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Abstract

In order to determine correct dosage of chemotherapy drugs, the effect of the drug must be

properly quantified. There are two important values that characterize the effect of the drug:

εmax is the maximum possible effect of a drug, and IC50 is the drug concentration where the

effect diminishes by half. There is currently a problem with the way these values are mea-

sured because they are time-dependent measurements. We use mathematical models to

determine how the εmax and IC50 values depend on measurement time and model choice.

Seven ordinary differential equation models (ODE) are used for the mathematical analysis;

the exponential, Mendelsohn, logistic, linear, surface, Bertalanffy, and Gompertz models.

We use the models to simulate tumor growth in the presence and absence of treatment with

a known IC50 and εmax. Using traditional methods, we then calculate the IC50 and εmax val-

ues over fifty days to show the time-dependence of these values for all seven mathematical

models. The general trend found is that the measured IC50 value decreases and the mea-

sured εmax increases with increasing measurement day for most mathematical models.

Unfortunately, the measured values of IC50 and εmax rarely matched the values used to gen-

erate the data. Our results show that there is no optimal measurement time since models

predict that IC50 estimates become more accurate at later measurement times while εmax is

more accurate at early measurement times.

Introduction

In the 21st century it is expected that cancer will be the leading cause of death worldwide [1].

The first or second leading cause of death for people below the age of 70 is cancer in 91 of 172

countries, including the US where cancer is the leading cause of premature mortality [1]. Diag-

nosis and treatment of cancer can be medically and technically complex [2]. While there are

many new therapies being developed for cancer [3–5], chemotherapy is still a staple of cancer

treatment [6].

Determining the correct dose of chemotherapy is a difficult process that has been used for

years [7]. This process involves two important quantities that characterize the effect of the

drug. These quantities are the maximum possible effect of a drug (εmax), and the drug con-

centration where the effect diminishes by half (IC50). The current method to find drug effect

uses dose-response curves. Unfortunately, the measured IC50, as well as measured εmax,
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depend on the exact day that is chosen to make the measurement; this effect has been

observed in both modeling studies [8–12] and in experimental studies [9, 13–17]. Cells are

grown in the presence of various concentrations of drug and measurement of the number of

cells on a particular day is used to determine the relative drug effect and the dose-response

curve. The shape of the dose-response curve changes depending on what day the values are

measured. This inaccuracy leads to a time-dependent bias. Two possible reasons for this

error are due to the initial exponential growth and drug effect stabilization delays [9]. How

this inaccuracy affects IC50 and εmax estimates can be better understood through the use of

mathematical modeling.

Mathematical models have been widely used in the study of cancer treatment going back

to the 1960s when models were developed to predict the growth of tumors [18–21]. More

recently, models are being used to optimize [22, 23] or even personalize [24–26] treatment reg-

imens for patients. While mathematical models of tumor growth have become increasingly

complex [27, 28], simpler ordinary differential equation (ODE) models can still help provide

insight into cancer dynamics. Such ODE models have been used to make predictions about

the effectiveness of cancer treatments [29, 30], including combination therapies [31, 32] and

help improve the way efficacy is measured [31, 33].

In this paper, we use ODE mathematical models to examine the time-dependence of IC50

and εmax estimates. We find that εmax and IC50 values vary largely as a function of the measure-

ment time. This is problematic because it can change the treatment dose estimate for patients.

We also complete a sensitivity analysis to understand how model parameters affect the IC50

and εmax estimates. We find that the estimated values of IC50 and εmax are model-dependent

with some estimates also being highly correlated to model parameters. However, the trend for

the majority of the models is that εmax increases with increasing measurement time while IC50

decreases with increasing measurement time.

Materials and methods

Mathematical models

In this paper, we use seven common ODE models of tumor growth. The models predict the

growth of a tumor by describing the change in tumor volume, V, over time. Parameters a, b,

and c can be adjusted to describe a particular data set. Equations for the models are in Table 1.

