
ORIGINAL RESEARCH
published: 12 January 2022

doi: 10.3389/fdata.2021.778417

Frontiers in Big Data | www.frontiersin.org 1 January 2022 | Volume 4 | Article 778417

Edited by:

Martin Atzmueller,

Osnabrck University, Germany

Reviewed by:

Yanjie Fu,

University of Central Florida,

United States

Juhua Hu,

University of Washington,

United States

*Correspondence:

Nitesh V. Chawla

nchawla@nd.edu

Specialty section:

This article was submitted to

Big Data Networks,

a section of the journal

Frontiers in Big Data

Received: 16 September 2021

Accepted: 16 December 2021

Published: 12 January 2022

Citation:

Tian Y, Zhang C, Metoyer R and

Chawla NV (2022) Recipe

Recommendation With Hierarchical

Graph Attention Network.

Front. Big Data 4:778417.

doi: 10.3389/fdata.2021.778417

Recipe Recommendation With
Hierarchical Graph Attention
Network
Yijun Tian 1, Chuxu Zhang 2, Ronald Metoyer 1 and Nitesh V. Chawla 1*

1Department of Computer Science and Engineering and Lucy Family Institute for Data and Society, University of Notre Dame,

Notre Dame, IN, United States, 2Department of Computer Science, Brandeis University, Waltham, MA, United States

Recipe recommendation systems play an important role in helping people find recipes

that are of their interest and fit their eating habits. Unlike what has been developed for

recommending recipes using content-based or collaborative filtering approaches, the

relational information among users, recipes, and food items is less explored. In this paper,

we leverage the relational information into recipe recommendation and propose a graph

learning approach to solve it. In particular, we propose HGAT, a novel hierarchical graph

attention network for recipe recommendation. The proposed model can capture user

history behavior, recipe content, and relational information through several neural network

modules, including type-specific transformation, node-level attention, and relation-level

attention. We further introduce a ranking-based objective function to optimize the

model. Thorough experiments demonstrate that HGAT outperforms numerous baseline

methods.

Keywords: recipe recommendation, user behavior modeling, recipe graph, food, graph attention network

1. INTRODUCTION

Large-scale food data offers rich knowledge about food and can help tackle many central issues
of human society (Mouritsen et al., 2017; Min et al., 2019; Tian et al., 2021). Recipe websites, in
particular, contain a large volume of food data because individuals are eager to share their created
recipes online (Teng et al., 2012). This provides an opportunity for other users to rate and comment,
which helps people form the habit of referring to these websites when deciding what to eat (Ueda
et al., 2011). Food.com1, one of the largest recipe-sharing websites in the world, collects over half
a million recipes. This large volume of data also reflects the great demand for recipe-providing
services (Ueda et al., 2011). Accordingly, digging into this overwhelming amount of online recipe
resources to find a satisfying recipe is always hard (Britto et al., 2020), especially when recipes
are associated with various heterogeneous content such us ingredients, instructions, nutrients, and
user feedback. However, Recipe Recommendation Systems have the power to help users navigate
through tons of online recipe data and recommend recipes that align with users’ preferences and
history behavior (Khan et al., 2019).

Existing recipe recommendation approaches are mostly based on the similarity between recipes
(Yang et al., 2017; Chen et al., 2020). A few of the approaches tried to take the user information
into account (Freyne and Berkovsky, 2010; Forbes and Zhu, 2011; Ge et al., 2015; Vivek et al., 2018;
Khan et al., 2019; Gao et al., 2020), but they only defined similar users based on the overlapping
rated recipes between users, while ignoring the relational information between users, recipes,

1https://www.food.com

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.778417
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.778417&domain=pdf&date_stamp=2022-01-12
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nchawla@nd.edu
https://doi.org/10.3389/fdata.2021.778417
https://www.frontiersin.org/articles/10.3389/fdata.2021.778417/full
https://www.food.com
https://www.food.com

Tian et al. Recipe Recommendation With HGAT

or ingredients. Nevertheless, user preference toward food is
complex. A user may decide to try a new recipe because of its
ingredients, its flavor, or a friend’s recommendation. Therefore, a
thoughtful recipe recommendation should take all these factors
into account. Thus, it is important to encode the relational
information and deeply understand the relationship among
users, recipes, and ingredients for recipe recommendation.

In this paper, we seek to leverage the relational information
into recipe recommendation. We first construct a heterogeneous
recipe graph to formulate the relationship among nodes. In
particular, we start by collecting a corpus of recipes, where
each recipe contains ingredients, instructions, and user ratings.
We then transform this set of recipes into a recipe graph,
with three types of nodes (i.e., ingredient, recipe, and user)
and four types of relations connecting them (i.e., ingredient-
ingredient, recipe-ingredient, recipe-recipe, and user-recipe
relations). The illustration of the built recipe graph is shown
in Figure 1. After constructing the recipe graph, we propose
to solve the recipe recommendation problem using the graph
learning approach, which naturally incorporates the relational
information into recommendation.

In particular, we propose a novel heterogeneous recipe
graph recommendation model, HGAT, which stands for
Hierarchical Graph Attention Network. HGAT can recommend
recipes to users that align with their history behavior and
preferences. Specifically, we leverage several neural network
modules to encode the recipe history, recipe content, and
relational information. Specifically, we first apply a type-specific
transformation matrix to model the heterogeneous content
associated with each node (e.g., instructions and nutrients) and
transform them into a shared embedding space. Then, we design
a node-level attention module to encode the neighbor nodes with
different weights. Considering we have multiple types of nodes
and edges, the module individually runs for each relation to
formulate relation-specific embeddings that contain each type of
neighbor nodes information. For example, given a recipe node
with three connected relations (i.e., recipe-ingredient, recipe-
recipe, and recipe-user), the node-level attentionmodule encodes
each type of node individually and learns three relation-specific
embeddings. Next, we develop a relation-level attention module

to combine all the generated relation-specific embeddings with
different weights and obtain the updated embedding for each

node. To illustrate with the same example, the relation-level

attention module merge the learned three relation-specific
embeddings into one to represent the final embedding of

the given recipe node. Therefore, the learned embeddings

contain not only the neighbor nodes’ information but also the
connected relation information. Finally, we introduce a score

predictor and a ranking-based objective function based on the
learned user and recipe embeddings to optimize the model.

To summarize, our main contributions in this paper are

as follows:

• We argue that relational information is important in

understanding user preference toward recipes. We further
leverage this information into the recipe recommendation
problem and proposed a graph learning approach to solve it.

