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Climate-induced phenology shifts linked to range
expansions in species with multiple reproductive
cycles per year
Callum J. Macgregor 1*, Chris D. Thomas 1, David B. Roy 2, Mark A. Beaumont3, James R. Bell4,

Tom Brereton5, Jon R. Bridle3, Calvin Dytham 1, Richard Fox 5, Karl Gotthard 6, Ary A. Hoffmann7,

Geoff Martin8, Ian Middlebrook5, Sӧren Nylin6, Philip J. Platts 9, Rita Rasteiro 3, Ilik J. Saccheri10,

Romain Villoutreix10, Christopher W. Wheat6 & Jane K. Hill 1

Advances in phenology (the annual timing of species’ life-cycles) in response to climate

change are generally viewed as bioindicators of climate change, but have not been considered

as predictors of range expansions. Here, we show that phenology advances combine with the

number of reproductive cycles per year (voltinism) to shape abundance and distribution

trends in 130 species of British Lepidoptera, in response to ~0.5 °C spring-temperature

warming between 1995 and 2014. Early adult emergence in warm years resulted in increased

within- and between-year population growth for species with multiple reproductive cycles per

year (n= 39 multivoltine species). By contrast, early emergence had neutral or negative

consequences for species with a single annual reproductive cycle (n= 91 univoltine species),

depending on habitat specialisation. We conclude that phenology advances facilitate pole-

wards range expansions in species exhibiting plasticity for both phenology and voltinism, but

may inhibit expansion by less flexible species.

https://doi.org/10.1038/s41467-019-12479-w OPEN

1 Department of Biology, University of York, York YO10 5DD, UK. 2 Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford,
Wallingford, Oxfordshire OX10 8BB, UK. 3 School of Biological Sciences, University of Bristol, Bristol BS8 1TL, UK. 4 Rothamsted Insect Survey, Biointeractions
and Crop Protection, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK. 5 Butterfly Conservation, Manor Yard, East Lulworth,
Wareham, Dorset BH20 5QP, UK. 6 Department of Zoology, Stockholm University, Stockholm SE-106 91, Sweden. 7 Department of Zoology and Genetics,
Bio21 Institute, University of Melbourne, Parkville 3010 Victoria, Australia. 8 Department of Life Sciences, Natural History Museum, Cromwell Road, London
SW7 5BD, UK. 9 Department of Environment and Geography, University of York, York YO10 5NG, UK. 10 Institute of Integrative Biology, University of
Liverpool, Liverpool L69 7ZB, UK. *email: callumjmacgregor@gmail.com

NATURE COMMUNICATIONS |         (2019) 10:4455 | https://doi.org/10.1038/s41467-019-12479-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-8281-8284
http://orcid.org/0000-0001-8281-8284
http://orcid.org/0000-0001-8281-8284
http://orcid.org/0000-0001-8281-8284
http://orcid.org/0000-0001-8281-8284
http://orcid.org/0000-0003-2822-1334
http://orcid.org/0000-0003-2822-1334
http://orcid.org/0000-0003-2822-1334
http://orcid.org/0000-0003-2822-1334
http://orcid.org/0000-0003-2822-1334
http://orcid.org/0000-0002-5147-0331
http://orcid.org/0000-0002-5147-0331
http://orcid.org/0000-0002-5147-0331
http://orcid.org/0000-0002-5147-0331
http://orcid.org/0000-0002-5147-0331
http://orcid.org/0000-0002-4111-9484
http://orcid.org/0000-0002-4111-9484
http://orcid.org/0000-0002-4111-9484
http://orcid.org/0000-0002-4111-9484
http://orcid.org/0000-0002-4111-9484
http://orcid.org/0000-0001-6992-3522
http://orcid.org/0000-0001-6992-3522
http://orcid.org/0000-0001-6992-3522
http://orcid.org/0000-0001-6992-3522
http://orcid.org/0000-0001-6992-3522
http://orcid.org/0000-0002-4560-6271
http://orcid.org/0000-0002-4560-6271
http://orcid.org/0000-0002-4560-6271
http://orcid.org/0000-0002-4560-6271
http://orcid.org/0000-0002-4560-6271
http://orcid.org/0000-0002-0153-0121
http://orcid.org/0000-0002-0153-0121
http://orcid.org/0000-0002-0153-0121
http://orcid.org/0000-0002-0153-0121
http://orcid.org/0000-0002-0153-0121
http://orcid.org/0000-0002-4217-3060
http://orcid.org/0000-0002-4217-3060
http://orcid.org/0000-0002-4217-3060
http://orcid.org/0000-0002-4217-3060
http://orcid.org/0000-0002-4217-3060
http://orcid.org/0000-0003-1871-7715
http://orcid.org/0000-0003-1871-7715
http://orcid.org/0000-0003-1871-7715
http://orcid.org/0000-0003-1871-7715
http://orcid.org/0000-0003-1871-7715
mailto:callumjmacgregor@gmail.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications


C limate change is resulting in changes in the size, latitudinal
range1,2 and elevational extent3 of species’ distributions.
However, distribution changes are highly variable among

species, and rates of polewards expansion often fail to track the
climate3–5. Range expansions are dependent on stable or
increasing abundance trends6, and hence understanding the
effects of climate change on species’ abundances is crucial in
order to understand variation in range shifts. A potentially
important contributing factor is phenological advancement7–9,
with many species now undertaking life-cycle events earlier in the
year. However, it is unclear whether such phenology advances are
beneficial or detrimental for populations of species10–14.