Exponential. When tumors first begin to form, two daughter cells are created each time

the cell divides. This makes the exponential model a good description for tumors when they

Table 1. ODE tumor growth models.

Model Equation

Exponential _V ¼ aV
Mendelsohn _V ¼ aVb

Logistic
_V ¼ aV 1 �

V
b

� �

Linear _V ¼
aV
ðV þ bÞ

Surface _V ¼
aV

ðV þ bÞ
1
3

Gompertz _V ¼ aV ln
b

ðV þ cÞ
Bertalanffy _V ¼ aV 2

3 � bV

https://doi.org/10.1371/journal.pone.0233031.t001
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first begin to grow [34]. The growth of the tumor is proportional to the volume of the tumor,

where a is the growth rate of the tumor. The exponential model is inaccurate after short peri-

ods of time as a result of cells having limited resources [35].

Mendelsohn. Mendelsohn created a generalization of the exponential model [36]. Growth

of the tumor is proportional to volume raised to some power, b. This model reduces to an

exponential equation when b equals 1 [35].

Logistic. Pierre Francois Verhulst developed the logistic (or Pearl-Verhulst) equation in

1838 [37]. The logistic equation can explain the decrease in tumor growth as the tumor gets

larger by assuming that the growth rate (a) reduces linearly with size until it equals zero at the

carrying capacity (b), with the resulting sigmoid growth curve being symmetric.

Linear. This model predicts that growth of the tumor starts off exponentially and becomes

linear growth at later times. This means that the radius grows at a rate of V1
3. The model was

used to model growth of bacterial colonies in a culture, and is a good model to replicate the

growth of tumors in a dish [21].

Surface. Our formulation again assumes exponential growth (a) at early times with sur-

face growth taking over at longer times. The model does not work for growth over extended

periods of time because it doesn’t account for the decline in growth rate for cancerous cells as

the tumor gets large [38].

Bertalanffy. Ludwig Bertalanffy developed the Bertalanffy model to describe the growth

of organisms [39]. The model predicts a sigmoid shape growth curve with a decrease of tumor

volume due to cell death, proportional to the volume of the tumor.

Gompertz. The Gompertz model was developed in 1825 by Benjamin Gompertz to

describe human mortality curves [40]. The cells in a tumor are not all dividing but the cells

that divide are dividing at a rate that is similar to early stage growth. The model is similar to

the logistic model, but the sigmoidal curve is not symmetric at the point of inflection.

The mathematical models are simulated using the parameter values from Fig. 3 in [41], pre-

sented in Table 2. The parameter values were estimated using data from Worschech et al.

worschech09 of a GI-101A xenograft in nude mice (Fig 1A of [42], control data).

Implementing drug effect

Since we are investigating measurement of drug efficacy parameters, we need to incorporate

drug effect in our model. We use the drug efficacy, �, given by

� ¼
εmaxDg

Dg þ ICg

50

; ð1Þ

where D is the drug concentration, εmax is the maximum possible effect of a drug, IC50 is the

drug concentration where the effect diminishes by half, and γ is the Hill coefficient. The Hill

Table 2. Parameters for the seven ODE models. The parameter values are from Fig. 3 in [41].

Model a b c

Exponential 0.0246 /d

Mendelsohn 0.105 /d 0.785

Logistic 0.0295 /d 6920 mm3

Linear 132 mm3/d 4300 mm3

Surface 0.291 mm/d 708 mm3

Gompertz 0.0919 /d 15500 mm3 10700 mm3

Bertalanffy 0.306 mm/d 0.0119 /d

https://doi.org/10.1371/journal.pone.0233031.t002
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coefficient is a measure of binding cooperativity of the drug; a Hill coefficient greater than one

means that drug binding at one site makes it easier for drugs to bind at other sites. We assume

that the drug is given on day one and a constant dose of drug is applied to the cells. � gives the

relative reduction in a particular parameter where � = 0 means that there is no effect and � = 1

means 100% reduction. For example, if we assume that the drug decreases a, we multiply a by

(1 − �) to represent the effect of the drug in the model. For simulations, we assume that both

εmax and IC50 are 1. For εmax, this means we assume that we have a perfectly effective drug. For

IC50, this assumption is equivalent to expressing drug concentrations relative to IC50. For most

of our simulations, we also assume that γ = 1. In this study, we do not model any specific drug,

but rather apply the drug to the different parameters in each of the models. In some cases, this

results in simulation of a known drug [43–45], but in other cases, this is a theoretical exercise

without replicating the effects of a specific drug.