• We developHGAT, a hierarchical graph attention network for
recipe recommendation. HGAT is able to capture both node
content and relational information and make appropriate
recommendations. HGAT comprises several neural network
modules, including type-specific transformation, node-level
attention, and relation-level attention.

• We conduct extensive experiments to evaluate the
performance of our model. The results show the superiority of
HGAT by comparing with a number of baseline methods for
recipe recommendation.

The rest of the paper is organized as follows. Section 2 reviews
the related work. Section 3 describes the proposed model.
Section 4 presents the experiments of different models on recipe
recommendation, followed by the conclusion in section 5.

2. RELATED WORK

This work is closely related to the studies of food
recommendation, recipe recommendation, and graph
representation learning.
Food Recommendation. Food recommendation aims to provide
a list of food items for users that meet their preference and
personalized needs, including restaurants, individual food items,
meals, and recipes (Trattner and Elsweiler, 2017a; Min et al.,
2020). Despite food recommendation being a comparatively
understudied research problem, a decent body of literature
exists (Trattner and Elsweiler, 2017a). For example, Sano et al.
(2015) used the transaction data in a real grocery store to
recommend grocery items. Trattner and Elsweiler (2017b) used
nine prominent recommender algorithms from the LibRec2

framework to recommend meal plans and recipes. In our work,
we mainly focus on recipe recommendation since this is the one
that is most relevant to our daily life.

Existing recipe recommendation approaches are mostly
content-based, namely, recommending recipes based on the
similarity between recipes (Yang et al., 2017; Chen et al., 2020). A
few of the approaches proposed include user information into the
recommendation procedures (i.e., collaborative filtering). Still,
they only considered similar users based on the overlapping
rated recipes, ignoring the relational information among users,
recipes, or ingredients (Freyne and Berkovsky, 2010; Forbes
and Zhu, 2011; Ge et al., 2015; Vivek et al., 2018; Khan et al.,
2019; Gao et al., 2020). For example, Yang et al. (2017) developed
a framework to learn food preference based on the item-
wise and pairwise recipe image comparisons. Ge et al. (2015)
utilized a matrix factorization approach that fuses user ratings
and tags for recipe recommendation. On the other side,
several works tried to recommend recipes based on a built
graph, but the user information is not included (Li et al.,
2010; Teng et al., 2012; Adaji et al., 2018). For example,
Adaji et al. (2018) recommended recipes to users based on
a graph where 2 recipes are connected if the same person
has reviewed them. Li et al. (2010) constructed a cooking
graph where the nodes are cooking actions or ingredients

2https://github.com/guoguibing/librec

Frontiers in Big Data | www.frontiersin.org 2 January 2022 | Volume 4 | Article 778417

https://github.com/guoguibing/librec
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tian et al. Recipe Recommendation With HGAT

FIGURE 1 | Illustration of Recipe Graph. Recipe examples with ingredients, instructions, and user reviews are shown on the (left). The Recipe Graph (right) includes

three types of nodes (i.e., ingredient, recipe, and user) and four types of relations which connect these nodes (i.e., ingredient-ingredient, recipe-ingredient,

recipe-recipe, and user-recipe relations).

and recommend recipes based on their similarity. Teng et al.
(2012) build two types of ingredient graphs to predict recipe
pairs based on the substitution or complement of ingredients.
Haussmann et al. (2019) leveraged a knowledge base question
answering approach to recommend recipes based on the
ingredients. In our work, we try to model the relational
information through a heterogeneous recipe graph with user
information included. Therefore, the graph learning approach
could automatically encode the relational information and make
considerate recommendations accordingly.
User Behavior Modeling. User Behavior Modeling is widely
studied in the domain of recommendation. For example,
Zhou et al. (2018) proposed an attention based user behavior
modeling framework that projects all types of behaviors
into multiple latent semantic spaces for recommendation.
Elkahky et al. (2015) used a rich feature set to represent
users, including their web browsing history and search
queries to propose a content-based recommendation system.
Abel et al. (2011) analyzed how user profiles benefit from
semantic enrichment and compared different user modeling
strategies in a personalized news recommendation system. In
the field of food recommendation, Zhang et al. (2016) adopted
user feedback of dining behavior to recommend restaurants.
Musto et al. (2020) developed a recommendation strategy based
on knowledge about food and user health-related characteristics
by focusing on personal factors such as the BMI of users and
dietary constraints. Our work incorporates user history behavior
and user feedback such as the ratings toward recipes, which make
our recommendation accounts for user interest and preferences.
Graph Representation Learning.Graph representation learning
has become one of the most popular data mining topics

in the past few years (Wu et al., 2021). Many graph
representation learning approaches (Perozzi et al., 2014; Dong
et al., 2017; Hamilton et al., 2017; Kipf and Welling, 2017;
Schlichtkrull et al., 2018; Velickovic et al., 2018) were proposed
to encode the graph-structure data. They take advantage of
the content information associated with each node and the
relational information in graph to learn vectorized embeddings,
which are used in various graph mining tasks such as
recommendation. For example, DeepWalk (Perozzi et al., 2014)
learned node embeddings by feeding a set of random walks
into a SkipGram model (Mikolov et al., 2013). Nodes in
the graph were trained on each walk simultaneously where
the neighbor nodes served as the contextual information.
matapath2vec (Dong et al., 2017) conducted meta-path based
random walks and utilized a SkipGram model to embed the
heterogeneous graph. GAT (Velickovic et al., 2018) utilized
an attention mechanism into message passing to learn node
embeddings on homogeneous graphs by aggregating neighbor
nodes’ features with different attentions. In our work, we propose
a hierarchical graph attention network that leverages attention
mechanisms on different levels (i.e., node-level and relation-
level), which can be applied on heterogeneous graphs and achieve
outstanding performance.

3. PROPOSED MODEL

In this section, we describe our novel hierarchical graph attention
network model, HGAT. As illustrated in Figure 2, our model
contains several major components. We first apply a type-specific
transformation matrix to take various input features and project

Frontiers in Big Data | www.frontiersin.org 3 January 2022 | Volume 4 | Article 778417

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tian et al. Recipe Recommendation With HGAT

FIGURE 2 | The overall framework of proposed HGAT model for recipe recommendation. (A) Illustration of node-level attention and relation-level attention for

generating the embedding of recipe node r0; (B) Illustration of node-level attention for obtaining the embedding of user node u0. Relation-level attention is omitted here

since user nodes only connect to other nodes through one relation; (C) The recommendation procedure based on the learned embeddings of user u0 and recipe r0.

them into a shared embedding space. We then design a node-
level attention module to encode the neighbor nodes that are
connected by each relation to learn relation-specific embeddings.
Next, we develop a relation-level attention module to combine all
relation-specific embeddings and obtain the updated embedding
for each node. Finally, we introduce a score predictor and a
ranking-based objective function to optimize the model.

