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The aim of this study was to eliminate the effect of Poisson noise in scintigrams with a wavelet thresholding method. We developed
a new noise reduction method with a wavelet transform. The proposed method was a combination of the translation-invariant
denoising method and our newly introduced denoising filter which was applicable for Poisson noise. To evaluate the validity of our
proposed method, phantom images and scintigrams were used. The results with the phantom images showed that our method was
better than conventional methods in terms of the peak signal-to-noise ratio by 3 dB. Quality of the scintigrams processed with our
method was better than that with the conventional methods in terms of reducing Poisson noise while preserving edge components.
The results demonstrated that the proposed method was effective for the reduction of Poisson noise in scintigrams.

1. Introduction

The quality of a scintigram depends on the number of acqui-
red photons per unit area. Generally, the geometric efficiency
of a gamma camera is small, and the data acquisition time
of a scintigram is limited, and so the acquired counts of
gamma rays are sometimes several tens to a hundred per pixel
for imaging. As a result, the image is distorted with Poisson
noise, making it hard to detect small uptake on a scintigram.

Many methods have been proposed to remove this
noise and restore the spatial resolution in a scintigram, for
example, linear filters and order statistic filters such as a
median filter in the spatial domain, and Butterworth filter
and Wiener filter in the frequency domain [1–11]. However,
these filters sometimes reduce the edge information in the
process of denoising. On the other hand, a wavelet transform
[12] is useful to remove the noise selectively without loosing
the edge information, and so several methods with a discrete
wavelet transform have been proposed [13–20]. Donoho
proposed a method called VisuShrink in reference to the
good visual quality of reconstruction obtained by the simple
“shrinkage” of wavelet coefficients [13]. Here, “shrinkage”
means a thresholding operation. To improve the perfor-
mance of denoising with the criterion of mean-squared error

(MSE), SureShrink [15] has been developed to suppress noise
with a threshold determined by the principle of minimizing
Stein’s unbiased risk estimator (SURE) [21]. The method
with the concept of SURE has an advantage in that the
statistics of the original image need not be considered, and
SURE-LET (linear expansion of threshold) was developed
[16, 17], in which the denoising was performed with a
thresholding function instead of a simple threshold value. As
an alternative threshold selection method, BayesShrink [18]
was developed to reduce the noise adaptively, in which a dif-
ferent threshold derived in a Bayesian framework is applied
to the wavelet coefficients for each pixel. This method is
more effective in removing Gaussian noise than SureShrink,
but is insufficient to remove the Poisson noise appearing in
a scintigram. The noise reduction methods with a wavelet
transform including the above methods commonly assume
the uniform distribution of Gaussian noise on an image and
so do not always prove effective for the Poisson noise whose
variance is equivalent to the mean value of the signal. On the
other hand, methods to reduce Poisson noise have also been
proposed by many researchers [19, 20, 22–27], and these
methods sometimes work well. Of these methods, Wang’s
method [19, 20] with a wavelet transform can reduce the
Poisson noise effectively; however, the parameter selection in
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this method is inappropriate for scintigrams and sometimes
looses edge information in the process of denoising.

In this paper, we proposed a new method to yield high-
quality scintigrams by reducing Poisson noise adaptively. In
our method, we multiplied the threshold value determined
with the BayesShrink method by a factor in considering the
local average count around the pixel of interest and used it
to reduce the Poisson noise with a filtering function. And we
also applied the idea of a translation-invariant (TI) denoising
[28] to reduce the artifacts caused in the process of wavelet
shrinkage. In this study, we evaluated the performance of
our proposed method in comparison with the conventional
denoising methods

2. Materials and Methods

2.1. Proposed Method. Our proposed method consisted of
the following steps. Figure 1 shows the flowchart of our
method.

(1) Making Shifted Images. Here, we assumed an original
image I0 composed of N × N pixels, where N = 2M ,
and M was an integer value. To apply the concept of the
TI denoising method, we made several images by shifting
the pixel position in the direction of the x- and/or y-axis
circularly. In this study, we used a wavelet kernel consisting
of 4 taps, and so the number of images shifted here became
16 (I0 − I15), equal to 4 × 4.

(2) Wavelet Decomposition of the 16 Shifted Images. In the
discrete wavelet transform, we used the Daubechies kernel
[29, 30] and decomposed the 16 images up to level 3.

(3) Reduction of Poisson Noise. We applied the following
method to coefficients of the above 16 images (I0 − I15)
in the wavelet domain. The fluctuations of counts in a
scintigram obey the Poisson distribution, and its variance
differs locally depending on the number of detected photons.
In the Poisson distribution, the variance equals the expected
value of detected photons, and so we used scaling coefficients

S
j
xy as a reference in determining a local threshold T

j
xy at a

given position (x, y):

T
j
xy = α× S

j
xy

2 j · Bj , (1)

where j was a subband level, and Bj was a threshold at level
j determined by the BayesShrink method [18]. The weight α
was determined by the scaling coefficients S1
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By using this weight, we took into account the local signal-
to-noise ratio in (1), because the scaling coefficient is
proportional to the local average of the numbers of gamma
rays. The denominator is a normalizing factor.