We used British Lepidoptera to examine this question, because
long-term phenological, population and distribution data are all
available spanning several decades. We focus on two traits in
which Lepidoptera can display phenotypic plasticity (whereby
environmental cues directly alter the physical or behavioural
phenotype of individuals15): voltinism and phenology. Lepi-
doptera include species that are obligately univoltine (i.e., all
individuals pass a winter in diapause), and species in which every
individual makes a plastic developmental ‘decision’ whether to
undergo diapause or to directly develop, based on environmental
cues. Populations of such species may therefore undergo multiple
generations per year depending on the length of the local growing
season annually, and in cooler regions may be functionally
univoltine.

Many Lepidoptera have also advanced their phenology, with
adults emerging earlier in recent, warmer years16 because the
growth rate of immature stages increases at warmer temperatures
(although photoperiod may regulate phenology in some spe-
cies17). Such phenology advances could be either detrimental or
beneficial to species, depending on the outcomes of longer or
more favourable growing seasons18–21 and potential temporal
decoupling from host–plants or natural enemies22–24. Overall, it
is currently unclear whether phenology advances will result in
increases or declines in annual abundance, and whether species
with different life histories differ in the consequences of phe-
nology advances.

Here, we show that phenology advances have resulted in
increased abundance trends and range expansions in species with
multiple reproductive cycles per year (i.e., multivoltine species).
Early emergence permits the number of individuals of these
species to increase faster in second and subsequent generations
within the year, generating positive overall abundance and dis-
tribution trends. However, phenology advances do not correlate
with abundance trends or range expansions in species with a
single annual reproductive cycle (i.e., univoltine species), and are
associated with abundance declines in the subset of univoltine
species that are also habitat specialists.

Results
Interspecific relationships between phenology and demo-
graphy. We analysed trends in the phenology, abundance and
distribution of 130 species of Lepidoptera (29 butterflies and 101
moths) for which trends could be robustly estimated over a 20-
year period (1995–2014) during which mean spring temperatures
warmed by ~0.5 °C (Supplementary Fig. 1). We compared func-
tionally univoltine species (n= 91; defined as those that rarely
undergo more than one generation per year anywhere in their
British range, e.g., Silver-studded Blue Plebejus argus; Fig. 1c)
with multivoltine species (n= 39; those that regularly undergo
two or more generations in part or all of their British range, e.g.,
Small Blue Cupido minimus; Fig. 1d). Both univoltine and mul-
tivoltine species significantly advanced their adult emergence
dates over the study period, with the first annual emergence peak

for multivoltines (~3 days/decade, range −23.8 to 16.7) advan-
cing significantly faster than univoltines (~1.5 days/decade, range
−4.8 to 6.2; Supplementary Table 2).

We found that phenology advances led to positive abundance
trends for multivoltine species, but not for univoltine species
(likelihood ratio test (LRT), χ2= 8.23, d.f.= 1, P= 0.004; Table 1).
Multivoltine species showed greater increases in abundance if
they had advanced their phenology, but there was no clear
relationship between phenology advances and abundance trends
among univoltine species (Fig. 2). We found that phenology
advances did not directly correlate with change in the distribution
size (LRT, χ2= 0.07, d.f.= 1, P= 0.792) or change in range
margin latitude (LRT, χ2= 1.29, d.f.= 1, P= 0.256). However,
abundance trends were themselves significantly, positively related
to trends in both distribution size (LRT, χ2= 52.3, d.f.= 1, P <
0.001) and range margin (LRT, χ2= 8.82, d.f.= 1, P= 0.003) for
all species, regardless of voltinism (Supplementary Fig. 2). To test
the indirect relationship between distribution and phenology
moderated by abundance, we predicted species’ abundance trends
from our models of the relationship between phenology advances,
voltinism and abundance trends (Table 1), yielding an estimate of
the specific component of abundance change that was driven by
phenology advances. We found that these model-predicted
abundance trends were significantly related to trends in range
margin (LRT, χ2= 5.16, d.f.= 1, P= 0.023), but marginally not
distribution size (LRT, χ2= 3.17, d.f.= 1, P= 0.075). Hence, we
conclude that climate-linked shifts in range margin latitudes are
indirectly driven by phenology advances, mediated by effects of
abundance (Fig. 1). These results were robust to phylogeny, to the
designation of some species (n= 36) whose voltinism patterns
were hard to categorise because they have both univoltine and
bivoltine populations in Britain and/or mainland Europe, and
to our selection of a relatively short 20-year study period
(Tables S3, 4).

Intraspecific relationships between phenology and demo-
graphy. To understand whether links between phenology
advances and abundance trends were causally related both
between and within species, or solely correlated at species-level,
we calculated trends in phenology and abundance indepen-
dently for every population (i.e., recording site) in our data set
(n= 3–104 populations per species) and assessed the intras-
pecific relationships between the two variables at the population
level. These analyses confirmed our previous findings, revealing
that multivoltine species showed greater increases in abundance
in populations that had advanced their phenology, but no such
effect in populations of univoltine species (Table 2). Among
multivoltine species, 8/39 (20.5%) species showed individually
significant, positive population-level relationships between
phenology advances and abundance trends (eight times higher
than the two-tailed chance expectation), no species displayed a
significant negative relationship, and the average relationship
across all 39 multivoltine species was significantly positive
(LRT, χ2= 57.50, d.f.= 1, P < 0.001; Fig. 2d). These positive
population-level relationships were evident in both the subset
of multivoltine species that are, on average, increasing nation-
ally, as well as the multivoltine species that are declining
nationally (Supplementary Fig. 3), suggesting that phenology
shifts could be locally adaptive by limiting population-level
rates of decline in species that are declining nationally. By
contrast, among univoltine species, only 3/91 (3.3%, c.f. null
expectation of 2.5%) species displayed a significant positive
relationship between phenology advance and abundance trends
at the population level, with 3/91 (3.3%) showing a negative
relationship, and the average relationship across all 91
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univoltine species was not significantly different from zero
(Fig. 2c).

Annual phenological variation. To gain insight into why mul-
tivoltine species benefitted from phenology advances, but

univoltine species did not, we examined the effects of annual
variation in emergence dates on a sequence of Lepidopteran life-
cycle events (Table 1). Both univoltine and multivoltine species
emerged significantly earlier in years when spring temperatures
were warmer (Fig. 3a), but with a significantly larger effect in
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multivoltine than univoltine species. Earlier emergence in mul-
tivoltine species was associated with greater population growth
between the first and second generations (Fig. 3b), and conse-
quently, earlier emergence by multivoltine species led to increased
abundance, in both years t and t+ 1 (Fig. 3c, d). However, earlier
emergence in univoltine species was significantly associated with
reduced abundance in year t+ 1 (Fig. 3).

Role of habitat specialisation. Habitat availability can be an
important predictor of range expansion6,25, and we found that
including habitat specialisation in our statistical models revealed
further distinctions between habitat specialist species (n= 21)
and wider-countryside generalist species (n= 109). Most notably,
phenology advances led to abundance declines among univoltine
habitat specialists, but there was no relationship among uni-
voltine wider-countryside generalists (Table 1). After refining our
models by including habitat specialisation, species’ model-
predicted abundance trends were significantly related to trends
in distribution size (LRT, χ2= 14.49, d.f.= 1, P < 0.001) as well as
range-margin latitude (LRT, χ2= 5.90, d.f.= 1, P= 0.015).

Discussion
Our results demonstrate that positive demographic responses to
climate change are only evident in the subset of species which are
multivoltine and have advanced their phenology, thereby showing
plasticity in both phenology and voltinism. This combination
provides a pathway by which benefits can be gained from earlier
emergence in warmer springs, yielding increasing abundance in
the second annual generation associated with these phenology
advances. Such benefits are not experienced by the subset of
multivoltine species that have not advanced their phenology,
whilst univoltine species are constrained to develop through only
one generation per year (by innate factors or by climate, in the
case of species that are functionally univoltine under cool British
conditions, even if they have the potential to be multivoltine
elsewhere).

Phenology advances are associated with declines in abundance
among univoltine habitat specialists, which might experience
direct costs associated either with phenology advances them-
selves, or with warmer winter or spring temperatures (e.g.,
extended periods of delayed sexual maturity26, diapause or lar-
val27 or adult aestivation28), before suitable conditions for
emergence/reproduction arise the following year. These factors
may potentially lead to greater reproductive success in years of
later emergence (i.e., phenology delays; Fig. 3c, d), even though
abundance was higher in individual years of earlier emergence
(Table 1). In particular, univoltine habitat specialists (whose
host–plant niche is often narrow) may experience phenological
mismatches with host–plants29, from which generalist species

may be buffered. Host–plants may also be advancing their phe-
nology8, so it is possible that such univoltine species might have
declined even more without phenology advances. As with plas-
ticity in both phenology and voltinism, spatiotemporal variation
in habitat and host–plant associations (and hence specialisation)
may also include an element of plasticity, whereby individuals can
make behavioural decisions to occupy favourable habitats under
specific environmental conditions30; but genotypic diversity
among populations and individuals may also contribute to habitat
and host–plant selection.

Despite this, we found no significant differences between
univoltine and multivoltine species in their overall abundance or
distribution trends, potentially because emergence dates did not
advance for all multivoltine species, or for all populations of
species that have advanced their phenology overall (Supplemen-
tary Fig. 3). Identifying the factors that drive or constrain phe-
nology advances will therefore be important. These factors might
include local adaptation to photoperiod signals31,32, physiological
barriers limiting increases in development rate33, or availability of
suitable habitat or microclimatic conditions to otherwise mitigate
the effects of climate change through behavioural responses30. In
particular, understanding drivers of detrimental phenology
advances in populations of univoltine habitat specialists may be
important for their conservation, particularly as this group
includes many UK conservation-priority species (e.g., High
Brown Fritillary Argynnis adippe). Our findings show that the
effects of climate-driven phenology advances have the potential to
be detrimental in univoltine habitat specialists, but some of these
species might benefit from gaining a second generation in Britain
under future climate change (those which are functionally uni-
voltine in Britain but have the capacity to be multivoltine; e.g., P.
argus, Fig. 1). This may be more likely to occur if emergence dates
continue to advance in much warmer years. Given that there is
not a consistent outcome of phenology advances among species,
strategies for conservation management under climate change
should employ approaches that generate local conditions for a
diverse range of phenological strategies across species at different
trophic levels, such as approaches that maximise habitat, micro-
climate and host–plant heterogeneity34,35.

In conclusion, our study shows that range expansions in
response to climate change3,5 are influenced by phenology
advances, through their effect on population abundance. How-
ever, the nature of the relationship between phenology advances
and abundance depends on life-cycle plasticity in voltinism.
Species with multiple reproductive cycles per year may be able to
capitalise on warmer springs by advancing their phenology, thus
increasing the total number of reproductive cycles per year19,20

and/or increasing reproductive success within each cycle18, with
consequent population growth and expanding distributions. By
contrast, univoltine habitat specialists experience apparent costs

Fig. 1 Effects of phenology advances on abundance and distribution trends depend on voltinism, illustrated with example species. The flowchart describes
the main conclusions of this study: climate-driven phenology advances have a positive effect on abundance trends in multivoltine species, but a neutral or
negative effect on abundance trends in univoltine species (depending on habitat specialisation). In turn, abundance trends have a positive effect on trends
in distribution size and northern range margin, regardless of voltinism. Trends in emergence date, abundance, distribution size and northern range margin
are depicted for two butterflies: Silver-studded Blue Plebejus argus, and Small Blue Cupido minimus. a, b P. argus has retracted in distribution size (−0.2
%/yr) and range margin (−1.8 km/yr), whereas C. minimus has expanded in distribution size (1.3 %/yr) and range margin (7.4 km/yr). Distribution size
depicted as number occupied hectads in 1995–2014 (black circles), 1995–2004 only (orange circles) and 2005–2014 only (blue circles). Range margins are
depicted for 1995 (orange lines) and 2014 (dashed black lines). c, d Voltinism of univoltine P. argus and multivoltine C. minimus shown by observed
abundance on transect counts across all sites and years (grey circles; counts > 100 omitted) and GAM-fitted curves (blue lines). e–h Both P. argus and C.
minimus have advanced their phenology (0.25 days/yr and 0.46 days/yr, respectively); P. argus has declined in abundance (−5.5%/yr), but C. minimus has
increased in abundance (3.8%/yr). Observed peak day of first-generation emergence (e, f) and mean abundance per recording event (g, h) in each year is
shown (grey circles), and points at the same site are connected (grey lines); overall trend across the duration of the study period (Supplementary Data 1) is
shown (black dashed line) with 95% confidence intervals (grey shading)
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when they advance their phenology, resulting in population
declines and retracting distributions, although these costs are not
evident in univoltine generalists. These variable demographic
consequences of phenology advances may help to explain why
some species’ distributions have not expanded quickly enough to
track temperature changes3,5.

Methods
Data sets. We used data obtained by four recording schemes to assess changes in
phenology, abundance, distribution size and latitude of the northern range margin
over a 20-year period (1995–2014). Specifically, we used data from two population-
monitoring schemes that contained abundance records, with high spatial and
temporal resolution over many years for fixed sampling locations, to measure
phenology and abundance (butterflies: the United Kingdom Butterfly Monitoring
Scheme (UKBMS); moths: the Rothamsted Insect Survey (RIS) Light-Trap Net-
work). We also used data from two distribution recording schemes that contained
annual presence records summarised at hectad (10 × 10 km) level for the whole of
Great Britain to measure distribution size and range margin (butterflies: Butterflies
for the New Millennium (BNM); moths: the National Moth Recording Scheme
(NMRS)).

In the UKBMS, data are collected annually over a 26-week period (1st
April–29th September). Weekly transects are walked along a fixed route, following
a standard method36 to count the abundance of each species present. In the RIS,

night-flying and crepuscular moths are attracted to a 200W tungsten bulb installed
within a standard light-trap design, operated in the same location on every night of
the year between dusk and dawn37. Sampled moths are collected daily or every few
days, and the abundance of each species counted. Thereby, both recording schemes
generate abundance data for a fixed site, with a temporal resolution of 1 week or
better, over a long period of time (in many cases continuously for 2–4 decades).
This allows for reliable estimation of changes in site-level abundance and
phenology over time.

In both the BNM and the NMRS, data are contributed with high spatial
resolution by volunteer recorders as a form of citizen science, and summarised to
produce annual distribution maps at hectad resolution. The BNM was
established in 199538 but builds upon a previous atlas project39, whilst the
NMRS officially commenced in 2007; both recording schemes include historical
records dating back to the 17th and 18th centuries, respectively. Both schemes
comprise mainly records of adult Lepidoptera, either observed during the
daytime or captured in light traps, but also include other recording methods
(e.g., pheromone lures) and records of immature life-stages. The annual number
of the hectad-level species presences recorded by the BNM has remained roughly
stable in each year since its commencement in 1995 (with fewer records from
earlier years), despite growth in the total number of records submitted to the
scheme. Both the number of hectad-level species presences recorded by the
NMRS, and the number of records submitted, continue to grow40. Not all data
sets had been updated beyond 2014 at the time of analysis; therefore, we selected
the 20-year study period 1995–2014 in order to contain the maximum
informational content across the four data sets.
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Fig. 2 Phenology advances and voltinism drive abundance trends in multivoltine species. Advancing phenology correlates with increasing abundance at
species- and population-level for multivoltine species (n= 39), but not univoltine species (n= 91). Lines depict model-predicted relationships between
phenology and abundance trends, from generalised linear mixed-effects models. a, b Points show changes in phenology and abundance over the study
period (1995–2014) at species-level for univoltine and multivoltine species, respectively. Point colour indicates taxonomic group (butterflies: filled, moths:
open). Lines show significant (P < 0.05) relationships. c, d Points show changes in phenology and abundance over the study period at the population level.
Grey lines show relationships calculated independently for each species; lines are solid if the relationship is significantly different to zero (P < 0.05), or
otherwise are dotted. Solid black lines indicate the overall relationship across species, and are plotted only if significant (P < 0.05). Among univoltine
species (c), 3/91 (3.3%) show a significant positive relationship, and 3/91 (3.3%) a significant negative relationship, between phenology and abundance
change; the average relationship across species is not significant (Table 2). Among multivoltine species (d), 8/39 (20.5%) show a significant positive
relationship between phenology and abundance change, and none show a significant negative relationship; the average relationship across species is also
significantly positive (Table 2)
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Data selection. To obtain consistent estimates of variables across data sets,
unbiased by increased recording in later years, we restricted each data set according
to uniform criteria for both butterflies and moths. We grouped subspecies at the
specific level by reference to a recent checklist of British Lepidoptera41, and treated
species complexes as a single taxonomic entity equivalent to one species (the only
such aggregate included our final data set was Common/Lesser Common Rustic
Mesapamea secalis/didyma). We initially excluded from the study: (i) species that
are obligatory migrants, or for which a substantial proportion of records represent
immigrant individuals; and (ii) species for which new methods of recording have
been developed within the study period (e.g., Sesiidae, now mainly recorded using
pheromone lures).

For the population-monitoring schemes, we first restricted each data set to
include a population (defined as one species at one transect/trap location) in each
year only if (i) there were at least ten recording events in that year during which
any species was recorded (even if the focal species was not) and (ii) the focal species
was itself recorded during at least three of those recording events. For all remaining
combinations of population × year, we fitted a generalised additive model (GAM)
to all abundance records (including zeroes), with a Poisson error distribution and
using a restricted maximum likelihood approach to estimation of smoothing. We
followed a series of logical steps (Supplementary Fig. 7) to exclude GAMs which
were deemed not to have fitted successfully; GAMs were discarded if their
predicted abundance on 1st January was >1, or failed to reach at least one peak
(defined as a day on which model-predicted abundance was greater than both the
preceding and following days) before 31st December. These rules excluded
populations in each year from which first-generation individuals were recorded on
the first or last day of recording (UKBMS: April–September; RIS:
January–December), preventing reliable estimation of phenology. We then further
restricted the data set to include only populations that had successfully fitted
GAMs for at least (i) 15 years of the 20-year study period, and (ii) 1 year in the
period 1980–1990 (to exclude sites that were recently colonised at the start of the
study period, potentially influencing abundance trends42). Finally, from the
remaining populations, we included only species for which (i) at least three
populations matched the criteria above, and (ii) records existed in each of the
20 years of the study period from at least one population, even if no single
population had been recorded for 20 years. For some butterflies which may be
active before the commencement of UKBMS monitoring (e.g., Peacock Aglais io), a
sufficient proportion of GAMs fitted unsuccessfully that too little data remained for
the species’ inclusion in the study, despite being common and widespread; others
(e.g., Orange-tip Anthocharis cardamines) are represented by only a few
populations. It is possible that these early-emerging species may have experienced
some of the largest phenology advances22.

For the distribution recording schemes, we first restricted each data set
separately to include only hectads that were heavily recorded, following previous
studies1,2, in order to be confident that species not recorded in a hectad were truly
absent. Specifically, we first excluded hectads unless they had a presence record (of
any species) in both the first and second halves of the study period (i.e., 1995–2004
and 2005–2014, respectively). For each remaining hectad, we calculated annual
species richness of the hectad itself and of the 100 nearest neighbouring hectads
combined (i.e., the surrounding region), and from these, the annual percentage of

regional species richness that had been recorded in each hectad. We excluded all
hectads for which the median annual percentage of regional species richness
recorded (across all 20 years) was <25%. This left 1639 heavily recorded hectads in
the BNM data set and 475 heavily recorded hectads in the NMRS data set
(Supplementary Table 1). Using distributions from within the remaining hectads,
we excluded: (i) species which had been recorded in <20 heavily recorded hectads
across the full study period (e.g., Lulworth Skipper Thymelicus acteon, Dark
Bordered Beauty Epione vespertaria), as these distributions were too small to
reliably estimate change in distribution size; and (ii) species for which the mean
elevation of all recorded hectads was >200 m (using elevation data from Farr
et al.43; e.g., Scotch Argus Erebia aethiops, Scotch Annulet Gnophos obfuscata), as
responses to climate change in upland species might involve elevational shifts
rather than changes in distribution or abundance3. Finally, we assessed which
species reached their range margin >100 km south of the northernmost point of
mainland Great Britain (latitude 58° 38′ 14″ N), following Hickling et al.1. We
excluded these northerly or ubiquitous species (e.g., Meadow Brown Maniola
jurtina, Dark Arches Apamea monoglypha) from a subset of data for the specific
analysis of range margin trends, but retained them in the main data set.

The remaining, final data set contained 130 species for which we had retained
reliable data from both population and distribution recording schemes, including
29 butterflies and 101 moths, which represents ~50 and 15%, respectively of all
resident British butterfly and macro-moth species (moths are probably more likely
to go unrecorded at a site in any given year, despite continuous presence, leading to
a lower proportion of populations meeting the requirement for having been
recorded in 15/20 years). Of these species, 12 butterflies (41%) were habitat
specialists, but only 9 moths (9%), probably because UKBMS transects are more
likely to be established on priority habitats occupied by habitat specialists (e.g.,
calcareous grassland) than RIS traps. For the population-monitoring schemes, our
data set comprised 425,087 abundance records of 3,484,983 individual Lepidoptera,
spanning 1685 populations at 141 different sites (Supplementary Table 1). From
the distribution-recording schemes, it comprised 913,037 hectad-level presence
records from heavily recorded hectads.

Generation of variables. We generated two categorical variables to describe each
species’ life-cycle plasticity, by reference to commonly used identification resour-
ces44–48. First, we described species’ functional voltinism: species were classified as
univoltine if they rarely or never undergo more than one generation per year
anywhere in any part of their range within Great Britain, even if they have the
capacity to do so elsewhere in their global range (e.g., Silver-studded Blue Plebejus
argus, Fig. 1c), or otherwise multivoltine if they regularly undergo a substantial
second generation in any part of their British range (e.g., Small Blue Cupido
minimus, Fig. 1d). In total, we categorised 91 species as univoltine and 39 species as
multivoltine. We additionally recorded whether this categorisation was considered
to be representative of all populations in all years. Second, we described species’
habitat specialisation: species were classified either as habitat specialist or wider-
countryside generalist. Butterfly assignments were drawn directly from an estab-
lished set of habitat specialisation classifications48, and moths were assigned by
expert opinion, using the same criteria (Supplementary Table 5). In total, we

Table 2 Statistical tests of intraspecific relationships between phenology and abundance change

Dependent
variable

Independent
variable

Data subset Interacting
covariates

n AIC Marginal
R2

Effect size
(s.e.)

Χ2 (P)

Change in
abundance

Change in
emergence
date

Full data set Voltinism 1677 −5255.4 0.028 – 9.18 (0.002)
Voltinism∗
Class

1677 −5261.4 0.032 – 0.17 (0.679)

Univoltine species – 1038 −3182.7 0.000 −0.00 (0.00) 0.02 (0.886)
Class 1038 −3179.4 0.002 – 0.81 (0.368)

Univoltine habitat
specialists

– 99 −254.9 0.007 0.01 (0.02) 0.59 (0.441)

Univoltine wider-
countryside generalists

– 939 −2933.2 0.0001 −0.00 (0.00) 0.13 (0.723)

Multivoltine species – 639 −2029.7 0.074 0.01 (0.00) 57.50 (<0.001)
Class 639 −2086.9 0.084 – 0.006 (0.938)

Multivoltine habitat
specialists

– 14 −32.46 0.002 0.01 (0.04) 0.06 (0.800)

Multivoltine wider-
countryside generalists

– 625 −1995.7 0.078 0.01 (0.00) 58.63 (<0.001)

Multivoltine species
(increasing abundance)

– 295 −903.9 0.068 0.01 (0.00) 21.46 (<0.001)

Multivoltine species
(declining abundance)

– 344 −1162.7 0.091 0.01 (0.00) 33.80 (<0.001)

An overall model was constructed in each case with species as a random effect, and with voltinism as an interacting covariate if indicated. Significance of each model was tested using a likelihood ratio
test, and tests that had statistical significance (P < 0.05) are indicated in bold
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categorised 109 species as wider-countryside generalists and 21 species as habitat
specialists. The majority of habitat-specialist species were butterflies, despite most
species in the overall data set being moths (Supplementary Table 6), reflecting a
greater tendency for UKBMS transects to be established in protected areas (with
associated habitat specialists)49 than for RIS traps.

For all species, we generated four annual variables: first-generation emergence
date (phenology), abundance, occupied distribution size and range margin latitude.
Phenology and abundance were calculated separately for every population, using
population-monitoring scheme data. Single national values for distribution and
range margin were calculated in each year, using distribution recording
scheme data.

Abundance of each population was the total number of individuals recorded in
each year, divided by the number of recording events (transects walked or trap
samples collected) in that year, and therefore represented mean abundance per
recording event. To estimate the annual phenology of each population, we used the
GAM fitted to abundance data (as described above). We used a series of logical
steps (Supplementary Fig. 4) to identify the most plausible date for the first peak in
abundance; phenology therefore refers to the emergence of the first generation in
each year, regardless of each species’ voltinism. We used this approach to
estimating phenology because it is more robust to the influence of variation in
abundance than other approaches (e.g., first appearance date)50.

For multivoltine species, we additionally estimated the ratio between abundance
in the first generation and all subsequent generations for multivoltine species
(intergenerational abundance ratio). We used logical steps again (Supplementary
Fig. 4) to identify the most plausible date for the trough of minimum abundance
between the first and second generations, and calculated the ratio between the sum
of daily abundances (predicted from the GAM) before and after this trough.

To calculate each species’ annual distribution size, we calculated the number of
heavily recorded hectads in which the focal species was recorded, and the total
annual number of heavily recorded hectads in which any species was recorded.
From these, we calculated the percentage of the maximum possible distribution size
that was occupied by the focal species in each year (distribution). This accounts for
an increase in the number of heavily recorded hectads that were recorded in later
years of the study period. To calculate the annual latitude of each species’ range
margin, we identified the ten most northerly occupied hectads (including all
hectads that were tied for 10th place) in each year, and calculated the mean
northing of these hectads.

We then calculated rates of change over 20 years in phenology, abundance,
distribution and range margin for each species (Supplementary Data 1). Change in
distribution was calculated as the slope of a linear regression between distribution
and year, and was therefore the annual change in the percentage of hectads that
were occupied. Likewise, change in range margin was calculated as the slope of a
linear regression between range margin and year, and was the annual northwards
advance in the latitude of the range margin, in km (a negative value indicated a
southwards retraction). Change in abundance was calculated as the slope of a
generalised linear mixed-effects model (GLMM) between the logarithm of mean
abundance (per recording event) and year, with site as a random effect and a
Gaussian error distribution, and was therefore the annual change in abundance as
the logarithm of the odds ratio. Finally, change in phenology was calculated as the
slope of a GLMM between phenology and year (with the same structure as above),
and was therefore the annual change in phenology in days. We reversed the sign of
this slope, so that a positive number indicated an advance in phenology (emerging
earlier in the year). For the variables generated from population-monitoring
scheme data (phenology advance and abundance trend), we additionally calculated

A
ve

ra
ge

 p
ea

k 
da

y 
of

 e
m

er
ge

nc
e

250

150

200

Accumulated degrees (GDD5),
march 1st to may 31st

200 400 600

R
at

io
 o

f 1
st

 to
 2

nd
ge

ne
ra

tio
n 

ab
un

da
nc

e

10.0

1.0

0.1

Peak day of emergence

Peak day of emergence

50 100 150 200 250

M
ea

n 
ab

un
da

nc
e 

pe
r 

tr
an

se
ct

/tr
ap

in
 g

iv
en

 y
ea

r 
(lo

g 
sc

al
e)

M
ea

n 
ab

un
da

nc
e 

pe
r 

tr
an

se
ct

/tr
ap

in
 fo

llo
w

in
g 

ye
ar

 (
lo

g 
sc

al
e)

100.0

10.0

1.0

0.1

100.0

10.0

1.0

0.1

100 200 300

Peak day of emergence

100 200 300

Voltinism

Univoltine

Multivoltine

a b

c d

Fig. 3 Species’ responses to annual variation in spring temperature depend on voltinism. Lines depict model-predicted relationships ± 95% confidence
interval, from generalised linear mixed-effects models fitted to annual population-level estimates of emergence date and abundance for all univoltine and
multivoltine species. The relative density of underlying data points is represented by contour lines. Colour indicates voltinism (blue: univoltine species,
orange: multivoltine species). a Average peak day of first-generation emergence is earlier in years with warmer springs (measured as the accumulated
growing degree days above 5 °C (GDD5) between 1st March and 31st May) for both univoltine and multivoltine species, and the effect is significantly
stronger for multivoltine species. b In multivoltine species, abundance in second and subsequent generations is proportionally larger compared with the
first generation (as indicated by a larger intergenerational abundance ratio) in years when peak day of first-generation emergence was earlier. c Abundance
of multivoltine species (measured as the mean number of individuals recorded per transect/trap) is greater in years when peak day of first-generation
emergence was earlier, but there is no relationship for univoltine species. d Abundance of multivoltine species is greater when peak day of first generation
in the previous year was earlier, but abundance of univoltine species is greater when peak day of first-generation emergence in the previous year was later
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the rate of change separately for each population. These were calculated as above,
except that they were the slope of a linear regression rather than a GLMM. For
change in abundance and change in phenology, we also calculated rates of change
(as above) over the full time period of available data for each species (31–44 years
per species, between 1973 and 2017).

We tested the relevance of our species-level trends, based on a subset of data-
rich populations, to national trends, using abundance as a case study. Our
estimated abundance trends were significantly correlated to long-term national
abundance trends from the UKBMS51 (1976–2016; F-test, adjusted R2= 30.0%,
F= 12.97, P= 0.001) and RIS52 (1968–2016; F-test, adjusted R2= 31.2%, F=
46.29, P < 0.001). For the UKBMS, we also calculated national trends for the study
period only; these correlated even more strongly with our estimated trends
(1995–2014; F-test, adjusted R2= 49.3%, F= 28.25, P < 0.001).

Finally, for each of the 141 sites from which we had population-monitoring
scheme data included in the final data set, we calculated annual spring temperatures,
as the number of growing degree days above a 5 °C threshold (GDD5) from 1st
March to 31st May inclusive, for the 5 × 5 km grid square containing the site
centroid, using gridded data from the UK Meteorological Office53.

Statistical analysis. We used GLMMs to test relationships between change in
phenology, abundance, distribution and range margin. In each case, we initially
constructed two models on the full data set (n= 130 species), testing the fixed
effects, respectively, of a two-way interaction between the independent variable and
voltinism, and of a three-way interaction between the independent variable, vol-
tinism and habitat specialisation class. We used Gaussian error distributions
because our dependent variables were all approximately normally distributed
(Supplementary Figs. 5–7), and included taxon group (butterfly or moth) as a
random effect (allowing random intercepts). We tested significance of fixed effects
in each model using likelihood ratio tests; where interaction terms were non-
significant, we retested models with them removed and their constituent parts
included, first as two-way interaction terms and if still non-significant, as single
main effects. If the final model contained a significant interaction term, we split the
data set into subcategories as indicated by the interaction term, and tested whether
the relationship between independent and dependent variables was significantly
different to zero separately for each subcategory except multivoltine habitat spe-
cialist species, because the subset of data for this category was too small (n=
3 species).

Using this approach, we first tested the interspecific effect of change in
phenology on all three main dependent variables, calculated at the species level:
change in abundance, distribution and range margin. We additionally repeated
these analyses using two subsets of data, first excluding species for which the
voltinism classification might not be representative of some populations, and
second only including such species. Next, we repeated the initial analyses, using a
three-level categorical variable to describe voltinism (obligate univoltine,
functionally univoltine and multivoltine), where species which have the capacity to
be multivoltine but are functionally univoltine throughout Britain were assigned to
a separate category from species which are univoltine throughout their global
range. Finally, we retested the relationship between change in phenology and
change in abundance, using trends in each variable calculated over the full time
period of available data.

Next, we tested the direct effects of change in abundance on change in
distribution and range margin, because earlier studies suggest that distribution
expansions are dependent on stable or positive abundance trends6. We also
hypothesised that the effects of change in emergence date might indirectly explain
change in distribution, mediated by change in abundance, so we used our earlier
models to predict the expected change in abundance of each species, based on (i) its
voltinism and observed change in phenology, and (ii) voltinism, habitat
specialisation, and observed change in phenology. We tested the relationship
between these model-predicted changes in abundance, and change in distribution
and range margin.

To check for the possible influence of phylogenetic relatedness on our results,
we retested these interspecific relationships using phylogenetic generalised least
squares (PGLS) models. For this purpose, we constructed a phylogeny of all
130 study species (Supplementary Data 2), using the marker cytochrome c oxidase
subunit I (COI). We visually confirmed that (i) relationships between families
within our phylogeny broadly matched a recent published phylogeny of the
Lepidoptera54 and (ii) congeneric species were always grouped in monophyletic
taxa within our phylogeny.

Thirdly, we tested the intraspecific effect of change in phenology on change in
abundance, calculated at the population level, using species as a random effect in
place of the taxon group. Finally, we used the annual estimates of spring
temperature, phenology, mean abundance per recording event and
intergenerational abundance ratio to conduct several further tests, using the same
approach as above except with species and year as crossed random effects. When
analysing mean abundance and the intergenerational abundance ratio as dependent
variables, we used the logarithm of each variable. Specifically, we analysed: (i) the
effect of spring temperature upon phenology; and the effect of phenology upon (ii)
mean abundance in the same year and (iii) in the following year; and (iv) the
intergenerational abundance ratio (for multivoltine species only, because this
variable could not be estimated for univoltine species).

All statistical analyses were conducted in R version 3.5.055, except construction
of the phylogeny for PGLS, which was conducted in Geneious version 11.1.456. We
used the following R packages: mgcv57 to fit GAMs, lme458 to construct and test
GLMMs, caper59 to construct and test PGLSs, ggplot260 to prepare figures and
blighty61 to plot maps of the UK shown in Fig. 1.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data sets were obtained, respectively, from the UKBMS, Rothamsted Research (RIS) and
Butterfly Conservation (BNM and NMRS), and may be requested from the same sources.

Code availability
All R scripts, from initial processing of data sets to final analyses, are archived online at
Zenodo.
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