Estimating εmax and IC50

We simulate the growth of cancer cells (GI-101A parameters) in the presence of different con-

centrations of drug and measure the relative drug effect,

R ¼ 1 �
VdðtÞ
VndðtÞ

; ð2Þ

where Vd(t) is the volume of the tumor remaining at time t after drugs are applied to the cells

and Vnd(t) is the volume of the tumor at the time t when no drugs are applied to the cells. A

dose-response curve is generated by plotting the relative drug effect vs. log(D) measured on a

particular day. The dose-response curve is a sigmoidal curve given by

R ¼
εmaxD

Dþ IC50

: ð3Þ

Curve fitting of this equation to the dose-response curve is used to estimate εmax and IC50 for

each measurement day. The best fit is determined by minimizing the SSR using the Python

Scipy curve_fit function, which fits a sigmoid function to the data.

Results

Determining time-dependence of IC50 and εmax

We use the logistic model as an example to show how the time-dependence of IC50 and εmax is

calculated; results for the remaining models are in the supplementary material. The graphs in

Fig 1 illustrate our process for the logistic model with a drug that reduces growth rate. Fig 1

(top left) demonstrates how drug concentration affects the growth of a tumor by graphing the

volume of the tumor as a function of time for several drug concentrations. The corresponding

dose-response curves are shown in Fig 1 (top right) for several measurement times. Fig 1 (bot-

tom row) show the measured values of εmax (left) and IC50 (right) over a range of measurement

times. We see that for this model, εmax increases with measurement time while IC50 decreases

with measurement time. Since this is a simulation, we know the expected values of both εmax

and IC50 (both were set to 1); there is no measurement time at which either parameter is cor-

rectly estimated. We also see that increasing measurement time brings us closer to the expected

value of εmax, but takes us further from the expected value of IC50, so there does not seem to be

an optimal measurement time that would give reasonable estimates for both parameters.

Fig 2 shows the IC50 and εmax measurement time dependence for all the models examined.

Fig 2 (left) shows drastic differences in IC50 values when measurements are taken on different
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days. Some models predict that measured IC50 can decrease substantially during the first 10

days. The most dramatic change is for the Bertalanffy model with a drug effect applied to b
where the range of IC50 values decreases by 80 times. The logistic model with a drug effect

applied to b shows a 40-fold change and the Gompertz model with a drug applied to b or c
drops by a factor of 10. All of the other models show a steady decrease in IC50 with increasing

measurement day, but estimate that IC50 is always less than the expected value of 1.

Fig 2 (right) shows εmax as a function of measurement day for the different models. In this

figure we see that εmax generally increases as measurement day increases. The increase in εmax

is fairly gradual, with a maximum value of 0.9 at measurement day fifty, when the drug acts on

a for the logistic, exponential, Mendelsohn, linear, surface, Bertalanffy, and Gompertz models.

The predicted εmax value also has a similar trend when the drug acts on b for the Mendelsohn,

linear, and surface models. A few models exhibit slightly different behavior. We see that the

εmax values increase rapidly as measurement day increases and then level off at approximately

Fig 1. Example of the process used to determine time dependence of εmax and IC50. (top left) We use the logistic model with a drug that reduces the growth rate

to examine how the drug concentration affects the tumor volume. (top right) shows the dose response curves generated for several different measurement days.