(4) Thresholding Function. In our method, we used the
following filtering function to remove Poisson noise while
preserving the edge information:
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(3)

where ηxy is an original wavelet coefficient, η̃xy is the wavelet
coefficient after thresholding, and t0 is an arbitrary value that
is the inflection point of (3). In this paper, we selected t0
value so as to match a value above 2% of the number of
absolute wavelet coefficients from the largest value.

The filtering function works like a soft thresholding
method where the absolute of the coefficients is near zero.
On the other hand, it works like a hard thresholding method
where the absolute of wavelet coefficients is large. And so the
denoised wavelet coefficients gradually change around the
threshold, and an abrupt truncation effect that appears in a
hard thresholding method is avoided.

(5) Reconstruction of the 16 Denoised Images and Averaging.
After the wavelet reconstruction of the 16 images, we restored
the pixel positions to their original ones and averaged the
pixel value of these 16 images pixel by pixel.

2.2. Phantom Data. To evaluate our proposed method quan-
titatively, we used two images and compared our method
with conventional methods: BayesShrink [18], SURE-LET
[17], and Wang’s method [19]. BayesShrink estimates the
variance of the Gaussian noise with a robust median estima-
tor and applies its weighted values to each subband. SURE-
LET uses SURE in determining a threshold for denoising.
Wang’s method uses an optimum weight that is multiplied
to the threshold determined in the BayesShrink method.

In the simulation, we used an image whose gray levels
changed from 20 to 230 like a staircase as shown in Figure
2(a). The size of the image was 256 × 256. In addition, we
used a brain image (Figure 2(b)) with a size of 512 × 512.
We set three expected values (20, 50, 100) inside the brain
image. Knuth’s method [31] was used to add Poisson noise to
the above original images. The original images with Poisson
noise are shown in Figures 2(a) and 2(b). We used the
Daubechies kernel (tap: 4) in the discrete wavelet transform,
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Figure 1: Flowchart of the proposed method. In this figure, the decomposition was performed up to level 2, but actually we decomposed to
level 3.
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Figure 2: Original phantom images and those with Poisson noise. (a) Staircase phantom, (b) brain phantom. The profile along a line
indicated with two arrows is shown below each image.
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Figure 3: Denoised image of the staircase phantom. From left to right, BayesShrink, SURE-LET, Wang’s method and our proposed method.
The profile along a line indicated with two arrows is shown below each image.

Table 1: PSNR of the phantom images in dB.

Original with noise BayesShrink SURE-LET Wang’s method Proposed method

Staircase phantom 28.17 35.84 36.37 37.44 40.75

Brain phantom 28.10 33.02 33.78 34.49 37.52

and the decomposition level was three. To evaluate the
quality of the denoised images, we used a PSNR (peak signal-
to-noise ratio) as follows:
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(4)

where Dmax means the maximum pixel value in an image,
f (x, y) is an original image without noise, and g(x, y) is a
denoised image. N × N is the image size in pixels. In this
simulation, we used 8-bit images, and so we set Dmax = 255.

2.3. Clinical Data. To confirm the validity of our pro-
posed method, we acquired scintigrams (99mTc-MDP bone-
scan and 67Ga-scan) with a gamma camera (GCA9300,
Toshiba Medical Systems, Japan). In 99mTc-scan, we used
a low-energy high-resolution collimator, and in 67Ga-scan
a medium-energy high-resolution collimator. The dose
administered was 555 MBq for 99mTc-scan and 111 MBq for
67Ga-scan, and a whole body data acquisition mode was used
with a moving speed of 100 mm/min. The sizes of an image
were 512 × 512 (99mTc-scan) and 256 × 256 (67Ga-scan),
and the pixel depth was 16 bits. Each image was processed
with BayesShrink, SURE-LET, Wang’s methods, and our
proposed method. Wavelet decomposition with Daubechies
kernel (tap: 4) was performed up to the third level to make a
fair comparison of these methods.

3. Results

3.1. Phantom Data. The results of the staircase phantom
are shown in Figure 3. In it, the images denoised with
BayesShrink, SURE-LET, Wang’s methods, and our proposed
method are shown. To evaluate the fluctuation of pixel values
quantitatively, we showed a profile of pixel values along a line
indicated with two arrows. Figure 4 shows the results of the
brain phantom. We also showed the profile of pixel values in
this figure. The results of the numerical evaluation with the
PSNR are shown in Table 1.

3.2. Clinical Data. The original image used in this evaluation
and image denoised with BayesShrink, SURE-LET, Wang’s
methods, and our proposed method are shown in Figures 5
and 6. Figure 5 shows the results of 99mTc-MDP bone-scan
image, and Figure 6 shows those of 67Ga-scan image. In these
figures, only half of a processed image is shown (512 × 256
or 256 × 128). The count profile along a line indicated with
two arrows is shown below each image.

