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Abstract. This work describes two unusual features of 
membrane development in a eukaryotic cell. (a) The 
induction of an extensive network of tubovesicular 
membranes by the malaria parasite Plasmodium fal- 
ciparum in the cytoplasm of the mature erythrocyte, 
and its visualization with two ceramide analogues Cs- 
DMB-ceramide and C6-NBD-ceramide. "Sectioning" of 
the infected erythrocytes using laser confocal micros- 
copy has allowed the reconstruction of detailed three- 
dimensional images of this novel membrane network. 
(b) The stage-specific export of sphingomyelin syn- 
thase, a biosynthetic activity concentrated in the Golgi 
of mammalian cells, to this tubovesicular network. 
Evidence is presented that in the extracellular 

merozoite stage the parasite retains sphingomyelin syn- 
thase within its plasma membrane. However, intracel- 
lular ring- and trophozoite-stage parasites export a 
substantial fraction (,,026%) of sphingomyelin synthase 
activity to membranes beyond their plasma membrane. 
Importantly we do not observe synthesis of new en- 
zyme during these intracellular stages. Taken together 
these results strongly suggest that the export of this 
classic Golgi enzyme is developmentally regulated in 
Plasmodium. We discuss the significance of this export 
and the tubovesicular network with respect to mem- 
brane development and function in the erythrocyte 
cytosol. 

p LASMODIUM falciparum is a protozoan parasite re- 
sponsible for the most virulent form of human malaria. 
Its asexual life cycle begins when the extracellular 

merozoite stage invades the mature erythrocyte. Here the 
parasite develops inside a parasitophorous vacuole during a 
48-h life cycle through the ring (0-24 h after invasion), 
trophozoite (24-36 h), and schizont (36-48 h) stages; these 
stages are distinguished by specific morphological and bio- 
synthetic characteristics. The mature erythrocyte lacks all 
organelles and is incapable of de novo protein and lipid syn- 
thesis. The intracellular parasite extensively modifies both 
biochemical and ultrastructural properties of the red cell. 
These modifications are thought to be essential to the para- 
site's survival in this quiescent host cell. A very striking al- 
teration is the development of new membrane structures in 
the infected erythrocyte cytoplasm. 

These membranes were first seen as individual compart- 
ments by transmission electron microscopy (Langreth et al., 
1978; for review see Atkinson and Aikawa, 1990). Slender 
cisternae (0.2-0.4 #m in length; Maurer's clefts) and large 
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loops (0.1-1 #m in diameter) have been described as distinct 
structures in the erythrocyte cytoplasm. Immunolocalization 
studies by Stenzel and Kara (1989) suggest that proteins ex- 
ported to loops bud from the surface of the parasitophorous 
vacuole. Parasite proteins in the cisternae are also clearly 
sorted away from those in the large vesicles (Coppel et al., 
1986; Howard et al., 1987b; Taylor et al., 1987; Hui and Sid- 
diqui, 1988; Etzion and Perkins, 1989; Li et al., 1991). On 
the basis of these data and the morphology of the cisternal 
membranes, it has been suggested that intraerythrocytic 
compartments may act as secretory organelles (Howard et 
al., 1987a; BarnweU, 1990) and that the infected erythrocyte 
cytosol supports vesicular transport at the vacuolar and in- 
traerythrocytic surfaces. 

Labeling of P. falciparum-infected erythrocTtes with fluo- 
rescent phospholipid and sphingolipid analogues again re- 
veals membrane structures in the erythrocyte cytoplasm 
(GreUier et al., 1991; Haldar et al., 1991; Pouvelle et al., 
1991; Gormley et al., 1992; Haldar and Uyetake, 1992). 
With the lipid probes, however, the structures appear quite 
large, consisting of tubular and vesicular elements. Specifi- 
cally, we found that in cells labeled with C~-NBD-ceramide 
(N-J7 -(4-nitrobenzo-2-oxa- 1,3-diazole)] -6-aminocaproyl-a- 
erythro-sphingosine) large membrane elements were promi- 
nent in the erythrocyte cytosol. Surprisingly, photoconversion 
of the fluorescent sphingolipid to a diaminobenzidine prod- 
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uct resulted in the presence of electron dense precipitates in 
the loops and cisternae (Haldar et al., 1991), demonstrating 
that the cisternae and loops seen by transmission electron 
microscopy were the same as the large tubules and vesicles 
labeled by C6-NBD-ceramide. Due to limitations in micro- 
scopic technique, we could not resolve whether the fluores- 
cent membranes detected by C6-NBD-ceramide were dis- 
crete entities (i.e., clusters of cisternae) or were connected 
(i.e., tubules) in the erythrocyte cytosol. In recent studies by 
Elford and Ferguson (1993), scanning electron micrographs 
of parasites released from their erythrocyte hosts, show long 
tubular and vesicular structures extending from the surface 
of the parasite. However, it remained unclear whether these 
structures were generated by the process of releasing the para- 
site or represented a true network of the cisternae and loops 
detected by transmission electron microscopy. Thus although 
membrane structures assemble in the erythrocyte cytoplasm, 
their precise morphologies and whether they are discrete 
products of vesiculation or continuous (albeit complex) ex- 
tensions of the vacuolar surface in live infected erythrocytes, 
remain unknown. 

The development of intraerythrocytic membranes (whether 
discrete or continuous in nature) has suggested that the para- 
site secretory apparatus has novel features. The addition of 
oligosaccharides N-linked to proteins is almost universally 
detected in eukaryotic cells. It appears to be absent in Plas- 
modium (Dieckmann-Schuppert et al., 1992), suggesting 
one unusual feature: its significance is unknown. Many other 
Golgi enzymes responsible for posttranslational protein modi- 
fications are also not apparent: sialyltransferase (Schauer et 
al., 1984), galactosyltransferase, and N-acetylglucosamine 
transferase :(Crary, J., W.-1. Li, and K. Haldar, unpublished 
data). Despite the lack of N-linked glycosylation we find that 
the parasite's Golgi is compartmentalized (Elmendorf and 
Haldar, 1993). Surprisingly, a malarial ERD2 homologue 
and sphingomyelin synthase (ascribed to the cis-Golgi in mam- 
malian cells) are localized in distinct compartments in the 
parasite. The perinuclear distribution of sphingomyelin syn- 
thase is unaffected by brefeldin A, indicating that the dynam- 
ics of this compartment in the plasmodial Golgi is distinct 
from that in mammalian cells (Elmendorf and Haldar, 1993). 

In a number of cultured mammalian cell lines, fluorescent 
ceramide analogues accumulate in the Golgi of live cells. 
These probes therefore provide a vital stain for the Golgi 
complex and have been used to show that ceramide is 
metabolized to sphingomyelin in this organelle (Lipsky and 
Pagano, 1985; Pagano et al., 1991). The most recent subcel- 
lular fractionation studies also indicate that the lumen of the 
cis- and medial-Golgi cisternae are the major sites of sphin- 
gomyelin biosynthesis from ceramide (Futerman et al., 
1990; Jeckel et al., 1990). In a particularly rigorous study 
using well-characterized fraction from rat liver ,x,87 % of the 
activity was found in the Golgi (Futerman et al., 1990). The 
remaining ~13% was at the plasma membrane, suggesting 
the presence of a second (albeit minor) site of sphingomyelin 
synthase activity in cells. Other studies, however, have indi- 
cated that a greater fraction of sphingomyelin synthase activ- 
ity is at the plasma membrane (Quinn and Allan, 1992; 
Kallen et al., 1993). These discrepancies have raised some 
controversy concerning the distribution of the enzyme and 
the possibility that there may be two forms of the enzyme in 
cells. Sphingomyelin newly synthesized in the Golgi is ex- 

ported to the plasma membrane and subsequently internal- 
ized in components of the endocytic pathway (Koval and 
Pagano, 1991). It is believed that the sphingolipid composi- 
tion of the Golgi plays an important role in the secretory 
functions of the compartment (van Meer, 1989; Pagano, 
1990). This proposal is supported by data showing that the 
inhibition of sphingomyelin synthesis correspondingly in- 
hibits protein trafficking, suggesting a link between sphin- 
golipid synthesis and protein and lipid transport (Rosenwald 
et al., 1992). 

In this paper, we use two fluorescent ceramide analogues, 
Cs-DMB-ceramide (N- [5-(5,7-dimethylBODIPY)-l-penta- 
noyl]-D-erythro-sphingosine) and C6-NBD-ceramide in both 
microscopic and biochemical studies to define the location 
of sphingolipid accumulation and metabolism in P. falci- 
parum. We provide evidence for a reticulum of intraerythro- 
cytic membrane (designated as a tubovesicular membrane 
network [TVM]),' rather than separated membrane struc- 
tures in intact, infected erythrocytes and show that it con- 
tains sites of ceramide and sphingomyelin accumulation. 
Previous work by our laboratory demonstrated the conver- 
sion of C6-NBD-ceramide to C6-NBD-sphingomyelin by a 
parasite sphingomyelin synthase. While we recently local- 
ized this secretory enzyme to a perinuclear region within the 
intraerythrocytic parasite (Elmendorf and Haldar, 1993) we 
did not directly compare its distribution at different stages 
of parasite development. We show here that in extracellular 
merozoites the enzyme is retained completely within the para- 
site and this stage of the parasite is highly enriched for the 
enzyme. However, in the intracellular ring and trophozoite 
stages the parasite exports a fraction of the activity beyond 
the parasite plasma membrane. In contrast, the malarial 
homologue of ERD2, a resident protein of the Golgi, is re- 
tained within the parasite at all stages of the asexual life cycle 
(Elmendorf and Haldar, 1993). This indicates a selective, 
well-orchestrated rearrangement of sphingomyelin synthase 
in the P. falciparum-infected erythrocyte, and we speculate 
on possible roles for the exported enzyme in the biogenesis 
and function of the intraerythrocytic membranes. 

Materials and Methods 

Culturing P. falciparum FCR-3/A2 
The clonal line of P falciparum FCR-3/A2 (Trager et al., 1981) was cul- 
tured in vitro according to a modification of the method of Trager and Jensen 
(Trager and Jensen, 1976; Haldar et al., 1985). The culture media con- 
tained RPMI-1640 (GIBCO BRL, Gaithersburg, MD) supplemented with 
25 mM Hepes, pH 7.4, 11 mM glucose, 92 /~M hypoxanthine, 0.18% 
NaHCO3, 25 #g/rnl gentamicin, and 10% AB + human serum (Gemini Bio- 
Products, Calabasas, CA). The parasites were grown in A + red blood cells 
(0-4 wk old) at 2.5-5 % hematocrit. Parasite cultures were synchronized 
to within 10 h by separation of the early and late stages over Percoll gra- 
dients and the subsequent separate reincubation of these stages in culture. 

Labeling of lnfected Erythrocytes for 
Confocal Microscopy 
Infected erythrocytes were washed free of serum three times in RPMI-1640 
and resuspended at 1 x 10 s cells/ml in RPMI-1640 containing 2 mg/rnl 
defatted BSA (Sigma Chemical Co., St. Louis, MO) and 20/zM C5-DMB- 
ceramide (Molecular Probes Inc., Eugene, OR). Cells were labeled for 60 

i. Abbreviations used in this paper: EM, erythrocyte membrane; TVM, 
tubovesicular membrane. 
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min at 20 or 37°C, washed three times in RPMI-1640, and viewed live or 
after light fixation in 0.05 % glutaraldehyde. Cells were viewed on a custom- 
made laser confocal microscope designed by S. J. Smith (Department of 
Molecular and Cell Physiology, Stanford University). Images were taken 
at 400-nm intervals along the z-axis. Raw confocal data was processed using 
Adobe Photoshop software. Three-dimensional image analysis was per- 
formed on raw confocal data using ImageSpace software (Molecular Dy- 
namics, Inc., Sunnyvale, CA) as modified by W. Jung (Cell Sciences Imag- 
ing Facility, Stanford University). 

Back-extraction of Infected Erythrocytes 
Infected erythrocytes were washed and labeled as above using C6-NBD- 
ceramide (Molecular Probes Inc.). After labeling, the cells were washed 
three times in RPMI-1640, back-extracted three times at 0°C for 20 min 
each in 1 ml RPMI-1640 containing 7 mg/ml defatted BSA, and subse- 
quently fixed as described above. Aliquots of cells were removed and ana- 
lyzed by lipid extraction and thin layer chromatography to confirm the 
efficiency of ceramide extraction. Cells were viewed as above. 

Preparation of Merozoites 
Merozoites were prepared by the method of Mrema et al. (1982). Cultures 
were first synchronized in two steps to a 4-h span in the life cycle. Schizonts 
purified over Percoll gradients were subcultured into fresh erythrocytes and 
monitored hourly for the presence of rings. 4 h after the first appearance 
of ring stages the cultures were treated with 5 % sorbitol, a treatment which 
kills mature schizonts but not the ring infected erythrocytes. These cultures 
were allowed to mature, and 44h+ schizonts were purified away from unin- 
fected erythrocytes over 65% Percoll in RPMI 1640 and incubated at 0.5 
to 1% hematocrit in RPMI-1640 containing 10% human serum at 370C. At 
2-h intervals, the cultures were centrifuged at 500 g for 5 min. The culture 
supernatants, enriched for merozoites, were sequentially filtered through 
3.0- and 1.2-~m filters. The purified merozoites in the filtrate were collected 
by centrifugation and washed twice in ice cold RPMI-1640. To estimate 
yields a small aliquot was diluted into a known number of red cells, the 
preparation was giemsa stained and the ratio of merozoites to red cells was 
determined. No schizonts were detected in the preparations despite exhaus- 
tively examining 10,000-50,000 cells in thick smears. Assuming that each 
schizont produced 16 daughter merozoites, the net yield varied between 
25-35 % of the starting material. The protein content of the samples was 
measured by the Bio Rad method. 

Assaying Sphingomyelin Synthase 
Activity in Merozoites, Ring-, Trophozoite-, and 
Schizont-infected Erythrocytes 
Equal numbers of merozoites or infected erythrocytes at the ring, tropho- 
zoite, or schizont stage were incubated with 10/zM C6-NBD-ceramide or 
(Cs-DMB-ceramide) in either RPMI-1640 or PBS at 37°C for 15, 30, or 
60 min, and the samples were immediately extracted for lipid analysis. 

To determine the effects of protein synthesis inhibitors on sphingomyelin 
synthase activity, ring-, trophozoite-, and schizont-infected red cells were 
incubated with 100 #g/ml cycloheximide in RPMI-1640 for 3 h. The cells 
were collected by centrifugation and labeled with C6-NBD-ceramide as de- 
scribed (Haldar et al., 1991) for 30 rain at 37°C in the continued presence 
of cycloheximide. In mock incubations both the pretreatment and the label- 
ing were carried out in RPMI-1640 alone. The effects of cycloheximide on 
protein synthesis and parasite growth were determined as described by E1- 
mendorf et al. (1992). 

To assay for the distribution of sphingomyelin synthase in merozoites, in- 
cubations containing 100/zg/ml protein in 100 #l PBS were used. Where 
indicated Proteinase K was added at a final concentration of 100/~g/ml. 
CHAPS (Pierce, Rockford, IL) and saponin were used at 0.1% wt/vol and 
1% wt/vol, respectively. The substrates C6-NBD-ceramide or C5-DMB- 
ceramide were added last at a final concentration of 10/~M and samples 
were incubated for 30 min at 37 °C. The reaction was stopped by the addition 
of 1 mM PMSF and chilling the samples on ice. Lipids were immediately 
extracted and analyzed by thin layer chromatography. 

Isolation of Released P. falciparum 
Ring and Trophozoite Stage Parasites and the 
Erythrocyte Membrane/TVM 
Released parasites were prepared as described previously (Elmendorf et al., 

1992). Briefly, cultures at the late ring and trophozoite stages were washed 
once, resuspended to 6% hematocrit in homogenization buffer (65 mM su- 
crose, 15 mM K+EDTA, 85 mM Hepes, pH 7.4, 0.3 mM DTT, 1 mg/ml 
BSA) at 2°C, and subjected to 10-15 passages in a stainless-steel ball 
homogenizer (internal bore diameter, 0.2500 inches; ball diameter, 0.2494 
inches). The homogenate was diluted 10-fold into buffer A (95 mM 
K+OAc -, 15 mM Na+EDTA, 6.5 mM sucrose, 20 mM Hepes, pH 7.4, 0.3 
mM DTT, 1 mg/ml BSA, 8 mg ml -I glucose) and intact cells were col- 
lected by centrifogation (2,000 g, 10 min, 0°C). The homogenate was 
processed as described below. The cell pellet was resuspended in buffer A 
containing a lx  vitamin/amino acid mix from a methionine-minus RPMI 
1640 Select Amine Kit, layered onto a 10/40% Percoll gradient in buffer 
A, and centrifuged at 2,000 g for 10 rain at 0°C. The 10/40% interface was 
collected and washed three times in buffer A plus the vitamin/amino acid 
mix. 

The cell-free homogenate was loaded on a 2 M sucrose cushion made 
up in buffer A (27 ml of homogenate/10 ml of sucrose cushion in Beckman 
Ultra-Clear Tubes, 1 x 3.5 in) and centrifuged at 100,000 g for 60 min in 
2°C in a Beckman SW 28 rotor (Beckman Instruments, Inc., Fullerton, 
CA). The membrane interfaces were pooled and diluted into buffer A as 
needed. 

Labeling of Released Ring and Trophozoite Parasites 
with C6-NBD-Ceramide for Microscopy 
Released parasites were resuspended at 5 x 107 cells/ml in buffer B con- 
taining 2 mg/ml defatted BSA and 20-40/~M C6-NBD-ceramide. Parasites 
were labeled for 30 min at 37°C and washed three times in buffer B contain- 
ing 2 mg/ml defatted-BSA after labeling. Bisbenzamide dye (Hoechst 
33258) was included in the final wash at a concentration of 5/~g/ml. Sam- 
ples were viewed using an Olympus BO71 epi-fluorescence microscope with 
a PM-10AD photomicrographic adapter. C6-NBD-ceramide labeling was 
viewed with fluorescein filters. Bisbenzamide labeling was viewed with UV 
filters. Fluorescence micrographs were typically exposed for 2-8 s using 
Kodacolor 400 ASA film (Eastman Kodak Co., Rochester, NY); corre- 
sponding light micrographs were typically exposed for 1-2 s. 

Comparison of Sphingomyelin Synthase 
Activity in Infected Erythrocytes, Released Rings, and 
Trophozoites, and Isolated Erythrocyte 
Membrane/TVM Fractions 
Cultures at 20-35 % late ring and trophozoite stage parasites were used. In- 
fected erythrocytes were homogenized and released parasite and membrane 
fractions collected as described above. An aliquot of infected erythrocytes 
from the same culture was washed three times in RPMI-1640. Parasite 
equivalents of infected erythrocytes, released parasites, and the membrane 
fraction were used. Cell and membrane fractions were labeled for 60 rain 
at 37°C in 10 #M C6-NBD-ceramide in 1-2 ml of appropriate buffer, buffer 
A for released parasite and membrane fractions, and RPMI-1640 for 
infected erythrocytes. Fractions were immediately extracted for lipid 
analysis. 

We used two methods to estimate the contamination of the erythrocyte 
membrane (EM)/TVM fraction by parasite membranes. (a) In the first 
method, the extent of parasite breakage during homogenization was used 
to calculate the possible contamination by the following equation: 

[(A number of parasites before and after release)/ 
(parasite number before release)] x 
sphingomyelin synthase activity of released parasites = 
activity in the EM/TVM fraction attributable to contamination. 

(Total activity in EM/TVM fraction) - (Activity from contamination) = 
sphingomyelin synthase activity exported to the EM/TVM fraction. 

(b) In the second method, we determined the levels of a parasite homologue 
of ERD2 (PfERD2) and the major merozoite surface protein (MSP1), mark- 
ers for the parasite Golgi and plasma membrane, respectively, in the EM/ 
TVM fraction. 

Extraction and Analysis of Lipids by Thin Layer 
Chromatography and Spectrophotometry 
Cellular lipids were extracted by a modification of the method of Bligh and 
Dyer (1959). Four volumes of water-saturated chloroform:methanol (2:1) 
were added to each sample and vortexed for 30 s. Organic and aqueous 
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phases were separated by centrif~gation for 3 min at 500 g. The aqueous 
phase was re-extracted twice more with four volumes of water-saturated 
chloroform:methanol. Organic phases containing lipids were pooled, dried 
under nitrogen gas, and analyzed by thin layer chromatography (TLC) as 
described previously (Haldar et al., 1991). HPTLC plates (without fluores- 
cent indicator) were obtained from Darmstadt Merck (Drieich, Germany) 
and Whatman (Clifton, N J). Quantitation was performed by scraping of 
fluorescent areas and elution of lipid in ethanol; samples were read on a 
Perkin-Elmer 650-10S Fluorescence Spectrophotometer (Perkin-Elmer 
Corp., Norwalk, CT). To convert relative fluorescence units to moles of 
sphingomyelin, a standard curve was generated using commercially avail- 
able NBD-sphingomyelin. 

Gel Electrophoresis and Immunoblotting 

Samples were soinbilized in SDS sample buffer, electrophoresed on 7.5% 
SDS-PAGE gels, and transferred for 12 h at 27 V to nitrocellulose paper. 
Nitrocellulose was blocked in 5 % milk in PBS for 1 h. The filters were in- 
cubated with primary antibodies to MSP1, PfERD2, or the 45-kD protein 
for 2 h at 37°C, followed by three washes in 1% milk, 0.05% Tween-20 in 
PBS, appropriate second antibody conjugated to peroxidase (Sigma Chemi- 
cal Co.) (diluted 1:1,000 in 5% milk in PBS) for 2 h at 37°C, three washes 
in 1% milk, 0.05% Tween-20 in PBS, followed by detection with ECL de- 
tection kit (diluted 2:5 in PBS) (Amersham Corp., Arlington Heights, IL) 
or LumiGlo (Kirkegaarde and Perry Laboratories, Inc., Gaithersburg, 
MD). Anti-MSP1 and -PfERD2 were diluted 1:500 in 5% milk in PBS and 
probed with goat anti-rabbit lgG. The monoclonal antibody LWLI raised 

to the 45-kD protein was diluted 1:1,000 and probed with goat anti-mouse 
IgA, G, M. 

Results 

Ir~sualization of lntmerythrocytic Tubular~Vesicular 
Structures Elaborated by the lntraceUular Parasites in 
the Erythrocyte 

Infected erythrocytes were labeled by incubation with 20/zM 
C~-DMB-ceramide, stabilized by light fixation in 0.05% 
glutaraldehyde, and viewed by confocal microscopy. Incuba- 
tion at 37°C consistently resulted in the labeling of  the pe- 
r iphery of  the parasite, an arc within the parasite, and tubular 
and vesicular membranes (TVM) within the erythrocyte. 
Fig. 1 shows 400-nm serial sections along the z-axis through 
a single erythrocyte containing a trophozoite stage parasite;  
parasite stage was determined by bright field analysis of  the 
size of  the parasite relative to the red cell and the presence 
of  hemozoin in its digestive vacuole. In Fig. 1, the erythro- 
cyte membrane is the outer  circle, and the parasite is the in- 
ner circle at the right. The per iphery of  the parasite is in- 

Figure L Serial sections 
through a Plasmodium fal- 
ciparum-infected erythrocyte 
labeled with Cs-DMB-cera- 
mide. Infected erythrocytes 
were incubated in RPMI-1640 
supplemented with 2 mg/ml 
defatted-BSA and 20/zM Cs- 
DMB-ceramide for 30 min at 
37°C. Cells were washed to 
remove unincorporated label 
and fixed in 0.05 % glutaralde- 
hyde. Sequential micrographs 
(A-L) were taken at 400-nm 
intervals along the z-axis at an 
excitation wavelength of 488 
nm. The image depicts a sin- 
gle trophozoite-stage infected 
erythrocyte. The erythrocyte 
membrane is the outer circle 
in the figure. A single tropho- 
zoite stage parasite is the 
smatler, brighter circle off to 
the right within the erythro- 
cyte. Note the long tubule ex- 
tending outward from the sur- 
face of the parasite and the 
smaller vesicles attached along 
the length of the tubule. 
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Figure 2. Serial sections 
through four additional P/as- 
modium falciparum-infected 
erythrocytes labeled with Cs- 
DMB-ceramide. Infected eryth- 
rocytes were labeled as in Fig. 
1. The two cells shown inA-C 
and D-F were again fixed in 
0.05% glutaraldehyde. The 
tv~ cells shown in G--I and 
J-L were left unfixed. Sequen- 
tial micrographs through the 
cells were taken at 400-nm 
intervals along the z-axis at an 
excitation wavelength of 488 
nm. Three consecutive sec- 
tions from the center of each 
cell are shown. In all four 
cells the erythrocyte mem- 
brane is the outer circle. In 
A-C the parasite is to the right 
within the red cell; one small 
projection extends at the bot- 
tom of the parasite while a 
series of projections extended 
from the left side of the para- 
site. In D-F the parasite is 
again to the right within the 
red cell; multiple projections, 
including one very bright and 
convoluted structure, protrude 
to the left. In G-Hthe parasite 
is to the left within the red cell 
and a very bright tubule ex- 
tends up and to the fight; sev- 
eral other smaller vesicles are 
seen along the length of the tu- 
bule. In J-L there are two 
parasites within the red cell; 
each has a small vesicle ex- 
tending toward the bottom of 
the red cell. 

tensely labeled. At the resolution of the light microscope in 
a cell of this size (the erythrocyte is "o7 #m in diameter, the 
intracellular parasite only 2-4 #m in diameter), we cannot 
distinguish between staining of the parasite plasma mem- 
brane and the parasitophorous vacuolar membrane; we will 
therefore refer to both of these membranes with the term "pe- 
riphery of the parasite." The interior arc of the parasite is 
clearly present in Fig. 1, E, F, and G; this arc surrounds the 
nucleus of the parasite (Elmendorf and Haldar, 1993; data 
not shown). Many membranous structures, both tubular and 
vesicular, are seen in the erythrocyte cytosol. A long tubule 
extending away from the parasite surface toward the left side 
of the erythrocyte is clearly seen in Fig. 1, B-H; the tubule 
has an apparent length of '~7 #m and a diameter of <1 #m. 
This projection appears to connect to the labeled periphery 
at the bottom of the parasite in Fig. 1 G. Additionally, there 
are several large vesicles (1-2 #m diameter) projecting both 
from the surface of the parasite (J and K) and from the vicin- 
ity of the tubule (D-F and H and I). "Free" vesicles in the 
cytosol are not detected; consecutive images through the cell 
inevitably show points of attachment of these vesicles to ei- 
ther the parasite or to other projections, both tubules and 
loops. 

Fig. 2 shows three consecutive sections through four addi- 
tional cells. A-C and D-F, from two cells labeled and fixed 
as in Fig. 1, demonstrate the range of morphologies observed 
in the intraerythrocytic membranes. Fig. 2, A-C shows a late 
ring stage parasite. In this example, the probe labeled large 
vesicles in the erythrocyte cytoplasm. Again the interior arc 
and the periphery of the parasite are also prominently la- 
beled. The TVM appears as a stacked or "budding" series 
of large vesicles (again 1-2 #m diameter); again, these vesi- 
cles are not independent but emerge from the surface of the 
parasite as an apparently connected or attached series. The 
large vesicles were typical for ring stage parasites. Fig. 2, 
D - F  shows a trophozoite stage parasite. At least four sepa- 
rate projections, including a large and convoluted membra- 
nous structure and three finer projections (',,2-3 #m in 
length and <1 #m in diameter), extend from the parasite sur- 
face. The convoluted membrane suggests that the tubules 
may fold on themselves. 

To demonstrate that the observed labeling of membranes 
was not an artifact of the glutaraidehyde fixation, live cells 
were labeled and viewed (three consecutive sections through 
two cells are shown in Fig. 2 (G, H, I and J, K, L). Since 
repeated exposure of cells to a laser beam can induce pho- 
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todamage, care was taken to work at levels of probe and laser 
intensity to minimize such damage, With live cells an early 
indication of such damage is the swelling of the erythrocyte 
membrane and its subsequent lysis and release of hemoglo- 
bin. Therefore cells were viewed by bright field microscopy 
both before and after serial sectioning to ensure that the 
erythrocyte membrane was intact in cells used for analysis. 
Again the interior arc was visible (Fig. 2, H and K) and the 
peripheries of the parasites were well defined. Prominent 
projections of both tubules and vesicles are also detected in 
the sections. In Fig. 2, J-L the erythrocyte is doubly- 
infected; a connection between the parasite on the left and 
the lower vesicle in seen in Fig. 2 L, while the point of con- 
tact between the parasite on the right and the vesicle below 
it is seen more clearly in the next consecutive section of the 
series (not shown). In both fixed and live cells, regions of 
higher intensity labeling are detected both within the parasite 
and in the TVM, suggesting the presence of domains which 
accumulate fluorescent sphingolipids in these membranes. 

Three-dimensional Reconstruction of  
Parasite/TVM Morphology 

Using three-dimensional reconstructions of sequential con- 
focal images, these membranes appear as a large, inter- 
connected reticulum that extends outward from the parasite 

surface into the erythrocyte cytosol. 20, 400-nm serial, 
z-sections from the two cells shown in Fig. I and Fig. 2, A-C 
were used for this modeling (Figs. 3 and 4, respectively). 
The data set is first processed through a three-dimensional 
Gaussian filter (ImageSpace; Molecular Dynamics Inc., 
Santa Clara, CA). This will suppress continuous noise and 
very fine detail by using weighting factors based on a three- 
dimensional Gaussian distribution and applying them to a 
pixel and its neighboring pixels in space [[~(pixel value)- 
(weighting factor from Gaussian distribution)/~ (weighting 
factors)] = new pixel value]; the filter was applied simul- 
taneously to the entire data set. Thresholds for signal inten- 
sity were then set so as to eliminate ,095 % of the signal seen 
on uninfected erythrocytes in the sample. The label on unin- 
fected erythrocytes was designated as non-specific label to 
allow us to look only at lipid labeling properties induced by 
the parasite in the infected red cell. This method also allows 
subtraction of "bleed-through" of signal from adjacent sec- 
tions along the z-axis. A three-dimensional model of the cell 
is then formed by linear interpolation between the "slices" of 
images to create three-dimensional voxels from the two- 
dimensional pixel data set (ImageSpace). The models were 
visualized using a "depth-coding" function that presents only 
the surface of the cell as an opaque image and colors it with 
respect to its distance from the viewer. The result is a model 
of the surface of the parasite and its projections, with the 

Figure 3. Three-dimensional 
reconstruction of the tropho- 
zoite-stage parasite shown in 
serial sections in Fig. 1.20 con- 
secutive images taken at 400- 
nm intervals through the depth 
of the infected erythmcyte were 
used to recalculate the three 
dimensional morphology of 
the parasite. The images were 
first processed through a Gaus- 
sian data filter to eliminate 
non-specific signal and noise, 
and then the image intensity 
threshold was set to exclude 
signal from uninfected erythro- 
cytes in the same sample. Se- 
quential images (A-l) are 
shown as the model rotates 
around the x-axis at 40 ° inter- 
vals. Colors indicate depth of 
image: warm colors (reds) are 
closest to the reader and cooler 
colors (blues) are furthest 
away. The arrowhead in A 
points to the body of the para- 
site, while the two smaller ar- 
rows point to the long tubule 
and a smaller vesicle protrud- 
ing from the tubule. 
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Figure 4. Three-dimensional 
reconstruction of the ring- 
stage parasite shown in serial 
sections in Fig. 2, A-C. Images 
were processed as described 
in Fig. 3. The arrowhead in 
panel a points to the body of 
the parasite, while the two 
smaller arrows point to two 
large vesicular structures pro- 
truding from the surface of the 
parasite. 

more proximal part of the image highlighted in "warm" 
colors (reds) while the more distal part of the image appears 
in "cool" colors (blues). These models do not distinguish be- 
tween different labeling intensities along the membranes-  
all signals above threshold are considered equal. 

The first frame in each model shows the three-dimensional 
cell as it looks in the serial sections. In the next eight frames, 
the ceils are turned around the x-axis at 40 ° intervals to pro- 
vide a view from different perspectives. In Fig. 3 the parasite 
is shown as a large spherical structure in warm colors (desig- 
nated by an arrowhead), while the tubule (designated by two 
smaller arrows) first rotates back into the page, up to the top 
of the page, and then out of the page. In Fig. 4 the parasite 
is first seen in warm colors at the right of the view (desig- 
nated by an arrowhead), while three vesicles (designated by 
two smaller arrows), in blue, protrude in a series at the left 
of the parasite and a single vesicle, in green/blue, extends 
at the bottom of the cell. The vesicles series rotate first out 
of the page, down toward the bottom of the page, and then 
back into the page. 

Many features become readily apparent from these models 
that are not clearly discernible in the serial images. First, the 
labeling intensity of the red cell membrane is much lower 
than the intensity of the parasite membranes. The entire con- 
focal image is processed identically in the programs, and so 
the "disappearance" of a membrane denotes it as being rela- 

tively less bright. In both reconstructions, however, small 
sections of the red cell membrane are still visible. Similar 
spots are seen on uninfected cells at the same threshold and 
as such probably represent small variations of label on the 
erythrocyte membrane independent of parasite activities. 
Second, the true shape of the intraerythrocytic structure is 
restored. In the serial sections, the long "tubule" actually ap- 
pears in seven consecutive sections, suggesting a "sheet" 
structure. However, by removing the "bleed-through" of 
signal along the z-axis, the membrane is resolved into 
much finer tubular dimensions. Third, both reconstructions 
strongly suggest a junction of contact between the parasite 
and either the tubule (Fig. 3) or the first loop (Fig. 4). Simi- 
larly there is close juxtaposition of the tubule and the smaller 
vesicles (in Fig. 3) and the large vesicle and its two smaller 
"ear-like" vesicles (in Fig. 4). Fourth, variations in the sur- 
face of the parasite are revealed. In Fig. 3 E and F, an area 
of yellow and then blue appears in the red-orange of the 
parasite, denoting a deep indentation in the surface of the 
parasite. While we cannot resolve its precise significance, 
such an indentation may represent a site of endocytosis on 
the parasite surface; endocytic vacuoles for the uptake of he- 
moglobin have been suggested based on three-dimensional 
modeling of transmission electron micrographs (Slomianny, 
1990). 
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The lntraerythrocytic Membranes are a Site of Specific 
Sphingolipid Accumulation 

The fluorescent ceramide analogues can diffuse across lipid 
bilayers and aqueous spaces to label all cellular membranes 
(Pagano, 1989). To identify specific sites of sphingolipid 
accumulation in infected erythrocytes, the cell associated 
fluorescent label was partially removed by incubating live, 
labeled cells with excess BSA, in a process called back- 
extraction. This removed excess label from cellular mem- 
branes. For these experiments the probe C6-NBD-ceramide 
was used for two reasons: first, it is efficiently back-extracted 
(as opposed to Cs-DMB-ceramide) (Pagano et al., 1991); 
and second, the use of a second fluorescent moiety allowed 
us to confirm that the prominent staining observed with Cs- 
DMB-ceramide reflected sphingolipid binding and accumu- 
lation which was independent of the fluorescent tag. 

Infected erythrocytes were incubated with 20 t~M Ca- 
NBD-ceramide at 0°C, and after extensive washing, in- 
cubated at 37°C for 60 min. C6-NBD-sphingomyelin was 
formed under these conditions, but the majority of the probe 
in the cell at this time was still present as C~-NBD-Cer- 
amide as judged by thin-layer chromatography analysis of 
the fluorescent lipid species (data not shown). Cells were 
then back-extracted three times at 0°C in the presence of ex- 
cess defatted-BSA. As previously reported (Haldar et al., 
1991), we observed only removal of ceramide during back- 
extraction; C6-NBD-sphingomyelin was not removed (data 
not shown). Consecutive serial z-sections from a cell are 
shown in Fig. 5. Most noticeable was the dramatic reduction 
of label on the infected red cell membrane and on uninfected 
erythrocytes. Again the periphery of the parasite, the interior 
arc, and the vesicles within the erythrocyte cytosol are 
clearly labeled. However, in this cell, as in others the appar- 
ent connections between the parasite and these vesicles are 
no longer visible. Therefore, membrane domains of the 
TVM which specifically accumulate sphingolipids, are not 
necessarily situated along the periphery of the parasite. 
It might have been possible to predict this result because, 
while clearly visible, the region of apparent connection is of- 
ten less intensely labeled even in the non-back-extracted 
cells shown in Fig. 1 and Fig. 2. 

Sphingomyelin Synthase in Merozoites and 
the Presence of the Merozoite Activity in Ring and 
Trophozoite4nfected Red Cells 

Since both C~-DMB-ceramide and C6-NBD-ceramide are 
metabolized to their sphingomyelin analogues in infected 

erythrocytes, we decided to directly investigate the distribu- 
tion of sphingomyelin synthase activity in the malaria para- 
site. We have previously shown that uninfected erythrocytes 
contain no detectable sphingomyelin synthase activity (Hal- 
dar et al., 1991). Because no antibodies or even gene se- 
quence are available for the enzyme, identification of sphin- 
gomyelin synthase must be performed by direct analysis of 
the enzymatic activity. 

In the asexual cycle intraerythrocytic parasites develop 
from ring to trophozoite to schizont stages. Schizogony is a 
period of nuclear division and growth of the original para- 
site. It culminates in the formation of 10-16 merozoites 
(44-48 h after invasion) when the parasite plasma membrane 
pinches off around the daughter nuclei and a corresponding 
set of organelles. We have previously shown that in schizonts 
there is a perinuclear region of sphingomyelin biosynthesis 
around each nucleus (Elmendorf and Haldar, 1993). We also 
showed that when daughter merozoites form, each inherits 
its own perinuclear region of sphingomyelin biosynthesis, 
suggesting that the extracellular merozoites should contain 
sphingomyelin synthase. In the very late schizont stages the 
enzyme appears to concentrate in the perinuclear arc within 
the individual merozoites (Elmendorf and Haldar, 1993). 

We therefore examined the presence of sphingomyelin syn- 
thase in isolated merozoites, purified and rendered com- 
pletely free of other parasite stages (Mrema et al., 1982; see 
Materials and Methods). As shown in Table I, when equal 
numbers of parasites from independent preparations of iso- 
lated merozoites were incubated with either C6-NBD-cera- 
mide (or Cs-DMB-ceramide; data not shown), very similar 
amounts of fluorescent sphingomyelin were synthesized. 
Doubling either the time of incubation or the amount of cell 
material resulted in a linear increase of product formed in 
each reaction, confirming that the levels of sphingomyelin 
produced were a true measure of enzyme activity. A specific 
activity of 49 4- 6 pmols of C6-NBD-sphingomyelin/min/ 
mg protein was calculated from five independent isolated 
merozoite preparations, indicating the consistency of the in- 
dividual preparations. (The presence of EDTA had no effect 
on this activity). Hemozoin, a crystalline product of parasite 
heme digestion, was present in varying amounts in the differ- 
ent preparations but appeared to have no effect on either the 
protein content or sphingomyelin synthase activity of the 
merozoite fractions. Furthermore, when preparations la- 
beled with NBD-ceramide were examined in the microscope, 
prominent fluorescence was detected in the merozoites but 
not in association with the hemozoin crystal (not shown). 
These results indicate that isolated extracellular merozoites 

Figure 5. Sites of specific cera- 
wide accumulation in P falci- 
parum-infected erythrocytes 
labeled with C6-NBD-cera- 
wide. Infected erythrocytes 
were loaded with 20 #M C6- 
NBD-ceramide at O°C, unin- 
corporated label removed by 
extensive washing, and partial 
metabolic conversion of probe 
to C6-NBD-sphingomyelin al- 

lowed to continue at 37°C. Cells were then back-extracted three times at 0°C in the presence of 7 mg/ml defatted-BSA. Visualization of 
cells was performed as described in Fig. 1. Three consecutive sections from the center of the cell are shown. 
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Table I. Analysis of NBD-Sphingomyelin Synthesis in 
Merozoites, Ring-, and Trophozoite-infected Erythrocytes 

pmoles of NBD-Sm 
Number of cells 

(× l0 s) 15 min 30 rain 

Merozoites (extracellular)* 
Prepl 
PreplI 
PrepllI 

lntracellular stages~ 
Rings 

Trophs (<30 h) 

Schiz (>40) 

1 7 15 
2 13 26 
2 14 29 

1 7 15 
2 13 26 
1 8 17 
2 15 28 
1 88 188 
2 181 362 

Effects of cycloheximide~ 
Rings + cycloheximide 2 29 

- cycioheximide 2 28 
Trophs + cycloheximide 2 27 

- cycloheximide 2 29 
Schiz + cycloheximide 2 173 
('~36 h) - cycloheximide 2 252 

* Merozoites were purified and incubated with C6-NBD-ceramide. At the 
indicated times, samples were extracted and amount of C6-NBD-sphingo- 
myelin synthesized was determined as described in Materials and Methods. 

Ring- or trophozoite- and schizont-infected erythrocytes were incubated with 
C6-NBD--ceramide and the samples were processed identically as above. 
§ Ring or tropbozoite infected erythrocytes were either pretreated with cyclo- 
heximide or mock treated as described in Materials and Methods, incubated 
with C6-NBD-ceramide for 30 rain and the amount of C6-NBD-sphingomyelin 
was determined. The numbers shown are the average of three experiments. 
They have been rounded off to the closest whole number. 

contain significant amounts of sphingomyelin biosynthetic 
activity. 

As indicated earlier, subcellular fractionation studies in 
rat liver indicate that 87% of sphingomyelin synthase is 
found in the Golgi and 13 % is at the plasma membrane. 
However, other studies suggest that higher levels of the en- 
zyme may be at the plasma membrane. We were therefore 
interested in determining the relative distribution of exported 
versus intracellular sphingomyelin synthase in the isolated 
merozoites. To do this we examined the effect of exogenously 
added protease on the sphingomyelin synthase activity of 
merozoites. As shown in Table II, when proteinase K was 
added to intact merozoites, it had no effect on their sphin- 
gomyelin synthase activity. The presence of 0.1% wt/vol 
CHAPS and 1% wt/vol saponin also did not reduce levels of 

Table II. Effect of Proteinase K on the Synthesis of 
NBD-Sphingomyelin in Merozoites 

Treatment 

Percent activity 
(NBD-Sm synthesis) 

after treatment 

Untreated 100 
Proteinase K 105 
0.1% CHAPS,  1% saponin 93 
0.1% CHAPS,  1% saponin,  Proteinase K 18 

Merozoites were isolated and purified, incubated with either 100 #g/ml 
proteinase K, detergent or both as indicated in Materials and Methods. The 
results are the average of four experiments. 

enzyme detected with the merozoites; however, as previ- 
ously reported (Futerman et al., 1990), detergents such as 
triton X-100, NP-40, deoxycholate, n-octylglucoside resulted 
in loss of activity when they effectively permeabilized the 
cells and therefore could not be used (data not shown). When 
protease and 0.1% wt/vol CHAPS/l% wt/vol saponin were 
added together to merozoites, an '~,80% reduction in sphin- 
gomyelin synthesis was observed. The residual activity was 
probably due to incomplete permeabilization of the mero- 
zoites (it was not possible to increase the levels of CHAPS 
and saponin since this led to a loss of activity in the absence 
of protease). These results indicate that all sphingomyelin 
synthase activity in the extracellular merozoite resides 
within the parasite. 

In the asexual cycle, the extracellular merozoites rapidly 
(within minutes) re-invade red cells and form ring stage 
parasites. Some merozoite components are detected in rings 
while others are processed and discarded (Blackman et al., 
1990). We found that levels of sphingomyelin synthesis are 
comparable in equal numbers of merozoites, rings and tro- 
phozoites (under 30 h of development; see Table I). We then 
investigated whether sphingomyelin synthase activity in ring 
and trophozoite stage infected red cells was due to de novo 
synthesis of sphingomyelin synthase, possibly coordinate 
with the degradation of merozoite activity. However, surpris- 
ingly, pretreatment of ring or trophozoite infected cells in cy- 
cloheximide for three hours (Table I) or for 5 h (data not 
shown) followed by incubation in cycloheximide and C6- 
NBD-ceramide had no effect on the levels of sphingomyelin 
formed. We independently confirmed that cycloheximide 
blocked parasite development and protein synthesis and 
was therefore active in the cells (data not shown). Upon re- 
moval of the drug protein synthesis and parasite growth were 
quickly restored to normal levels. Sphingomyelin synthase 
in ring and trophozoite stage parasites is apparently not due 
to de novo synthesis of the enzyme in these stages but instead 
corresponds to that present in the entering merozoite. 

At schizogony, levels of sphingomyelin synthase increase, 
and mature schizonts (after 40 h) contain 10--16 times more 
activity than ring and trophozoite stages (Table I). Pretreat- 
ment of '~36 h schizonts with cycloheximide leads to a 
marked decrease in the levels of enzyme detected in the cell 
(Table I). Thus de novo synthesis of sphingomyelin synthase 
occurs during schizogony. 

Export of Sphingomyelin Synthase Activity by 
lntracellular Ring and Trophozoite Stage Parasites 
To examine the distribution of sphingomyelin synthase activ- 
ity in intracellular stage parasites, we used a system we had 
previously developed to separate ring and trophozoite stage 
parasites from their red cell hosts (Elmendorf et al., 1992). 
The release and isolation of parasites is achieved by mechan- 
ical disruption and Percoll density centrifugation. These 
parasites have been denuded of the majority of their tubo- 
vesicular membrane extensions as judged by phase micros- 
copy (Elmendorf, H. G., and K. Haldar, unpublished ob- 
servations), but are intact and capable of active protein 
synthesis and secretion as determined by rigorous biochemi- 
cal criteria (Elmendorf et al., 1992). As shown schemati- 
cally in Fig. 6, by disruption of the infected erythrocyte (Fig. 
6 A), we separated intact malaria parasites (Fig. 6 B) from 
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Figure 6. Fractionation of P. falciparum-infected erythrocytes. In- 
fected erythrocyte (A). Released parasite with parasitophorous 
vacuolar membrane (B). Erythrocyte membrane (EM) and tubo- 
vesicular membrane fraction (TVM) (C). The TVM is found as- 
sociated with the EM and also free in this fraction. 

a fraction enriched in erythrocyte membranes and the 
tubovesicular membrane network (EM/TVM) (Fig. 6 C). 
The accumulation of fluorescent sphingolipid analogues at 
sites both within the parasite and in the erythrocyte cytosol 
suggested that the membranes of the TVM shared lipid bind- 
ing properties with the Golgi membranes of mammalian 
cells, and we were therefore interested in the properties of 
the EM/TVM fraction as well. Cell equivalents of uninfected 
erythrocytes, infected erythrocytes, released parasites, and 
purified EM/TVM membranes (and where indicated eryth- 
rocyte cytosolic fractions) were used in these experiments; 
normalization to protein content, as is often standard for cel- 
lular fractionation studies, is not applicable in this system 
due to the high hemoglobin content of infected erythrocytes. 
Samples were incubated in 10 ~M C6-NBD-ceramide for 
60 min at 37°C, and lipids extracted and analyzed for conver- 
sion to sphingomyelin. 

In three independent experiments shown in Table III, an 

average of 51% of the original sphingomyelin synthase activ- 
ity was recovered in the released parasites, while an average 
of 39 % of the activity was in the EM/TVM fraction. The 
presence in the EM/TVM of a significant proportion of the 
total sphingomyelin synthase is consistent among twelve in- 
dependent fractionations that have been performed. To- 
gether, these fractions accounted for an average of 90 % of 
the sphingomyelin synthase activity present in the starting 
population of infected erythrocytes. No metabolic products 
other than sphingomyelin were observed. In the three repre- 
sentative experiments shown, released parasites contained 
65, 26, and 62 % of the infected erythrocyte sphingomyelin 
synthase activity, while the EM/TVM fraction contained the 
remaining 36, 52, and 29 %. Based on our assessment of the 
specific stage of the parasites used in each of the prepara- 
tions, this variation is a consequence of the age and syn- 
chrony of the parasite population (see Discussion). Although 
variable, these numbers suggest a redistribution of sphin- 
gomyelin synthase activity to sites beyond the parasite. 

In any cellular fractionation, contamination of the differ- 
ent fractions is always a concern. In the homogenization pro- 
cedure, a small number of parasites are disrupted, and mem- 
branes from these parasites are then presumably present in 
the total membrane fraction isolated on the sucrose cushion. 
To ensure that this small percentage of disrupted parasites 
did not result in the high levels of sphingomyelin synthase 
activity seen in the TVM fraction, we analyzed the degree 
of contamination from parasite lysis in two ways. First, para- 
site numbers were counted both before the release procedure 
and after the cells were pelleted from the homogenate. The 
difference between these counts divided by the total number 
of starting parasites represents the maximal percentage con- 
tamination; this calculation assumes that all disrupted para- 
site membranes will emerge in the EM/TVM fraction, there- 
fore grossly overestimating the contamination of the EM/ 
TVM. The second method used to calculate contamination 
was Western blot analysis of cell equivalents of the final frac- 
tions. We used antibodies against a P. falciparum integral 
membrane protein, PfERD2, as a marker for the presence 
of internal parasite Golgi membranes in the fractions. 
PfERD2 can be detected in all stages of the intraerythrocytic 

Table IlL Distribution, Percentage Recovery of Sphingomyelin Synthase and Parasite Markers between Released Parasites 
and the EM/TVM 

45 kD 
Sphingomyelin synthase PfERD2 MSP1 (intraeythrocytic 

activity (Golgi) (plasma mb) cisternae) 

Fraction 1 2 3 

Percent of infected erythrocytes 

A. Infected eryth. 100 100 100 100 100 100 
B. Released parasites 65 26 62 90 75 2 
C. E M / T V M  36 52 29 5 17 49* 

D. Erythrocyte cyto. _ . . . .  36* 
E. Percent recovery B-D 101 78 91 95 92 87 

For the sphingomyelin synthase assays, cell equivalents of fractions were incubated in buffer A supplemented with 2 mg/ml defatted-BSA and 10 ~.M C6-NBD- 
ceramide for 60 rain at 37°C. Lipids were extracted and analyzed by thin layer chromatography. Spots migrating at the appropriate Rf for sphingomyelin were 
scraped and quantitated. The results from three typical individual experiments are shown. The kinetics of sphingomyelin production was linear over this time. 
For PfERD2, MSP1 and the 45-kD protein, cell equivalents of fractions were probed in Western blots with the appropriate antibody and subjected to densitometry 
analysis. The average of three PfERD2, six MSP1 and three 45-kD determinations are shown. The numbers have been rounded off to the closest whole number. 
* The mature 45-kD protein is detected in a membrane form associated with the intraerythrocytic cisternae, as well as a solbule form in the erythrocyte eytosol 
(Li et al., 1991; Das, Elmendorf and Haldar, manuscript submitted for publication). 
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life cycle and localizes to a tight perinuclear site within the 
parasite (Elmendorf and Haldar, 1993). The presence of 
PfERD2 found in the different fractions in several different 
preparations was determined by densitometry analysis of 
Western blots; in three representative experiments 5% of 
PfERD2 was found in the EM/TVM fractions, and 90% in 
the released parasites. In contrast, a 45-kD protein which re- 
sides in cisternal membranes in the erythrocyte cytosol and 
is recognized by a monoclonal antibody LWLI (Li et al., 
1991), is present in very low levels (2 %) in the released para- 
sites (Table III), indicating that this fraction is not con- 
taminated by the intraerythrocytic membranes. 49 % of this 
protein is in the EM/TVM fraction, consistent with the lo- 
calization of the cisternae in the infected erythrocyte. 36% 
of the 45-kD protein was detected as a soluble protein in an 
erythrocyte cytosolic fraction generated upon homogeniza- 
tion of infected erythrocytes. Biosynthetic studies confirm 
that in trophozoite-infected erythrocytes, the mature 45-kD 
protein exists in both soluble and membrane associated 
forms (Das, Elmendorf and Haldar, in preparation). The rel- 
ative distribution of PfERD2 and the 45-kD protein indicate 
a good separation of the EM/TVM fraction from internal 
parasite Golgi membranes. 17 % of a plasma membrane pro- 
tein, MSP1 was also found in the EM/TVM fraction. Assum- 
ing that all of the MSP1 in the EM/TVM fraction reflects 
contamination, we found on average 25 % of the total sphin- 
gomyelin synthase activity in the EM/TVM fraction. Using 
the degree of contamination estimated by the cell breakage 
for each preparation, we found an average of 26 % of the total 
sphingomyelin synthase activity located in the EM/TVM 
fraction. These numbers are very comparable and confirm 

the export of a significant percentage of a Golgi enzyme be- 
yond the parasite plasma membrane. This is in contrast to 
the complete intracellular retention of the enzyme in mero- 
zoite stages. In particular the lack of new enzyme synthesis 
in these early intracellular stages implies that this exported 
enzyme corresponds to a form present within the merozoite. 
P. falciparum appears capable of developmentally regulated 
export of sphingomyelin synthase. 

Discussion 

We have used Cs-DMB-ceramide and C6-NBD-ceramide to 
label the parasite and membranes in the erythrocyte cyto- 
plasm in P. falciparum-infected cells. Both probes are ex- 
tremely mobile and diffuse into all intracellular membranes. 
In mammalian cells both probes bind specifically in the 
Golgi by virtue of their ceramide moiety and are correctly 
metabolized and sorted (Pagano, 1990). Cs-DMB-ceramide 
is more photostable with a greater quantum yield (Pagano 
et al., 1991), and was therefore preferentially used in our mi- 
croscopy studies. By high resolution laser confocal micros- 
copy the morphologies of membranes which concentrated 
Cs-DMB-ceramide were found to be identical to those 
which concentrated C6-NBD-ceramide. Hence, fluores- 
cence accumulation should accurately reflect sphingolipid 
accumulation in infected erythrocytes. 

Organization of  the TVM with Respect to the Parasite 
Surface and the Erythrocyte Membrane 

Scanning electron micrographs by Elford and Ferguson 

Figure 7. Model for the stage-specific regulation of sphingomyelin synthase activity. The life cycle of P. falciparum is shown starting at 
the left with the mature schizont stage. After the cycle in a clockwise direction, merozoites are released and re-invade new erythrocytes. 
During the merozoite stage the enzyme is localized within the parasite in a perinuclear arc. After invasion, the parasite matures into ring 
and then trophozoite stages. (*) It is not possible to distinguish between sphingolipid staining of membrane from the parasitophorous vacuo- 
lar membrane and the parasite plasma membrane at the ring and trophozoite stages. Here the parasite induces the development of a 
tubovesicular network beyond its plasma membrane and exports the sphingomyelin synthase enzyme, originally present solely within the 
merozoite, partially outward into these membranes. The cycle is completed with the maturation of the parasite into the mitotically dividing 
schizont stage. As expected the parasite appears to replicate sphingomyelin synthase as it divides, resulting in enzyme levels increased 
10-15-fold in the schizont stages compared with the earlier intracellular stages (Table I). 
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(1993) indicated the presence of long continuous tubovesicu- 
lar elements extending from the surface of parasites released 
from their host cell membranes. Here we show that a similar 
morphology can be seen in tubovesicular membranes in the 
erythrocyte cytosol of intact infected erythrocytes. One end 
of the TVM is closely juxtaposed to the parasite's surface as 
indicated schematically in Fig. 7; however, at the level of 
resolution possible with the confocal microscope, we are un- 
able to determine whether this area of juxtaposition unam- 
biguously represents a continuum of lipid bilayers. We also 
define a specific site of lipid accumulation within the ring and 
trophozoite parasites in the form of a perinuclear arc. By 
analogy with our results in schizont-infected erythrocytes 
(Elmendorf and Haldar, 1993) this arc is likely to be a site 
of sphingomyelin biosynthesis in these younger stage para- 
sites. In future studies it will be interesting to investigate 
trafficking pathways between the apparent region of contact 
of the TVM with the parasite's periphery and the perinuclear 
region of sphingolipid labeling in the parasite. 

Previous studies by our lab demonstrated that two para- 
sites within the same host erythrocyte will each export lipids 
to their own TVM during parasite development, but, sur- 
prisingly, the two parasites do not exchange lipids (Haldar 
and Uyetake, 1992). This then brings into question how ma- 
terial is transported from the parasite to these membranes 
with such precision. A direct connection between the para- 
site and the TVM could allow protein and lipid export to the 
TVM without need for the formation of discrete vesicular in- 
termediates in the intraerythrocytic cytosol or the ability of 
the vesicles to distinguish between the two TVM. In this con- 
text it is interesting to note that using heterologous antibod- 
ies we have been unable to detect the presence of the H-COP, 
clathrins, or adaptins in association with the intraerythro- 
cytic structures (W-I. Li, H. Elmendorf, and K. Haldar, un- 
published data). It is possible that the antibodies used may 
not cross react with homologous Plasmodium proteins, but 
they are found to be widely cross reactive across cell types. 
This suggests that the two well defined mechanisms of vesic- 
ulation are not induced in the infected erythrocyte cytosol. 
Instead what is observed is a mechanism of membrane move- 
ment in specific domains at the parasite's surface. This initi- 
ates a membrane bud, which does not dissociate as a trans- 
port intermediate from the parent membrane, but continues 
to grow. It is further possible that such movement is the first 
step in the export of parasite proteins to the erythrocyte, and 
requires their transport across a putative junction for traf- 
ticking between the parasite and the TVM. 

Levels of the sphingolipid label in the erythrocyte mem- 
brane were very low compared with levels in the TVM, the 
parasite periphery, or the perinuclear arc. In cells labeled 
with Ct-NBD-ceramide, back-extraction depletes label at 
the erythrocyte membrane. These results confirm that the 
red cell membrane is not a prominent site of sphingolipid ac- 
cumulation in these cells. They also suggest that the lipid 
bilayer of the TVM is not in continuum with the erythrocyte 
membrane. The tight apposition often seen between the 
TVM and the erythrocyte membrane (clearly shown in Fig. 
1) alternately suggests that the TVM interacts with the cyto- 
plasmic face of the erythrocyte membrane, possibly its 
cytoskeleton, and these interactions may well contribute to 
the morphology of the TVM. Mechanical homogenization of 
Plasmodium-infected erythrocytes releases the parasites, but 

the TVM remains in association with the red cell membrane, 
consistent with a tight interaction between the two mem- 
branes. 

Stasis of the TVM Complex 
As can be seen in Fig. 2, G-H and I-K, consecutive images 
of live cells taken at four second intervals show no detectable 
movement of the intraerythrocytic membranes, and the same 
organization of tubovesicular morphology was observed in 
two consecutive z-series of sections (each lasting 1.5 rain; 
data not shown). Further, no movement was observed on 
repeated imaging in a single confocal plane at intervals of 2 
to 10 s (data not shown). Rapid movement of the membranes 
was observed only if the erythrocyte membrane had lysed or 
was swelling in the process of lysis. In recently or incom- 
pletely lysed cells, only the TVM showed movement; in 
completely lysed cells, even the body of the parasite shifted 
its position. In contrast, Gormley et al. (1992) used Ct- 
NBD-phosphatidyl choline and Ct-NBD-phosphatidyl etha- 
nolamine to detect rapidly moving membrane vesicles in the 
erythrocyte cytosol. However, this movement was neither 
temperature nor energy dependent, and hence its signifi- 
cance in membrane transport is unclear. Although we con- 
sider it unlikely, it is formally possible that the sphingolipid 
probes do not label the vesicles detected with the phospho- 
lipid probes. It is of course expected that the membranes of 
the TVM move/extend during their biogenesis, but in a short 
time course neither the tubular structures nor the large loops 
altered either their position or their morphology. It remains 
to be seen whether submicron particles, analogous to those 
detected in the Golgi in mammalian cells (Cooper et al., 
1990), are transported between elements of the TVM. 

Distribution of SphingomyeUn Synthase 
Sphingomyelin synthase is a membrane enzyme and its sub- 
strates are lipids, making it difficult to accurately determine 
their concentrations in the bilayer. Therefore, to correctly as- 
say for the enzyme activity, we carded out the reactions in 
an excess of Ct-NBD-ceramide and over a period of time in 
which the kinetics of product formation were linear. Further- 
more an increase in parasite material resulted in a corre- 
sponding increase in the levels of sphingomyelin product 
formed. We were consistently able to recover 80-90% of the 
original activity in the isolated subeellular fractions, strongly 
suggesting that our assay was also a true measure of the levels 
of the parasite enzyme in these experiments. Interestingly, 
the only product we see from extended incubations with cer- 
amide is sphingomyelin-glycosyl ceramides are not detected 
(Haldar et al., 1991; data not shown). This suggests that the 
enzymes are either missing in Plasmodium or that the probes 
are not recognized as suitable substrates. 

For intracellular stage parasites, the variability in the rela- 
tive distribution of sphingomyelin synthase activity between 
the two fractions (released parasite and EM/TVM) likely 
reflects the range of parasite stages in the cell populations 
used for the different experiments. Despite frequent syn- 
chronization of parasite development in the infected erythro- 
cyte cultures, it is difficult to maintain good synchrony at the 
high parasitemias required for these experiments; the age of 
parasites used, therefore, ranged from 24-36 h after inva- 
sion. It is well-established that synthesis and distribution of 
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proteins change within this range of parasite stages (Howard 
et al., 1987a). The morphology of the parasite also changes 
dramatically as the parasite enlarges and the TVM alters 
from a vesicular to a more tubular conformation. These 
differences suggest either that the enzyme distribution may 
vary during ring and trophozoite parasite development, or 
alternatively, that the homogenization procedure might dif- 
ferentially disrupt the TVM-parasite connection at different 
developmental stages. Analysis of the many separate fractio- 
nations performed suggest that a greater percentage of the to- 
tal activity is exported in the trophozoite stage parasites. Our 
fractionation studies do not distinguish between export of 
sphingomyelin synthase to the TVM and the erythrocyte 
membrane. However, these data, taken in conjunction with 
our microscopy data showing prominent sites of sphingolipid 
accumulation in the TVM but not the EM, lead us to propose 
that the enzyme is exported only to the TVM network. 

In mammalian cells sphingomyelin synthase is concen- 
trated in the Golgi. A small fraction also appears to be in 
the plasma membrane. We have previously shown that in 
schizonts of P. falciparum, there are prominent sites of 
sphingomyelin biosynthetic activity in the perinuclear re- 
gion, consistent with its localization in the Golgi in the para- 
site. We now show that while in extracellular merozoites 
sphingomyelin synthase activity is retained within the para- 
site, exported activity is detected in the subsequent intracel- 
lular ring and trophozoite stages. The amount of enzyme ex- 
ported by the parasite to the TVM is far greater than the 
fraction of the sphingomyelin synthase activity exported to 
the plasma membrane in rat liver. Hence in this lower eu- 
karyote, the relative distribution of the Golgi and exported 
forms appears to be dependent on the cell cycle, as summa- 
rized schematically in Fig. 7. Because there is no new synthe- 
sis of sphingomyelin synthase at the ring and early tropho- 
zoite stages, it also suggests that sphingomyelin biosynthetic 
activity might be ascribed to one protein, whose export is 
mediated by a developmental reorganization the parasite's 
Golgi between the merozoites and ring stage cells. However, 
it is still formally possible that there are two forms of the en- 
zyme residing in distinct compartments within the mero- 
zoite, only one of which exported in rings. 

Possible Roles for Sphingomyelin Synthase in the TVM 
The development of membranes in the erythrocyte cytoplasm 
has been thought to be due to their vesicular or tubular bud- 
ding from the parasite's surface. Yet as discussed earlier, 
known mechanisms of vesiculation have not yet been detected 
in the erythrocyte cytosol. The asymmetric distribution of 
sphingomyelin and phosphatidylcholine proposed for the 
Golgi apparatus in mammalian cells (sphingomyelin, inner 
leaflet; phosphatidylcholine, outer leaflet) is also thought to 
force the Golgi into flattened cisternae and eventually to bud 
(Sheetz and Singer, 1974; Pagano, 1988). Hence, the export 
of sphingomyelin synthase and the synthesis of sphingomyelin 
on the inner leaflet of the TVM, if coupled to similarly asym- 
metric accumulation of a second lipid species at the outer 
leaflet, may provide a mechanism for the budding of mem- 
brane in this system, possibly independent of coat formation. 
Changes in the relative content of various lipid species in the 
TVM at different stages of the parasite life cycle may also 
affect the stage-dependent morphology of the T V M -  the cor- 

relation seen between ring stage parasites and large vesicular 
compartments and between trophozoite stage parasites and 
the long tubular compartments. 

Sphingolipid domains appear to modulate protein and 
lipid sorting in mammalian cells (van Meer, 1989; Pagano, 
1990; Brown and Rose, 1992). The TVM has been impli- 
cated in the uptake of essential extracellular lipids (Grellier 
et al., 1991). We find it contains specific sites of sphingolipid 
accumulation which strongly suggests that it can sustain 
membrane domains which sort lipids in the bilayer. By anal- 
ogy sphingomyelin accumulation in the TVM may provide 
mechanisms for the sorting of exported proteins between cis- 
ternae and large vesicles. The function of the TVM in sorting 
and targetting proteins to the erythrocyte membrane remains 
unresolved. Newly synthesized sphingomyelin is not ex- 
ported to the red cell surface (Haldar et al., 1991), but alter- 
native trafficking pathways could exist and need to be further 
investigated. 

The morphological similarity of the TVM cisternae as 
seen by transmission electron microscopy to the Golgi cis- 
ternae of mammalian cells, and a perceived need by the para- 
site for transport functions beyond its plasma membrane, led 
to early speculation that the TVM might function as a "traf- 
ticking organelle" in the erythrocyte (Howard et al., 1987a). 
However, no biochemical function could be ascribed to these 
membranes. Our evidence for the export of sphingomyelin 
synthase is the first to indicate the presence of a Golgi activ- 
ity in these membranes. The rearrangement of sphingomye- 
lin synthase is of particular interest when compared with the 
retention of a P. falciparum homologue of ERD2, a second 
protein of the mammalian cis-Golgi, within a perinuclear lo- 
cus within the parasite (Elmendorf and Haldar, 1993). The 
separation by the malaria parasite of these two Golgi activi- 
ties (presumed to be contained within overlapping compart- 
ments of mammalian cells) suggests that the TVM cannot 
be considered to be simply a second "misplaced" parasite 
Golgi. The parasite instead elaborates a unique organelle, 
endowed as we have shown here with at least one Golgi-like 
characteristic in its lipid-processing capabilities, but perhaps 
more limited in various other classical Golgi functions. 
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