Individual dose response curves are used to estimate the εmax (bottom left) and IC50 (bottom right) over 50 measurement days.

https://doi.org/10.1371/journal.pone.0233031.g001
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1 around day 10 when the drug acts on either b or c for the Gompertz model. Fig 2 shows that

when the drug acts on b for the logistic and the Bertalanffy model, the predicted εmax values

are all above 1 and decrease as measurement day increases. The correct value of εmax in this

case is 1, so we would hope that the measurement procedure returns this value of εmax. Fig 2

shows that the current experimental measurement technique almost never returns the correct

value of εmax. The exceptions being the Gompertz, Bertalanffy, and logistic models, although

only if the drug is applied to parameter b.

Sensitivity analysis

In order to assess how our results depend on model parameters, we did a sensitivity analysis by

varying model parameters and re-running the simulations. This allows us to assess how our

results might change in different cell lines or patients, which are described by different param-

eter values [46], or to determine whether error in parameter estimates [47] will lead to large

deviations in measured εmax and IC50 values. Fig 3 shows how the εmax and IC50 estimates

change with changes in parameter values for the logistic model. The model parameters shown

in the figures are the baseline, ± 5%, and ± 10%. Due to the large number of graphs created to

have a complete sensitivity analysis for all seven models, only the sensitivity analysis for the

logistic model for each type of variation for εmax and IC50 is shown in this section. The remain-

ing graphs are located in the supplementary material.

As seen in Fig 3, the smallest variation caused by changing parameter values occurs in the

top middle graph when drug effect is applied to parameter a while parameter b is varied. We

see the most variation when drug is applied to parameter a and the base value of a is itself var-

ied. Most of the model predictions of estimated εmax and IC50 values are not affected much by

differences model parameters (supplemental material), with the Mendelsohn model showing

the largest sensitivity to parameter values. Although even for this model, changes in parameter

values did not change the general trend of decreasing IC50 and increasing εmax values at later

measurement times.

We also used the partial rank correlation coefficient to assess which models are most sensi-

tive to changes in baseline parameters. We allowed parameter values to range between ±50%

Fig 2. IC50 (left) and εmax (right) measurement time dependence for all seven models. Solid lines represent the drug effect applied to a and dashed lines

represent an effect applied to b.

https://doi.org/10.1371/journal.pone.0233031.g002
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of their base value and used 1000 different randomly selected parameter combinations to

calculate the partial rank correlation coefficient. Results are shown in Fig 4. The partial rank

correlation coefficient is close to ±1 if there is a high degree of correlation between the inde-

pendent and dependent variables. In our case, the independent variables are the model param-

eters a, b, c and the dependent parameters are εmax and IC50 estimated at measurement days

10 and 20 (left and right bars of each color, respectively). The upper four models examine cor-

relations when the drug effect is applied to parameter a, while the lower four panels examine

the correlations when the drug effect is applied to parameter b (and c for the Gompertz

model). Although there is no consistent trend, many models show opposite correlations for

measurements taken at the two different times. For example, the Mendelsohn model shows a

positive correlation between parameter values and measurements taken on day 10 (i.e. increas-

ing a increases the estimated εmax measured on day 10), but a negative correlation on day 20

(increasing a decreases the estimated εmax measured on day 20). This indicates that in most

cases, we do not see a simple upward or downward shift of the εmax or IC50 vs. measurement

time curve, but a change in the shape of the curve as parameter values change.

Hill coefficient

Although the Hill coefficient is often assumed to be 1 when incorporated into models, there is

some experimental evidence that for chemotherapy drugs, the Hill coefficient can differ sub-

stantially from 1 [48]. While there have been only a handful of studies that incorporate the HIll

coefficient for chemotherapy, there have been findings of Hill coefficients ranging from 0.3-

3.0 [48–54]. We believe that it is useful to know how this coefficient alters our results for the

Fig 3. Sensitivity analysis for IC50 and εmax as a function of measurement time. The base value of parameter a was varied in the first and last column, while

parameter b was varied in the middle column for the logistic model with drug effect applied to parameter a (left and middle column) or drug effect applied to

parameter b (right column).

https://doi.org/10.1371/journal.pone.0233031.g003
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measurements of drug characteristics (for both current and yet to be developed chemothera-

peutic agents). Thus we also examined the role of the Hill coefficient on the estimates of drug

efficacy parameters. Fig 5 shows the measurement time dependence of εmax and IC50 for the

logistic model with a drug that reduces the growth rate (top row) and a drug that reduces the

carrying capacity (bottom row). While it might seem strange that a drug is modeled as reduc-

ing carrying capacity, which is traditionally thought to be determined by the tumor’s environ-

ment, there are therapies that modulate host factors and the tumor environment such as

immune therapies [55] or kinase inhibitors [56, 57]. While a more appropriate model for these

treatments would explicitly include the immune response [58, 59] or kinases [60], when using

a simplistic model such as the logistic model, we could model the effect of such a therapy as

limiting the capacity of the tumor to grow within the host.

Fig 4. Partial correlation of εmax (left column) and IC50 (right column) estimates at 10 days and 20 days (first and

second bar of each color, respectively) on parameters a and b of each model. Note that we have included

correlations of εmax and IC50 with respect to the variable c in the Gompertz model in the maroon bars.

https://doi.org/10.1371/journal.pone.0233031.g004
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Changing the Hill coefficient doesn’t have much effect on the measurement of εmax for

either assumption of drug effect. For a drug that reduces growth rate, increasing the Hill coeffi-

cient increases the measured values of IC50 making them closer to the real value. We see a very

different effect if the drug is assumed to reduce the carrying capacity. In this case, the Hill coef-

ficient can change the measured IC50 by several orders of magnitude. The effect of changing

the Hill coefficient for the remaining models is shown in the supplementary material. All mod-

els predict that changes in the Hill coefficient have little effect on εmax estimates, but can sub-

stantially change IC50 measurements.

Discussion

This paper examined several commonly used ODE models of tumor growth and quantitatively

assessed the differences in their predictions of quantities that characterize chemotherapy. We

found that none of the models give the correct IC50 and εmax values at any of the measurement

times with the exception of the εmax values when drugs reduce parameters b and c for the

Gompertz model. Our sensitivity analysis indicates that both εmax and IC50 predictions depend

on model parameters. This is particularly problematic since there is error in parameter esti-

mates when fitting models to data [46, 47] and this can exacerbate inaccuracy in estimates of

εmax and IC50 due to their dependence on measurement time.

IC50 in particular is used as a guide to help determine treatment dosages in patients [61, 62].

So we want a time independent measurement of IC50 because if IC50 depends on measurement

time then the amount of drug used to treat patients could be incorrect. It is important to make

sure the patient gets the right amount of drugs since chemotherapy drugs are toxic to both

cancerous and non-cancerous cells. Many side effects from chemotherapy arise due to cancer-

ous and non-cancerous cells being killed [63]. On the other hand, if a patient is not given

enough drugs, then the tumor will continue to grow. Most of the models examined here predict

that IC50 will be underestimated, with the discrepancy between measured and true IC50 increas-

ing with increasing measurement time. This means that basing dosing recommendations on

Fig 5. Effect of the Hill coefficient on estimates of εmax (left column) and IC50 (right column) for the logistic

model with drug applied to the growth rate a (top row) or the carrying capacity b (bottom row).

https://doi.org/10.1371/journal.pone.0233031.g005
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IC50 will most often lead to under-dosing of patients. Other models, however, suggest that the

IC50 estimate can vary by orders of magnitude over only a few measurement days, particularly

at early measurement times, leading to large variability in dosing recommendations. Other

modeling studies have noted differences in IC50 values with measurement time [9, 12], with one

finding a decrease in IC50 with measurement time [9] and the other finding that IC50 values

increase with measurement time [12]. Experimental studies show more mixed results [9, 13–

17], sometimes showing a decrease in IC50 with measurement time [9, 13–17], sometimes

showing an increase in IC50 with measurement time [14, 15, 17], but also exhibiting more com-

plex trends [13]. These discrepancies in model predictions indicate that much more work is

needed to identify which models most accurately describe tumor growth [38, 64] since these

growth models are increasingly being used to guide patient treatment decisions [65].

While εmax is not commonly used to help determine treatment doses, we found that there is

also a large variability in the estimates of this quantity as measurement time varies (up to 80%

error). In line with the limited measurement of this quantity, we found only two previous stud-

ies of the time-dependence of εmax. One modeling study found that εmax increases with mea-

surement time [12], while an experimental study found that εmax decreases with measurement

time [13]. In our study, most of the growth models, however, suggest that later measurement

times lead to more accurate estimates of εmax, suggesting a possible strategy here for getting

more reliable estimates of εmax. Unfortunately, later measurement times often lead to larger

errors in IC50, so there does not seem to be a way to measure both drug characteristics accu-

rately using this measurement technique and new experimental techniques are needed. Given

the importance of εmax as a parameter defining the effectiveness of chemotherapy, there is

clearly more need for studies to include estimates of this parameter to help us understand how

best to measure εmax and to help us understand the role it plays in determining the effective-

ness of chemotherapy.

We also found that the Hill coefficient had only a small effect on estimates of εmax, but

could have a larger impact on estimates of IC50. When drug effects are incorporated into mod-

els, the Hill coefficient is largely assumed to be one [66]. However, the limited number of stud-

ies that have attempted to measure the Hill coefficient for anti-cancer drugs have found values

that range from 0.5 to 2.2 [48]. In order to incorporate mathematical models more effectively

in patient treatment decisions, accurate measurements of the Hill coefficient need to be made

for more drugs.

The models examined in this study are highly simplified and do not account for many fac-

tors that can affect measured IC50 and εmax values in experiments. For example, we assume a

constant dose of drug throughout the simulation. In reality, chemotherapy is not a continuous

infusion, but is more accurately modeled by a time-dependent pharmacodynamic model [67].

Additionally, cancer cells are known to develop resistance to chemotherapy [68] which will

also change measured IC50 and εmax values. While some of these models assume spherical

tumors, the models largely neglect detailed spatial structure [69] and tumor cell heterogeneity

[70]. Our models are also not detailed enough to accurately capture the mechanisms of action

of many chemotherapy agents [71]. These limitations are likely the reason there is discrepancy

between our findings and experimental measurements [13–17]. However, the models exam-

ined here form the basis for many more complex tumor growth models [72–75], so their

behavior needs to be understood in detail.

Overall, our results indicate that better measurement techniques are needed to estimate

IC50 and εmax. Already, some studies have started investigating other possible measures to

characterize drug effect. Fallahi-Sichani et al. fallahi13 suggest using additional features of the

dose-response curve, such as the area under the curve (AUC) or the slope of the curve, for a

more complete characterization of the effect of a drug. Calhelha et al. [76] also suggest using
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other points on the dose response curve such as the minimal response or the dose with the

maximum affinity in the response reaction. Unfortunately, these suggestions still uses dose-

response curves generated by measuring number of cells (or tumor volume) on a particular

day and these additional measures might suffer from the same time-dependence problem as

IC50 and εmax. A series of other studies have suggested using growth rate (GR) to generate

dose-response curves [9, 10, 12]. Growth rate is largely independent of measurement time

after a short transient phase and before the plateau [9]. Thus, dose-response curves can be gen-

erated that result in consistent GR50 and GRmax estimates [12]. While this is a promising idea,

there are still problems with implementing the technique in a manner that is reproducible in

different research centers [10].

Conclusion

Our results show that IC50 and εmax are time-dependent values and are also sensitive to model

choice and model parameters, making it difficult to accurately estimate these parameters

experimentally. It is our hope that our work will spur more investigation into better methods

to determine the correct doses before testing drugs in patients to get the most effective thera-

peutic treatment.
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