4. Discussion

We developed a new noise reduction method for scintigrams
with a wavelet transform. The main feature of our method
is that the threshold value used in the wavelet shrinkage
is scaled adaptively with the local average of acquired
counts. Most of the early denoising methods with a wavelet
transform use a fixed threshold to remove noise, and
the threshold is determined with the variance of wavelet



International Journal of Biomedical Imaging 5

256 384 5120 128

Position

256 384 5120 128

Position

256 384 5120 128

Position

256 384 5120 128

Position

0

50

100

150

C
ou

n
ts

Bayes Wang’s ProposedSURE-LET

Figure 4: Denoised image of the brain phantom. From left to right, BayesShrink, SURE-LET, Wang’s method, and our proposed method.
The profile along a line indicated with two arrows is shown below each image.
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Figure 5: Results of the simulations with a 99mTc-scintigram. From left to right: an original scintigram, BayesShrink, SURE-LET, Wang’s
method, and our proposed method. The profile along a line indicated with two arrows is shown below each image.

coefficients. On the other hand, BayesShrink is an effective
method that changes the threshold at each level. And if
we compare the results with those of linear filters in the
spatial domain or the frequency domain, the BayesShrink
method works well in eliminating Gaussian noise. In this
method, the threshold value is determined referring to the
wavelet coefficients of the diagonal components in level
one, and the median of the absolute value of the wavelet
coefficients is adopted as a reference value. However, if the
fluctuation of the wavelet coefficients differs locally such
as in the case of Poisson noise, the denoising sometimes
failed as shown in Figures 2 and 3. The method works
effectively when the Gaussian noise with a specified variance
is distributed uniformly on an image. The application of a

thresholding filter in SURE-LET yields good results by using
the SURE. The method could remove the Gaussian noise
almost perfectly, provided that its variance was known or
correctly estimated. However, in the case of a scintigram, the
denoising failed in some regions as shown in Figures 2 and 3.
On the other hand, Wang’s method modified the threshold
determined by the BayesShrink method by multiplying a
weighting factor. This approach is somewhat similar to that
of our method, and the performance of denoising is better
than that of the former two methods as shown in Figures
2 and 3. The major difference between our method and
Wang’s method is that our method refers to a local mean
in the determination of a threshold of interest. The scaling
coefficient is equivalent to the local mean of acquired counts,
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Figure 6: Results of the simulations with a 67Ga-scintigram. From left to right: an original scintigram, BayesShrink, SURE-LET, Wang’s
method, and our proposed method. The profile along a line indicated with two arrows is shown below each image.

as a result of which the threshold value becomes more
adaptive as compared to the other conventional methods.
Figures 2 and 3 show that our method can remove Poisson
noise at any count level. The performance of denoising
was demonstrated numerically in Table 1. The results of
the quantitative analysis with the PSNR showed that our
method, which modified the threshold function slightly pixel
by pixel according to the local average count, was better than
the conventional methods by more than 3-dB.

Denoising methods with a wavelet transform basically
use either a soft thresholding method or hard thresholding
method. The soft thresholding method reduces the amount
of coefficients outside the shrinkage region, as a result
of which the contrast resolution of the denoised image
is decreased. On the other hand, the hard thresholding
method keeps the wavelet coefficient outside the shrinkage
region, and so there becomes an abrupt change in wavelet
coefficients that occurs around the threshold value. This
introduces ripples near sharp edges in denoised images. With
regard to these artifacts that occur in the process of denoising
with a shrinkage method, Coifman and Donoho proposed a
method called TI denoising [28], which efficiently suppresses
the artifacts due to the lack of translation invariance of the
wavelet basis. In our method, we applied the concept of the
TI method and successfully suppressed the artifacts appeared
at the edge of a region.

In scintigrams, there is a region outside the human
body where the number of detected photons is nearly zero.
This area affects the estimation of an optimal threshold,
and thus, we eliminated the pixels whose values were less
than 10 percent of the maximum counts in an image. With
this process, we could eliminate the effect of this region
and reduce the Poisson noise appropriately. As for the
decomposition level, we decomposed an original image with
the third level in the discrete wavelet transform. If we increase

the level, the denoised images are considerably smoothed,
and if we decrease the level, denoising is insufficient, and
so we set the decomposition level at three. Our proposed
method has only one parameter to control the shape of a
filtering function. We can modify the amount of wavelet
coefficients near the threshold with this parameter more
adaptively depending on image features, if necessary.

5. Conclusion

We proposed a new method for reducing Poisson noise
in scintigrams. Our method could remove Poisson noise
efficiently, and a translation-invariant denoising operation
suppresses artifacts occurring near the edge. The results
of the simulations showed that our proposed method was
better than the conventional methods by more than 3-dB in
PSNR, and processed scintigrams were improved in quality
without excess smoothing. We confirmed that our method
was effective in reducing Poisson noise while preserving the
fine structures on scintigrams.
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