3.1. Type-Specific Transformation
Previous works (Salvador et al., 2017; Marin et al., 2019) have
shown that cooking instructions are necessary for providing a
discriminative understanding of the cooking process. We follow
Marin et al.’s work (Marin et al., 2019) to use the pretrained skip-
instruction embeddings as the instruction representations, and
then average these representations to get one input raw feature
for each recipe. For example, given a recipe with M sentence
instruction embeddings {xins,1, xins,2, . . . , xins,M}, we calculate the
average instruction embeddings xins as the input feature for
recipe nodes:

xins =
1

M

(

∑

i∈M

xins,i

)

, (1)

In addition, we formulate the nutrients of each ingredient
into a vector and then use this nutrient vector as the content
information for ingredient nodes. We denote this content
information as the input feature xing for ingredient nodes. To
represent the user nodes, sincemost of the users in Food.com have
not provided any detailed information about themselves (e.g.,
description, location, preference, or demographic information)
and it might violate the privacy policy by crawling this individual
information, we use the xavier normal random initialized feature
(Glorot and Bengio, 2010) as the input feature for user nodes,
denoted as xuser .

Due to the heterogeneity of input features for different node
types (i.e., recipe, ingredient, and user), given a node vi with
type φi, we introduce a type-specific transformation matrix Wφi

to project the input features into the same embedding space.
Specifically, for each node vi, we have the projection process
formulated as follows:

xi =

xins, if φi = recipe

xing , if φi = ingredient

xuser , if φi = user

hi = Wφi · xi,

(2)

whereWφi ∈ R
dφi×d is the transformation matrix, xi is the input

feature of vi with dimension dφi , and hi is the projected feature
of vi with dimension d. In other words, with this type-specific
transformation operation, the instruction, ingredient, and user
embeddings would be in shared embedding space, and the model
can therefore take arbitrary types of input features.

3.2. Node-Level Attention
To encode and fuse the neighbor nodes information, we propose
the node-level attention module, which is based on the attention
aggregator as shown in Figure 3A. Compared to the mean
pooling aggregator (Figure 3B) and concatenation aggregator
(Figure 3C) that have been used widely (Hamilton et al., 2017)
but simply combine the features, attention aggregator can learn
the importance of each neighbor node and fuse them wisely.
Specifically, for a node vi, we first use the node-level attention to
calculate each relation-specific embedding hi,r for each relation r
that connects to vi. To explain how we get the relation-specific
embeddings hi,r , we will start by describing a single node-level
attention layer, as to calculate the node-level attention for each
node. To compute the hi,r in layer l + 1, the input of the node-
level attention layer is a set of node embeddings from layer

Frontiers in Big Data | www.frontiersin.org 4 January 2022 | Volume 4 | Article 778417

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tian et al. Recipe Recommendation With HGAT

FIGURE 3 | Illustrations of different neighbor aggregators. (A) Attention mechanism to encode neighbor nodes information. (B) Mean pooling operator to encode

neighbor information. (C) Concatenation operator followed by linear transformation to encode neighbor information.

l: {h1, h2, . . . , hNi,r } ∈ R
dl , where Ni,r denotes the number of

neighbor nodes that connect to vi through relation r, and dl
is the dimension of embeddings in layer l. In order to acquire
sufficient expressive power to transform the input features into
higher-level features zi ∈ R

dl+1 , where dl+1 is the dimension of
embeddings in layer l + 1, a shared linear transformation weight
matrixWr ∈ R

dl×dl+1 for relation r is applied:

zi = Wr · hi. (3)

With the intermediary features zi, zj for nodes vi and vj,
respectively, we calculate the unnormalized attention score eij
between vi and vj to indicate the importance of vj to vi. The
calculation process is defined as follows:

eij = LeakyReLU
[

Wij · (zi‖zj)
]

, (4)

where ‖ indicates the concatenation operator and Wij ∈ R
2dl+1

is a weight vector that represents the attention between vi
and vj. Theoretically, our model can calculate the attention
of every node to every other node without considering the
relational information. Taking the message passing protocol into
consideration, we acknowledge the graph structure and perform
masked attention (Velickovic et al., 2018), which only computes
eij if there exists an edge between vi and vj in the graph. In
other words, we focus only on the first-order neighbor nodes
of vi (including vi). We further normalize the eij using the
softmax function to make the coefficients easily comparable
across different nodes. The normalized node-level attention
vector αij is computed as:

αij =
exp(eij)

∑

k∈Ni,r
exp(eik)

, (5)

After that, we use αij as coefficients to linearly combine
the neighbor nodes features and generate the relation-specific
embedding hi,r : The process is formulated as follows:

hi,r = σ

∑

j∈Ni,r

αij · zj

 , (6)

where σ is the nonlinear activation function (we use ReLU in
our experiment). Instead of simply performing a single attention
function, inspired by previous work (Vaswani et al., 2017), we
extend the node-level attention to multi-head attention so that
the model and the training process are more stable. In particular,
we compute the node-level attention M times in parallel, and
then concatenate the output and project them into a final learned
relation-specific embedding hi,r . The computation process is
formulated as follows:

hi,r =
M
‖

m=1
σ

∑

j∈Ni,r

αij · zj

WO, (7)

where WO ∈ R
Kdm×dl+1 is a learnable weight matrix, and dm is

the dimension of attention heads with dm = dl+1/M. Therefore,
with the reduced dimension dk of each head, the total cost
of computation for multi-head attention is similar to that of
single-head attention with dimension dl+1.

3.3. Relation-Level Attention
In our graph, nodes are connected to other nodes through
multiple types of relations (e.g., recipe to user, recipe to
ingredient, and recipe to recipe), while each relation-specific
node embedding can only represent the node information
from one perspective. Therefore, the relation-specific node
embeddings around a node need to be fused to learn a more
comprehensive node embedding. To address the challenge of
selecting relation and fusing multiple relation-specific node
embeddings, we propose a relation-level attention module to
learn the importance of different relations and automatically fuse
them. Specifically, we use the relation-level attention module to
combine all relation-specific embeddings hi,r and generate the
final node embedding hi.

We first use a shared nonlinear weightmatrixWR to transform
the relation-specific node embeddings. Then we use a relation-
level intermediary vector q to calculate the similarity with
transformed embeddings, which is also used as the importance of
each relation-specific node embedding. After that, we average the
importance of all relation-specific node embeddings for relation

Frontiers in Big Data | www.frontiersin.org 5 January 2022 | Volume 4 | Article 778417

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tian et al. Recipe Recommendation With HGAT

r to generate the importance score wi,r for node vi. The process is
shown as follows:

wi,r =
1

|Vr|

∑

i∈Vr

qT · tanh(WR · hi,r + b), (8)

where WR ∈ R
dl+1×dl+1 is a nonlinear weight matrix, b ∈ R

dl+1

is the bias vector, q ∈ R
dl+1 is the relation-level intermediary

vector, and Vr denotes the set of nodes under relation r. To
make the coefficients comparable across different relations, we
normalize wi,r to get the relation-level attention vector βi,r for
each relation r using the softmax function. The normalization
process is formulated as:

βi,r =
exp(wi,r)

∑

r∈Ri
exp(wi,r)

, (9)

where Ri indicates the associated relations of node vi. Here,
the generated attention vector βi,r can be explained as the
contribution of relation r to node vi. Apparently, the higher
the βi,r , the more important the relation r is. Since different
relations may contribute differently to the training objective,
the relation-level attention vector for each relation could have
different weights accordingly. Therefore, we fuse the relation-
specific node embeddings hi,r with the relation-level attention to
obtain the final node embedding hi. The process is demonstrated
as follows:

hi =

Ri
∑

r=1

βi,r · hi,r . (10)

Here, the final node embedding hi can be interpreted as
the optimally weighted combination of relation-specific node
embeddings, while each relation-specific node embedding is an
optimally weighted combination of the node embeddings that
share the same relation.

3.4. Recipe Recommendation
Above we discuss how to propagate and learn node embedding
hi in layer l + 1. However, how to take advantage of
these informational node embeddings and make recipe
recommendations remains a challenge. In this section, we
introduce how we leverage these embeddings to make proper
recommendations. Specifically, suppose we propagate and
update the node embeddings through L layers of GNN with both
node-level and relation-level attentions encoded, where L is a
hyperparameter, we obtain L representations generated by each
layer for each node. For example, given a node vi with type φi, the

learned node embedding ĥi can be denoted as {h1φi
, h2φi

, . . . , hLφi
},

where φi ∈ {ins, ing, user}. The process can be formulated
as follows:

ĥi =

{h1ins, h
2
ins, ..., h

L
ins}, if φi = recipe

{h1ing , h
2
ing , ..., h

L
ing}, if φi = ingredient

{h1user , h
2
user , ..., h

L
user}, if φi = user

(11)

Since the representations generated by different layers underline
the combination of messages passed over different orders of

connections, they represent the node information from different
perspectives. As such, they have different contributions in
reflecting the node information. Therefore, we concatenate them
to develop the final embedding for each node. The concatenation
process can be shown as follows:

ĥi =

L
‖
l=1

hlins, if φi = recipe

L
‖
l=1

hling , if φi = ingredient

L
‖
l=1

hluser , if φi = user

(12)

where l indicates the layer and ‖ is the concatenation operation.
Accordingly, we not only enrich the last layer of node embedding
with the embedding from the former propagation layers but
also enable the power to supervise the range of propagation by
controlling the parameter L. Here, we only apply concatenation
to combine these different layers of embeddings out of simplicity
and effectiveness (Xu et al., 2018). Still, other operations can
also be leveraged such as max pooling, LSTM (Hochreiter and
Schmidhuber, 1997), or weighted average. These aggregators
suggest different assumptions in aggregating the embeddings.We
left this to explore in future work.

Finally, we leverage a score predictor to make
recommendations based on the learned user embeddings
and recipe embeddings. In particular, given a user u with
embedding hu and a recipe with embedding hr , the score
predictor can take them as the input and generate a score to
indicate if the model should recommend this recipe to the user.
The score is ranged between 0 and 1. When the score is closer to
1, it means the recipe should be recommended and vice versa.
The recommendation process is demonstrated as follows:

su,r = sp(hu, hr), (13)

where sp is the score predictor and su,r is the recommendation
score of recipe r to user u. We further comparemultiple functions
for sp including inner product, cosine similarity, and multi-layer
perceptron. The one that renders the highest performance is
selected for our model (i.e., inner product). Further details are
illustrated in section 4.7.3.

To learn the model parameters, we employ a ranking-based
objective function to train the model. In particular, the objective
involves comparing the recommendation scores between nodes
connected by a user-recipe relation against the scores between an
arbitrary pair of user and recipe nodes. For example, given an
edge connecting a user node u and a recipe node r, we encourage
the recommendation score between u and r to be higher than the
score between u and a randomly sampled negative recipe node r′.
We formulate the objective L as follows:

L =
∑

u∈U,r∈Nu

max(0, 1− su,r + su,r′), (14)

where su,r and su,r′ are the recommendation score between user
u and correct recipe r as well as incorrect recipe r′, respectively,
U denotes the user set, and Nu indicates the recipe neighbors of
user u.

Frontiers in Big Data | www.frontiersin.org 6 January 2022 | Volume 4 | Article 778417

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tian et al. Recipe Recommendation With HGAT

4. EXPERIMENTS

In this section, we conduct extensive experiments with the aim of
answering the following research questions:

• RQ1: How does HGAT perform compared to various baseline
methods on recipe recommendation?

• RQ2: How do different components, e.g., node-level attention
or relation-level attention affect the model performance?

• RQ3: How do various hyper-parameters, e.g., number of
embedding dimensions and propagation layers, impact the
model performance?

4.1. Dataset
We extract the recipes from Reciptor (Salvador et al., 2017; Li and
Zaki, 2020) and only use those recipes that have comprehensive
information (i.e., with the quantity and unit indicated for each
ingredient). All these recipes are collected from Food.com, which
is one of the largest recipe-sharing platforms online. To formulate
the real-life user-recipe interactions, we crawl the user ratings
for each recipe from the platform and leverage this information
for the recipe recommendation task. For each ingredient that
appeared in the dataset, we further match them to the USDA
nutritional dataset (U.S. Department of Agriculture, 2019) to
get the nutritional information. Next, we construct our recipe
graph by transforming the recipes, users, and ingredients into
nodes with the type “recipe,” “user,” and “ingredient,” respectively.
After that, we build four types of edges among these nodes to
connect them. In particular, we first connect each recipe and its
ingredients with an edge, denoted as recipe-ingredient relation,
while the weight of each ingredient is used as the edge weight.
We then connect recipe nodes by their similarity from FoodKG
(Haussmann et al., 2019) and the score is used as the edge
weight, as shown in Reciptor (Li and Zaki, 2020). We further
connect ingredient nodes by the co-occurring probabilities using
Normalized Pointwise Mutual Information (NPMI) (Bouma,
2009) from FlavorGraph (Park et al., 2021), as shown in the
KitcheNette (Park et al., 2019). Moreover, we construct edges
between users and recipes based on the interactions, while the
ratings are treated as the edge weight. The statistics of the
constructed recipe graph are provided in Table 1.

4.2. Experimental Setup
We employ the leave-one-out method to evaluate the
model performance, which is widely utilized in existing
recommendation studies (He et al., 2016, 2017; Bayer et al.,
2017; Jiang et al., 2019). Specifically, for each user, we leave one
positive recipe out as the test data, one positive recipe out for
validation, and used the remaining positive recipes for training.
In the testing period, we randomly sampled 100 negative recipes
for each user and evaluated the model performance using Recall
and Mean Reciprocal Rank (MRR) metrics. We reported the
performance under top@K, while K ranges from 1 to 10. The
definitions of these two metrics are illustrated as follows:

• Recall@K. It shows the ratio of correct recipes being retrieved
in the top@K recommendation list, which is computed by:

TABLE 1 | The statistics of the build recipe graph.

Component Name Number Data Source

Nodes

User 7,959 Food.com

Recipe 68,794 Reciptor [Li and Zaki

(2020)]

Ingredient 8,847 Reciptor [Li and Zaki

(2020)]

Edges

User-recipe 135,353 Food.com

Recipe-recipe 647,146 FoodKG [Haussmann

et al. (2019)]

Recipe-ingredient 463,485 Reciptor [Li and Zaki

(2020)]

Ingredient-ingredient 146,188 FlavorGraph [Park

et al. (2021)]

Recall@K =
1

|Utest|

∑

u∈Utest

|RE(u) ∩ GT (u)|

|GT (u)|
(15)

where Utest is the set of users in test data for evaluation,
RE(u) indicates the top@K recommendation list for user u,
and GT (u) denotes the ground truth recipe set for user u.

• MRR@K. It measures the ranking quality of the
recommendation list, whis is defined as:

MRR@K =
1

|Utest|

∑

u∈Utest

1

|GT K(u)|

∑

v∈GT K(u)

1

r̂(v)
(16)

where GT K(u) denotes the ground truth recipes that appear in
the top@K recommendation list for user u, and r̂(v) represents
the ranking position of the recipe in the recommendation list.

4.3. Baseline Methods
We compare HGAT with seven baseline methods, including
classic recommendation approaches, recipe representation
learning methods, and graph embedding models.

• BPR (Rendle et al., 2009): A competitive pairwise matrix
factorization model for recommendation, which is also one
of the state-of-the-art algorithms used widely in recipe
recommendation task (Trattner and Elsweiler, 2019).

• IngreNet (Teng et al., 2012): A recipe recommendation
approach by replacing the popular ingredient list with
the co-occurrence count extracted from the constructed
ingredient network. A GCN layer is applied on the
user-recipe graph to learn the embeddings jointly for a
fair comparison.

• NeuMF (He et al., 2017): One of the state-of-the-art neural
collaborative filtering models that use neural networks on
user and item embeddings to capture their nonlinear feature
interactions.

• matapath2vec (Dong et al., 2017): A heterogeneous graph
embedding method based on random walk guided by meta-
path. Here, we use meta-path user-recipe-ingredient-recipe-
user.

Frontiers in Big Data | www.frontiersin.org 7 January 2022 | Volume 4 | Article 778417

http://food.com/
http://food.com/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tian et al. Recipe Recommendation With HGAT

TABLE 2 | Performances of different models for Top@K recipe recommendations.

Metric Model
K

1 2 3 4 5 6 7 8 9 10

Recall@K

BPR 2.78 4.06 5.21 6.45 7.53 8.36 9.18 10.20 11.01 12.15

IngreNet 9.49 13.56 16.22 18.38 19.89 21.72 23.04 24.60 26.05 27.24

NeuMF 2.46 4.64 6.37 8.19 10.06 11.57 13.10 14.61 15.96 17.29

metapath2vec 6.96 11.67 15.76 19.06 21.31 23.53 25.23 26.82 28.43 29.97

GraphSage 2.55 5.40 8.23 10.91 13.70 15.99 18.62 21.08 23.38 25.56

GAT 2.89 5.91 8.96 11.82 14.55 17.49 20.02 22.58 25.12 27.33

Reciptor 8.63 12.33 14.1 15.22 16.04 16.85 17.77 18.61 19.2 19.91

HGAT 14.91 18.88 22.62 25.47 28.32 30.71 33.11 35.24 37.49 39.50

MRR@K

BPR 2.78 3.42 3.80 4.11 4.33 4.46 4.58 4.71 4.80 4.91

IngreNet 9.49 11.52 12.41 12.95 13.25 13.56 13.75 13.94 14.10 14.22

NeuMF 2.46 3.55 4.13 4.58 4.96 5.21 5.43 5.62 5.77 5.90

metapath2vec 6.96 9.32 10.68 11.50 11.95 12.32 12.57 12.77 12.94 13.10

GraphSage 2.55 3.98 4.92 5.59 6.15 6.53 6.90 7.21 7.47 7.68

GAT 2.89 4.40 5.42 6.13 6.68 7.17 7.53 7.85 8.13 8.35

Reciptor 8.63 10.48 11.07 11.35 11.51 11.65 11.78 11.88 11.95 12.02

HGAT 14.91 16.90 18.14 18.86 19.43 19.82 20.17 20.43 20.68 20.89

• GraphSAGE (Hamilton et al., 2017): A graph neural network
model that learns embeddings by aggregating and sampling
the features of local neighbors.

• GAT (Velickovic et al., 2018): A graph attention network
model that leverages the attention mechanism to aggregate
neighbor information on the homogeneous graphs.

• Reciptor (Li and Zaki, 2020): One of the state-of-the-art
recipe embedding models based on the set transformer and
optimized by an instructions-ingredients similarity loss and a
knowledge graph based triplet loss. A GCN layer is applied to
each relation to jointly train user and recipe embedding for a
fair comparison.

4.4. Implementation Details
For the proposed model HGAT, we set the learning rate to
0.005, the number of node-level attention heads to 4, the hidden
size to 128, the input dimension of skip-instruction embeddings
to 1,024, the input dimension of ingredient embeddings to 46,
batch size to 1,024, and the training epochs to 100. We optimize
the model with Adam (Kingma and Ba, 2014) and decay the
learning rate exponentially by γ = 0.95 every epoch. For random
walk based graph representation learning algorithms including
DeepWalk and metapath2vec, we set the window size to 5, walk
length to 30, the number of walks rooted at each node to 5,
and the number of negative samples to 5. For homogeneous
graph representation learning approaches including DeepWalk,
GAT, and GraphSage, we ignore the heterogeneity of nodes and
perform the algorithm on the whole graph. For a fair comparison,
we set the embedding dimension to 128 for all above models
except for Reciptor as we follow the original setup and use 600
as the embedding dimension.

4.5. Performance Comparison (RQ1)
We use the Recall and MRR as the evaluation metrics. The
performances of all models are reported in Table 2. The best
results are highlighted in bold. According to the table, we can find
that our model HGAT outperforms all the baselines in all cases.
Specifically, traditional collaborative filtering recommendation
approaches such as BPR and NeuMF perform poorly because
they neither consider the hidden relational information nor the
ingredients associated with each recipe. Recipe recommendation
model IngreNet obtains decent performance after incorporating
the GCN to leverage the relational information. Reciptor fails to
perform well because the model only learns representations for
recipes while overlooking the user information. Even applying
a GCN layer to learn the user embeddings jointly cannot
fully encode the information. However, homogeneous graph
representation learning approaches (i.e., GraphSage and GAT)
achieve satisfactory results for Recall but perform poorly for
MRR. This is because the node type information is important in
modeling the graph structure. Ignoring this information prevents
the model from learning comprehensive node embeddings
and failing to rank the correct recipe higher within the
returned recommendation list. On the contrary, metapath2vec,
as a heterogeneous graph representation learning algorithm,
performs well for both Recall and MRR. Finally, the proposed
model, HGAT, achieves the best performance compared to all
the baselinemethods by incorporating recipe content, high-order
interactions, relational information, and leveraging attention
mechanisms to encode different types of nodes and relations.
In general, compared to the best baseline, HGAT improves
the recall score by +5.42%, +5.32%, +6.40%, +6.41%, +7.01%,
+7.18%, +7.88%, +8.42%, +9.06%, and +9.53% on k ranges
from 1 to 10, respectively. When it comes to MRR score,

Frontiers in Big Data | www.frontiersin.org 8 January 2022 | Volume 4 | Article 778417

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tian et al. Recipe Recommendation With HGAT

TABLE 3 | Comparison of different model variants on top@K recommendations.

Metric Model
K

1 2 3 4 5 6 7 8 9 10

Recall@K

HGATmean 12.50 17.33 20.76 23.46 25.79 28.03 30.41 32.49 34.33 36.07

HGATpool 13.67 18.26 21.52 24.59 27.06 29.26 31.24 33.50 35.34 37.24

HGATnAtt 14.63 18.87 22.02 25.38 28.04 30.29 32.52 34.92 36.90 38.84

HGAT 14.91 18.88 22.62 25.47 28.32 30.71 33.11 35.24 37.49 39.50

MRR@K

HGATmean 12.50 14.91 16.06 16.73 17.20 17.57 17.91 18.17 18.38 18.55

HGATpool 13.67 15.96 17.05 17.82 18.31 18.68 18.96 19.24 19.45 19.64

HGATnAtt 14.63 16.75 17.80 18.42 18.93 19.30 19.62 19.92 20.14 20.34

HGAT 14.91 16.90 18.14 18.86 19.43 19.82 20.17 20.43 20.68 20.89

HGAT improves the score by +5.42%, +5.38%, +5.73%, +5.91%,
+6.18%, +6.26%, +6.42%, +6.49%, +6.58%, and +6.67% on
k ranges from 1 to 10, respectively. This demonstrates that
HGAT can obtain better recipe recommendations compared to
other models.

4.6. Ablation Studies (RQ2)
HGAT is a joint learning framework composed of several
neural network modules. How do different components impact
the model performance? To answer this question, we conduct
ablation studies to evaluate the performances of several model
variants including:

• HGATmean: a model variant that uses neither node-level
attention nor relation-level attention. Instead, it uses a mean
operator to combine the neighbor node features, and relation
features.

• HGATpool: a model variant that uses neither node-level
attention nor relation-level attention. Instead, it uses a pooling
operator to combine the neighbor node features and a mean
operator to combine the relation features.

• HGATnAtt : a model variant that uses node-level attention to
fuse neighbor node features, and mean operator to combine
the relation features.

• HGAT: the proposed model that leverages both node-level
attention and relation-level attention.

The results are reported in Table 3. From this table:

• HGATpool has better performance than HGATmean, indicating
the way how to aggregate neighbor nodes information is
important, and simply using the mean operator to combine
the neighbor node messages could lose some information.

• HGATnAtt performs better than HGATpool and HGATmean,
demonstrating the effectiveness of node-level attention and
illustrating using attention mechanism advances using mean
or pooling operator in aggregating the neighbor nodes
information.

• The proposed HGAT outperforms all the model variants
including HGATnAtt , showing that the incorporation
of relation-level attention could further improve the

performance. This demonstrates the effectiveness of
relation-level attention.

4.7. Parameter Sensitivity (RQ3)
To estimate the proposed models’ sensitivity to hyper-
parameters, we conducted many contrast experiments to
measure the performance of HGAT under different hyper-
parameter settings. We start by exploring the influence of
embedding dimensions, as it usually plays a pivotal role in
data modeling. We then analyze the impact of propagation
layer numbers to show the importance of modeling relational
information. Moreover, we study how different score predictors
affect recommendation performance.

4.7.1. Impact of Different Embedding Dimensions
We report the performance of Recall@5,MRR@5, Recall@10, and
MRR@10 with respect to the number of embedding dimensions
in Figure 4. Specifically, we search the number of embedding
dimensions within {16, 32, 64, 128, 256, 512} and evaluate the
performance of the proposed HGAT and two best baselines (i.e.,
metapath2vec and GAT). From the figure:

• Increasing the number of embedding dimensions improves
the model performance. Clearly, all models achieve the highest
score on the 2 metrics when using the 256 dimensions. This
is because more dimensions could have more capacity to
represent the node content.

• Further increasing the number of embedding dimensions
to 512 leads to overfitting. This might be projecting the
representation into a higher-dimensional space introduced
noise.

• When varying the number of embedding dimensions, HGAT
is consistently superior to other methods on different setups.
This demonstrates the capability of HGAT compared to other
approaches.

4.7.2. Impact of Different Propagation Layers
We vary the model depth and test performance to investigate
whether the proposed HGAT can benefit from multiple
embedding propagation layers. Specifically, we search the layer
numbers in {1, 2, 3, 4}. Experimental results are reported in

Frontiers in Big Data | www.frontiersin.org 9 January 2022 | Volume 4 | Article 778417

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tian et al. Recipe Recommendation With HGAT

FIGURE 4 | Performance of Top@10 recipe recommendations w.r.t. the number of embedding dimensions.

TABLE 4 | Performance of HGAT on Top@K recommendations w.r.t. propagation layers.

Metric Layers
K

1 2 3 4 5 6 7 8 9 10

Recall@K

HGAT-1 14.57 17.62 19.15 20.47 21.70 22.92 24.24 25.54 26.95 28.13

HGAT-2 14.91 18.88 22.62 25.47 28.32 30.71 33.11 35.24 37.49 39.50

HGAT-3 15.19 19.71 23.47 26.45 29.17 31.90 34.55 36.86 39.26 41.30

HGAT-4 14.73 19.50 23.28 26.80 29.45 31.71 34.33 36.54 38.62 41.09

MRR@K

HGAT-1 14.57 16.09 16.61 16.94 17.18 17.39 17.57 17.74 17.89 18.01

HGAT-2 14.91 16.90 18.14 18.86 19.43 19.82 20.17 20.43 20.68 20.89

HGAT-3 15.19 17.45 18.70 19.45 19.99 20.45 20.83 21.12 21.38 21.59

HGAT-4 14.73 17.11 18.37 19.25 19.78 20.16 20.53 20.81 21.04 21.29

TABLE 5 | Performance of HGAT on Top@K recipe recommendations w.r.t. the score predictors.

Metric
Score

Predictor
K

1 2 3 4 5 6 7 8 9 10

Recall@K

Consine 14.89 17.67 19.96 22.01 24.04 26.08 28.19 30.10 32.23 34.15

MLP 14.21 18.53 22.16 24.89 27.48 29.89 32.16 34.41 36.69 38.71

Inner Product 14.91 18.88 22.62 25.47 28.32 30.71 33.11 35.24 37.49 39.50

MRR@K

Cosine 14.89 16.33 17.09 17.61 18.01 18.35 18.65 18.89 19.13 19.32

MLP 14.21 16.37 17.58 18.26 18.78 19.18 19.51 19.79 20.04 20.24

Inner Product 14.91 16.90 18.14 18.86 19.43 19.82 20.17 20.43 20.68 20.89

Table 4, wherein HGAT-2 indicates the model with 2 embedding
propagation layers and similar notations for others. By analyzing
the Table 4, we have the following observations:

• Equipping HGAT with more propagation layers substantially
enhances the recommendation performance. Clearly, HGAT-
2 and HGAT-3 achieve consistent improvement over HGAT-
1 in all cases, given HGAT-1 only considers the first-order
neighbor nodes.We attribute this improvement to the effective
modeling of relational information: relational information are
carried by second-order and third-order connectivities, and
relational information can be modeled by encoding these
interactions.

• When further stacking propagation layer on the top ofHGAT-
3, we find thatHGAT-4 leads to overfitting on the dataset. This
is because applying a too deep architecture might introduce

noises into modeling. Similar results to HGAT-3 verifies that
conducting three propagation layers is sufficient to capture the
relational information.

• By comparing the results in Table 4 to Table 2 (which report
the HGAT-2 performance), we can find HGAT is consistently
superior to other methods. This again verifies the effectiveness
of HGAT, empirically showing that explicit modeling of high-
order interactions and relational information can greatly
facilitate the modeling and further improve the performance
in recommendation tasks.

4.7.3. Impact of Different Score Predictors
To show the effectiveness of the used score predictor in
our model, we testify the effect of different score predictors
and report the performance in Table 5. In particular, we

Frontiers in Big Data | www.frontiersin.org 10 January 2022 | Volume 4 | Article 778417

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tian et al. Recipe Recommendation With HGAT

FIGURE 5 | Visualization of the user and recipe embeddings generated by different models. Red nodes represent the user while blue nodes represent the recipe. An

edge connecting a user and a recipe indicates the interaction between them.

use different similarity functions, namely, cosine similarity,
multi-layer perceptron (MLP), and inner product. We
evaluate the performance of different functions on Top@K
recommendations where K ranges from 1 to 10. From
the table:

• Inner product is the best function to calculate the similarity
score and cosine is the worst. This might be because the cosine
similarity only cares about the angle difference between 2
vectors, which fails to capture the complexity of the learned
embeddings, while the inner product considers both the angle
and the magnitude.

• MLP achieves similar performance on inner product under
Recall but still performs worse when using MRR to evaluate,
which is consistent with the findings in paper (Rendle
et al., 2020). This further shows the compatibility of the
inner product.

4.8. Case Study: Embedding Visualization
For a more intuitive understanding and comparison, we
randomly select 8 user-recipe interaction pairs and generate the
visualization of their embeddings using t-SNE (van der Maaten
and Hinton, 2008). As shown in Figure 5, we can find that
IngreNet does not perform well. The model can roughly separate
the users and recipes into the left and right parts, but there
are gaps within each cluster. Also, the lines between clusters
are disordered. Ideally, there should develop a clear mapping
between each user-recipe pair. In other words, if we connect for
each pair, the connecting lines should be parallel to each other
[similar to the “king-man=queen-woman” relationship (Mikolov
et al., 2013)]. GAT can successfully form the users and recipes
into two condense clusters, but fail to construct the parallel
lines between them. Metapath2vec builds two clusters for users
and recipes and establish parallel lines between clusters in some
sense. Examples are the “1404–57276” and “1427–50599” user-
recipe pairs. However, the formed clusters are not condensed,
and only a few of the lines are parallel to each other. Finally,
our model HGAT can easily form the users and recipes into
2 condensed clusters and obtain parallel lines for almost all

user-recipe pairs. This further demonstrates the superiority of
our model.

5. CONCLUSION

In this paper, we propose to leverage the relational information
into recipe recommendation. To achieve this, we design HGAT,
a novel hierarchical graph attention network for solving the
problem. HGAT is able to capture user history behaviors,
recipe content, and relational information through several neural
network modules. We further introduce a score predictor and
a ranking-based objective function to optimize the model.
Extensive experiments demonstrate that HGAT outperforms
numerous baseline approaches. In the future, we plan to
incorporate more information and improve HGAT. We observe
that there are still plenty of useful information components
that we can use such as user reviews and recipe health factors.
One promising direction is to investigate how to make recipe
recommendation that fit user preferences and health concerns.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

YT, CZ, RM, and NC contributed to the overall design of
the study. YT conducted the experiments. CZ performed
the interpretation of results. YT wrote the first draft of the
manuscript. All authors contributed to manuscript revision and
approved the submitted version.

FUNDING

This work was supported by the Agriculture and Food
Research Initiative grant no. 2021-67022-33447/project accession
no.1024822 from the USDA National Institute of Food
and Agriculture.

Frontiers in Big Data | www.frontiersin.org 11 January 2022 | Volume 4 | Article 778417

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tian et al. Recipe Recommendation With HGAT

REFERENCES

Abel, F., Gao, Q., Houben, G.-J., and Tao, K. (2011). “Analyzing user modeling on

twitter for personalized news recommendations,” in UMAP (Girona).

Adaji, I., Sharmaine, C., Debrowney, S., Oyibo, K., and Vassileva, J. (2018).

“Personality based recipe recommendation using recipe network graphs,” in

SCSM (Las Vegas, NV).

Bayer, I., He, X., Kanagal, B., and Rendle, S. (2017). “A generic coordinate descent

framework for learning from implicit feedback,” inWWW (Perth, WA).

Bouma, G. (2009). “Normalized (pointwise) mutual information in collocation

extraction,” in GSCL (Potsdam).

Britto, L., Pacífico, L., Oliveira, E., and Ludermir, T. (2020). “A cooking recipe

multi-label classification approach for food restriction identification,” in ENIAC

(Rio Grande).

Chen, M., Jia, X., Gorbonos, E., Hoang, C. T., Yu, X., and Liu, Y.

(2020). Eating healthier: exploring nutrition information for healthier recipe

recommendation. Inf. Process. Manag. 57, 102051.

Dong, Y., Chawla, N. V., and Swami, A. (2017). “metapath2vec: scalable

representation learning for heterogeneous networks,” in KDD (Halifax, NS).

Elkahky, A. M., Song, Y., and He, X. (2015). “A multi-view deep learning approach

for cross domain user modeling in recommendation systems,” in WWW

(Florence).

Forbes, P., and Zhu, M. (2011). “Content-boosted matrix factorization for

recommender systems: experiments with recipe recommendation,” in RecSys

(Chicago, IL).

Freyne, J., and Berkovsky, S. (2010). “Intelligent food planning: personalized recipe

recommendation,” in IUI (Chicago, IL).

Gao, X., Feng, F., He, X., Huang, H., Guan, X., Feng, C., et al. (2020). Hierarchical

attention network for visually-aware food recommendation. IEEE Trans.

Multimedia 22, 1647–1659. doi: 10.1109/TMM.2019.2945180

Ge, M., Elahi, M., FernandezTobias, I., Ricci, F., and Massimo, D. (2015). “Using

tags and latent factors in a food recommender system,” in ICDH (Florence).

Glorot, X., and Bengio, Y. (2010). “Understanding the difficulty of training deep

feedforward neural networks,” in AISTATS (Sardinia).

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). “Inductive representation

learning on large graphs,” in NeurIPS (Long Beach, CA).

Haussmann, S., Seneviratne, O., Chen, Y., Ne’eman, Y., Codella, J., Chen, C.-

H., et al. (2019). “Foodkg: a semantics-driven knowledge graph for food

recommendation,” in ISWC (Auckland).

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. (2017). “Neural

collaborative filtering,” inWWW (Perth, WA).

He, X., Zhang, H., Kan, M.-Y., and Chua, T.-S. (2016). “Fast matrix factorization

for online recommendation with implicit feedback,” in SIGIR (Pisa).

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Jiang, H.,Wang,W., Liu, M., Nie, L., Duan, L.-Y., and Xu, C. (2019). “Market2dish:

a health-aware food recommendation system,” in ACM-MM (Nice).

Khan,M. A., Rushe, E., Smyth, B., and Coyle, D. (2019). Personalized, health-aware

recipe recommendation: an ensemble topic modeling based approach. arXiv

preprint arXiv: 1908.00148.

Kingma, D., and Ba, J. (2014). “Adam: a method for stochastic optimization,” in

ICLR (San Diego, CA).

Kipf, T. N., and Welling, M. (2017). “Semi-supervised classification with graph

convolutional networks,” in ICLR (Toulon).

Li, D., and Zaki, M. J. (2020). “Reciptor: an effective pretrained model for recipe

representation learning,” in KDD (Virtual Event, CA).

Li, Q., Chen, W., and Yu, L. (2010). “Community-based recipe recommendation

and adaptation in peer-to-peer networks,” in ICUIMC (Suwon).

Marin, J., Biswas, A., Ofli, F., Hynes, N., Salvador, A., Aytar, Y., et al. (2019).

Recipe1m+: a dataset for learning cross-modal embeddings for cooking recipes

and food images. IEEE Trans. Pattern Anal. Mach. Intell. 43, 187–203.

doi: 10.1109/TPAMI.2019.2927476

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). “Efficient estimation of

word representations in vector space,” in ICLR (Scottsdale).

Min, W., Jiang, S., and Jain, R. (2020). Food recommendation: Framework,

existing solutions, and challenges. IEEE Trans. Multimedia 22, 2659–2671.

doi: 10.1109/TMM.2019.2958761

Min,W., Jiang, S., Liu, L., Rui, Y., and Jain, R. (2019). A survey on food computing.

arXiv preprint arXiv:1808.07202.

Mouritsen, O. G., Edwards-Stuart, R., Ahn, Y.-Y., and Ahnert, S. E. (2017). Data-

driven methods for the study of food perception, preparation, consumption,

and culture. Front. ICT 4, 15. doi: 10.3389/fict.2017.00015

Musto, C., Trattner, C., Starke, A., and Semeraro, G. (2020). “Towards a

knowledge-aware food recommender system exploiting holistic user models,”

in UMAP (Genoa).

Park, D., Kim, K., Kim, S., and Spranger, M. (2021). Flavorgraph: a

large-scale food-chemical graph for generating food representations and

recommending food pairings. Sci. Rep. 11, 931. doi: 10.1038/s41598-020-

79422-8

Park, D., Kim, K., Park, Y., Shin, J., and Kang, J. (2019). “Kitchenette: predicting

and ranking food ingredient pairings using siamese neural network,” in IJCAI

(Macao).

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). “Deepwalk: online learning of social

representations,” in KDD (New York, NY).

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. (2009). “Bpr:

Bayesian personalized ranking from implicit feedback,” inUAI (Montreal, QC).

Rendle, S., Krichene, W., Zhang, L., and Anderson, J. R. (2020). Neural

collaborative filtering vs. matrix factorization revisited. arXiv preprint arXiv:

2005.09683.

Salvador, A., Hynes, N., Aytar, Y., Marin, J., Ofli, F., