pooling4 (1, 4, 1, 200) [1, 2, 1, 1] [1, 2, 1, 1] VALID

L11 Flatten 800

Fully-connected 4

helpful for extracting important local features between adjacent
element values of the feature vector (Schirrmeister et al., 2017).
In convolutional layer 1, one-dimensional convolution in the
direction of the temporal axis is carried out, with 25 kernels of
[11, 1, 1, 25]. After convolution, the data size becomes (1, 630, 2,
25), and 25 is the channel. In convolutional layer 2, convolution
is performed along the spatial axis. The size of kernels is [1, 2,
25, 25], the first 25 is the channel, and the last 25 is the number
of kernels. After convolution, the size becomes (1, 630, 1, 25).
In pooling layer 1, max pooling is carried out with the core of

[1, 3, 1, 1], the stride of [1, 3, 1, 1], and the output size of (1,
210, 1, 25). In convolutional layer 3, convolution is conducted

along the temporal axis, and there are 50 kernels with a size

of [11, 1, 25, 50]. After convolution, the data size becomes (1,
200, 1, 50). The parameters of pooling layer 2 are the same as

those of pooling layer 1, and the output size is (1, 66, 1, 50).
In convolutional layer 4, there are 100 kernels with the sizes of

[11, 1, 50, 100]. After convolution carried out along the temporal
axis, the data size becomes (1, 56, 1, 100). In pooling layer 3,

the parameters are the same as above, and the output size is (1,
18, 1, 100). In convolutional layer 5, convolution is performed

along the temporal axis. There are 200 kernels with the size of
[11, 1, 100, 200], and the data size after convolution becomes (1,

8, 1, 200). In pooling layer 4, max pooling is performed with the

core of [1, 2, 1, 1], the stride of [1, 2, 1, 1], and the output size

of (1, 4, 1, 200).
The essence of the pooling operation is downsampling.

We chose the max pooling, which is realized by taking the
maximum value of the features in the neighborhood. It can
suppress the phenomenon that the network parameter error

causes the shift of the estimated mean value and extract the
feature information better.

After feature extraction, the FC layer is applied to enhance
the nonlinear mapping capability of the network. It perceives
the global information and aggregates the local features learned
from the convolutional layer to form the global features for
classification. Each neuron in this layer is connected to all
neurons in the previous layer, and there is no connection between
neurons in the same layer. The formula is

y
(l)
j = f (

n∑

i=1

x
(l−1)
i × w

(l)
ji + b(l)) (2)

where n is the number of neurons in the previous layer, l is the

current layer, w
(l)
ji is the connection weight of neurons j in this

layer and neurons i in the previous layer, b(l) is the bias of neurons
j, and f is the activation function.

The output of the FC layer is generated by a softmax layer,
which contains four neurons [y1, y2, y3, y4], representing the four
categories. It maps the output of multiple neurons to the (0, 1)
interval, which can be considered as the probability of multi-
classification. The formula is as follows:

Y i = argmax(
ey

i

∑4
i=1 e

yi
) (3)

In this paper, all activation functions of the networks adopted the
leaky ReLU function:

f (x) =
{

x, if x > 0
0.01x, otherwise

(4)
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FIGURE 3 | The illustration of the CNN block diagram. The model consists of

five convolutional layers, four max pooling layers as well as the FC layers.

We used the Adam algorithm as the optimizer to minimize
the loss function and update the weight and bias through a
backpropagation algorithm. It is a stochastic gradient descent
(SGD) algorithm based on the adaptive learning rate of the first-
order and second-order moments of the gradient average. This
method usually speeds up the convergence of the model and is
more robust in the presence of noise and sparse gradients.

The proposed CNN architecture includes the spatial dropout,
and the batch normalization (BN) algorithms to improve
classification accuracy. Dropout refers to the “temporarily
discarding” some neuron nodes with a certain probability during
the training of a deep network. For any neuron, each training
is optimized together with a randomly selected set of different
neurons. This process weakens the joint adaptability among
all neurons, reduces the risk of overfitting, and enhances the
generalization ability (Srivastava et al., 2014).

The forward propagation formula corresponding to the
original network is

z
(l+1)
i = w

(l+1)
i y(l) + b

(l+1)
i (5)

y
(l+1)
i = f (z

(l+1)
i ) (6)

After applying dropout, the forward propagation
formula becomes:

r
(l)
j ∼ Bernoulli(p) (7)

ỹ(l) = r(l) • y(l) (8)

z
(l+)
i = w

(l+1)
i ỹ(l) + b

(l+1)
i (9)

y
(l+1)
i = f (z

(l+1)
i ) (10)

The function of the Bernoulli function above is to randomly
generate a vector with the probability coefficient p (value 0 or
1), indicating whether each neuron needs to be discarded. If the
value is 0, the neuron does not calculate gradients or participate
in subsequent error propagation. In this paper, we used a 50%
dropout to reduce overfitting. Spatial dropout is implemented
after the convolutional layer. Deleting the entire feature map
rather than a single element helps improve the independence
between feature maps.

The essence of the neural network training process is the
learning data distribution. If the distribution of the training
data and the test data is different, it will greatly reduce the
generalization ability of the network. Therefore, we need to
normalize all input data before the training starts.

The batch normalization (Dose et al., 2018; Wang J. et al.,
2019) method is for each batch of data, adding normalization
processing (mean value is 0, standard deviation is 1) before each
layer of the network input. That is, for any neuron in this layer
(assuming the k-th dimension), x̂(k) uses the following formula:

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]
(11)

where x(k) is the original input data of the kth neuron in this
layer, E[x(k)] is the mean of the input data in the kth neuron, and√
Var[x(k)] is the standard deviation of the data in the kth neuron.
Batch normalization imposes additional constraints on the

distribution of the data, which enhances the generalization
ability of the model. The input distribution after normalization
is forced to 0 mean and 1 standard deviation. To restore
the original data distribution, transformation reconstruction,
and learnable parameters γ and β are introduced in the
specific implementation:

y(k) = γ (k)x̂(k) + β(k) (12)

where γ (k) and β(k) are the variance and deviation of the
input data distribution, respectively. In the batch normalization
operation, γ and β become the learning parameters of
this layer, which are decoupled from the parameters of the
previous network layer. Therefore, it is more conducive to the
optimization process and improves the generalization ability of
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the model. The formula of the complete forward normalization
process of the batch normalized network layer is as follows:

µ =
1

N

N∑

i=1

X
′

i (13)

σ 2 =
1

N

N∑

i=1

(X
′

i − µ)2 (14)

Xnorm
i =

X
′

i − µ
√

σ 2 + ε
(15)

X̃i = γXnorm
i + β (16)

In this paper, the global averaged accuracy and ROC curve were
used to evaluate the classification model. The global averaged
accuracy is the ratio of the number of correctly classified samples
to the total number of samples. The area under the ROC curve
is expressed in AUC and ranges from 0.5 to 1. The closer the
AUC is to 1.0, the higher the authenticity of the method. The
performance of the model on the recognition of four types of
MI was measured by precision, recall and F-score. The larger
the values, the better the performance of the model. Here,
TP, true positives; TN, true negatives; FP, false positives; FN,
false negatives.

Global Average Accuracy =
TP + TN

TP + TN + FP + FN
(17)

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F−score =
2× Precision× Recall

Precision+ Recall
. (20)

3. RESULTS

In this paper, 10-fold cross validation was carried out for the
dataset. Ninety percent of the dataset was used as the training
set for training the CNN model to verify its robustness to data
changes. Ten percent of the dataset was used as the test set to
verify the validity of the model. The training set and test set were
normalized, and then sent to CNN for operation.

3.1. Accuracy of Electrode Pairs
On 10 subjects dataset, we conducted 9 groups of single pair
experiments to test their global averaged accuracy and the
accuracy of four MI tasks (T1, T2, T3, T4). Each group was
tested 10 times and then averaged. The average value is taken
as the global average accuracy of the electrode pair, as shown in

Table 2. The global averaged accuracy of the test set is the average
accuracy of 9 electrode pairs.

In Table 2, the upper 2 rows are the accuracies of training set
and test set, and the following 9 rows are the results of each pair
of electrodes. The highest global averaged accuracy of single pair
was FC3-FC4, reaching 98.61%, and the accuracies of four MI
tasks are also relatively high, at 99.00, 97.27, 98.03, and 100.00%,
respectively. FC5-FC6 has the lowest global averaged accuracy
of 88.73%, and four MI accuracies are 94.86, 94.76, 94.69, and
76.80%, respectively. The first three classification accuracies are
relatively high, and the effect of T4 (both feet) MI task is general.

3.2. Accuracy Within Individual Subjects
To obtain the global averaged accuracy within individual
subjects, we divided all trials of a specific subject into 10 parts,
nine for training and one for testing. This ensured that no blocks
of data are split across training and test sets.

Then we trained and tested the model to get the accuracy.
From data segmentation to training and testing, we made 10
cycles for each subject. Their average is taken as the global
averaged accuracy of individual subject. The accuracies are as
follows: S1 (93.08%), S2 (95.71%), S3 (95.42%), S4 (96.56%), S5
(94.61%), S6 (95.25%), S7 (96.82%), S8 (94.86%), S9 (95.81%),
S10 (96.02%).

From Figure 4A, it can be seen that S7 has the highest global
average accuracy, and S1 has the lowest accuracy. The four MI
accuracies of an individual subject are shown in Figure 4B, T1
achieves the highest accuracy on S5, T2 on S8, T3 on S8, T4 on
S10. In addition, T1 has the lowest accuracy on S8, T2 on S5, T3
on S10, and T4 on S1.

3.3. Classification on Different Dataset
Our proposed method has also been trained and evaluated on
different amounts of participants. Ten subjects (7,560 samples),
20 subjects (15,120 samples), 60 subjects (45,360 samples),
and 100 subjects (75,600 samples) from the Physionet dataset
were used.

The loss function curves of different subjects are detailed
in Figure 5. We can observe the convergence of the models
under different subjects. The abscissa represents the number of
iterations, and the ordinate represents the loss value. Figure 5A
shows the loss curves of the training set. From the comparison of
four loss curves, it can be observed that the loss value decreases
with the increase in iterations, and then remains basically stable
to achieve the best training effect of the model. At this time,
their training losses are almost 0, and the trained models are the
optimal classification models. Figure 5B shows the loss curves of
the test set on the optimal models, which decrease to about 0.04
as the number of iterations increase. Therefore, the models are
convergent in training set and test set.

Four types of dataset were used for model training, and four
classification models were obtained. Table 3 shows the global
average accuracy of CNN models in different datasets. The
accuracies of all training sets are 100%, and the accuracies of
four test sets are different. Among them, the accuracy of 20
subjects is 97.28%, and the corresponding model has the best
classification performance.
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TABLE 2 | Accuracy of electrode pairs.

10 subjects Global averaged accuracy (%) T1 accuracy (%) T2 accuracy (%) T3 accuracy (%) T4 accuracy (%)

Training set 100 100 100 100 100

Test set 95.83 93.66 97.35 98.30 92.44

FC1-FC2 95.44 97.12 96.41 94.47 94.04

FC3-FC4 98.61 99.00 97.27 98.03 100.00

FC5-FC6 88.73 94.86 94.76 94.69 76.80

C1-C2 98.35 98.32 97.02 98.82 100.00

C3-C4 97.09 96.05 96.31 96.26 100.00

C5-C6 91.77 97.70 89.73 96.18 83.57

CP1-CP2 97.59 96.18 95.22 99.11 100.00

CP3-CP4 96.20 93.73 93.53 97.97 100.00

CP5-CP6 90.00 90.19 94.82 95.79 79.43

FIGURE 4 | The global averaged accuracy of an individual subject on 10 subjects dataset. (A) Column chart of the global averaged accuracy of an individual subject.

(B) Column chart of four types of MI accuracy (left fist, right fist, both fists and both feet, which are called T1, T2, T3, and T4) of an individual subject.

FIGURE 5 | Classification performance comparison on different dataset. (A) The loss function curve of different subjects on the training set. (B) The loss function

curve of different subjects on the test set. (C) ROC curve and AUC of the four test sets.

The ROC curve is given in Figure 5C, AUC of 10, 60, and 100
subjects are 0.992, 0.995, and 0.993, respectively, and the AUC
of 20 subjects stands out at 0.996, so its corresponding model
classification performance is the best.

The confusion matrices of the four test sets illustrate their
group-level classification results, as shown in Figure 6. The
numbers in the diagonal lines represent the percentage of correct
classification, and the other numbers represent the percentage of
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TABLE 3 | The global average accuracy of the CNN model in different dataset.

Accuracy 10 subjects

(%)

20 subjects

(%)

60 subjects

(%)

100 subjects

(%)

Training set 100 100 100 100

Test set 95.76 97.28 96.01 94.80

misclassification. The results showed that the confusion matrix
of 20 subjects performed best, with the correct classification
rates for T1, T2, T3, and T4 being 98.29, 97.28, 98.67, and
91.92%, respectively.

The classification results of the four types of MI by CNN
were measured by precision, recall and F-score. We compared
the classification effect of different test sets on left fist, right fist,
both fists, and both feet. At a glance of Figure 7, we can find
that the models of the different test sets have achieved good
classification performance.

To show the quantitative results for using the models on
subjects not included in the training sets, we conducted the
relevant experiments on the different dataset, respectively. We
selected the data of subjects who had never participated in the
training, such as the data of subjects S101, S105, and S109 as the test
set. The test accuracy for this subject-independent case is given in
Table 4. The highest test accuracy is 73.80% achieved by S101 on
the model of 100 subjects dataset, and the lowest test accuracy is
63.84% achieved by S105 on the model of 10 subjects dataset. For
a single subject, we can see that better classification performance
can be obtained with larger training datasets.

4. DISCUSSION

4.1. Electrode Pair Accuracy Comparison
On 10 subjects dataset, we carried out 9 groups of single
pair experiments to test their global average accuracy. The
experiments use 10-fold cross validation, each group is tested 10
times, and then the average value is taken as the global average
accuracy of each pair.

The placements of the electrode pairs is shown in Figure 2A,
two electrodes of each pair are symmetrical to the Z sagittal line
(Fpz-Cz-Iz). From the global average accuracy of each pair shown
in Table 2, it can be roughly inferred that the accuracy of the
electrode pair on the C coronal line is higher than that on the
CP coronal line and the FC coronal line. Moreover, the closer the
electrode pair is to the Z sagittal line, the higher the accuracy,
and vice versa. Due to the physiological and psychological
differences between individuals, the spatial origin and amplitude
change of brain signals show specific patterns, which will cause
high individual variability. It will affect the performance of the
model and the electrode pairs to varying degrees. Therefore,
the accuracy of each pair cannot fully meet certain rules. As
shown in Table 2, the accuracy of FC3-FC4 is higher than that
of FC1-FC2 and C3-C4. In the design of the BCI systems, a large
number of experiments should be carried out according to the
database established by users to avoid selecting electrode pairs

TABLE 4 | The test accuracy of subject-independent on the model of the different

dataset.

No. of

subject

10 subjects

(%)

20 subjects

(%)

60 subjects

(%)

100 subjects

(%)

101 65.23 67.45 71.33 73.80

105 63.84 65.01 69.98 71.10

109 66.45 67.89 71.49 72.51

with low accuracy as far as possible, which is also the focus of
our next work.

4.2. Classification Comparison on
Individual Subject
In this paper, 10-fold cross validation was carried out for the
dataset. On the 10 subjects dataset, we conducted 10 groups
of individual subject experiments. Each group of experiments
has been cycled 10 times. We divided all trials of a specific
subject into 10 parts on average, took one of them in turn for
testing, and the rest for training. The average of 10 results is
the global averaged accuracy, which reduces the randomness
brought by data partitioning and helps to improve the stability
of the model.

As indicated in Figure 4, the average accuracy of 10 subjects
is 95.41%. S7 achieved the best classification effect, with the
average accuracy of 96.83%. Its 4 MI accuracies are 97.4% (T1),
97.5% (T2), 96.4% (T3), and 95.9% (T4), respectively. The average
accuracy of S1 is the lowest at 93.08%, and the MI accuracies are
97.1% (T1), 94.2% (T2), 94.50% (T3), 86.3% (T4), respectively.
The accuracy of T4 is the lowest, indicating that the classification
effect of S1 on T4, that is, both feet is the worst. The average
accuracies of 10 subjects on 4 MI are 95.88% (T1), 95.36% (T2),
96.36% (T3), 94.05% (T4). Among the four types of MI tasks, the
best is both fists and the worst is both feet.

4.3. Model Comparison
In the CNN model construction based on the dataset of 20
subjects, we used spatial dropout and BN to reduce the risk
of overfitting. Table 5 shows the accuracy comparison of the
CNN models under anti-overfitting measures, including global
averaged accuracy and the accuracy of each of the four tasks. The
data analysis is described in detail later.

From Figure 8A, we can see that the AUC of the CNN model
stands out at 0.996, followed by 0.991 without dropout, 0.973
without BN, and 0.951 without dropout and BN.

According to Figure 8B, the order of the models to reach
the steady state from fast to slow is the model without dropout,
our proposed CNN model, the model without dropout and
BN, and the model without BN. The curve of our proposed
model reached a stable state after 500 iterations and achieved
the highest accuracy. At this time, the accuracy of the model
without dropout and BN and the model without BN are still
slowly increasing. The model without dropout reached a stable
state as soon as possible. However, the model is prone to
overfitting without dropout operation, resulting in sharp curve
burr and unstable performance during the whole iteration. By
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FIGURE 6 | Classification accuracy confusion matrix of the four types of MI (T1, T2, T3, T4) on different test sets.

observing the smoothness of the four curves, our proposed
model has the smoothest curve, the least furr and the most
stable performance. Then, we refer to the values in Table 5 to
compare the global average accuracy. In the final stable state,
the accuracy of our proposed model is the highest at 97.28%,
followed by 95.30% without dropout, 89.74% without BN, and

83.92% without dropout and BN. The proposed model is 1.98%

higher than the model without dropout, 7.54% higher than the

model without BN, and 13.36% higher than the model without

dropout and BN.
Figures 8C–F illustrate the accuracy of our proposed model

on the four tasks in detail. The growth trend and performance of

T1, T2, and T3 curves are similar to those in Figure 8B. The main

difference is the poor performance of the T4 task, that is, both

feet. Even the proposed model has uneven curves throughout

the iteration, and fluctuates above and below a certain value.
The curve performance of the other models is worse, especially
the model without dropout. This will be the focus of our future
research. With reference to the values in Table 5, the accuracy of
our proposed model on four tasks (T1, T2, T3, T4) reached the
peak at 98.78, 97.28, 98.13, and 94.71%, respectively. Ourmodel is

1.71% (T1), 2.71% (T2), 1.86% (T3), and 1.67% (T4) higher than
the model without dropout, 9.05% (T1), 6.79% (T2), 8.26% (T3),
and 5.85% (T4) higher than the model without BN, and 15.89%
(T1), 14.13% (T2), 11.46% (T3), and 11.70% (T4) higher than the
model without dropout and BN.

Taking the 20 subjects dataset as an example, we compared our
proposed CNN model, the model without dropout, the model
without BN and the model without dropout and BN from the
ROC curve, the global average accuracy curve and the accuracy
curve of fourMI tasks. The experimental results illustrate that our
proposed CNNmodel has the smoothest curve, the least furr, the
most stable performance. In general, the use of spatial dropout
and BN in CNN can effectively reduce the risk of overfitting
and improve the generalization ability and classification effect of
the model.

4.4. Classification Comparison
Based on the same database and the same number of MI
tasks, our proposed method has been compared with other
works in Table 6. We can observe that CNN method is indeed
effective in MI classification, which can greatly improve the
classification accuracy.
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FIGURE 7 | Classification accuracy column chart of the four types of MI (left fist, right fist, both fists, and both feet) on different test sets.

TABLE 5 | Comparison of accuracy of the CNN models under anti-overfitting measures.

Model Global averaged accuracy (%) T1 accuracy (%) T2 accuracy (%) T3 accuracy (%) T4 accuracy (%)

CNN 97.28 98.78 97.28 98.13 94.71

CNN without dropout 95.30 97.07 94.57 96.27 93.04

CNN without BN 89.74 89.73 90.49 89.87 88.86

CNN without dropout BN 83.92 82.89 83.15 86.67 83.01

In the same method, compared with Dose et al. (2018) and
Karácsony et al. (2019), our work achieved superior performance,
and used two electrodes to greatly reduce the sample size and
data dimensions.

Although, Hou et al. (2019) used multiple electrodes whereas

this work used only two electrodes. Hou et al. used the Colin27

template brain for Physionet database, the boundary element

method (BEM) implemented in the OpenMEEG toolbox for a

realistic-geometry head model, and a Morlet wavelet approach

utilized for feature extraction. Its preprocessing process is very

complicated. However, this work is based on the original data as

the input of CNN, without any preprocessing or artificial feature

extraction operations. Therefore, this work can simplify the BCI
design. Moreover, Hou et al. mainly used data sets of 10 subjects
with an accuracy of 94.54%, while our work achieved 95.76, 97.28,
96.01, and 94.8% on the data sets of 10, 20, 60, and 100 subjects,

respectively. So this work has larger data sets and higher global
average accuracy.

5. CONCLUSION

In this paper, we proposed a CNN architecture and design the
network structure and parameters. Without any preprocessing
and artificial feature extraction operations, our model can
classify the raw MI-EEG signals of the left and right brain
symmetric electrodes.

Using the Physionet database as the data source, themodel was
trained and tested on 10, 20, 60, and 100 subjects, respectively.
The experimental results indicate that our models are convergent
on both the training set and the test set. It can reach the
uppermost accuracy on group-level classification, with 95.76%
accuracy for 10 subjects, 97.28% for 20 subjects, 96.01% for 60
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FIGURE 8 | Comparison of different models under 20 subjects dataset. (A) Comparison of ROC curve and AUC of different models. (B) Comparison of the global

average accuracy of different models. (C) Comparison of accuracy on T1 (left fist) of different models. (D) Comparison of accuracy on T2 (right fist) of different models.

(E) Comparison of accuracy on T3 (both fists) of different models. (F) Comparison of accuracy on T4 (both feet) of different models.

TABLE 6 | Results comparison on Physionet database.

Work Number of electrodes Number of MI tasks Database Global averaged accuracy (%) Methods

Kim et al. (2016) 14 4 Physionet 77.70 SUTCCSP

Pinheiro et al. (2018) 2 4 Physionet 74.96 RNA

Dose et al. (2018) 64 4 Physionet 80.38 CNN

Karácsony et al. (2019) 64 4 Physionet 76.37 CNN

Hou et al. (2019) – 4 Physionet 95.54 ESI+CNN

This work 2 4 Physionet 97.28 CNN

subjects, and 94.80% for 100 subjects. In addition, the global
average accuracy of T1, T2, T3, and T4 on 20 subjects dataset
can reach 98.29, 97.28, 98.67, and 91.92%, respectively. The
electrode pair with the highest global averaged accuracy on
10 subjects dataset is FC3-FC4, with 98.61%. Our proposed
approach manages to decode MI-EEG raw signals with yielding
remarkable robustness and adaptability, simplify the BCI systems
design and pave the road to build practical clinical applications.

In future work, we will build a real-time EEG signals
acquisition system, and use self-built database to verify the
validity and robustness of the proposed method.
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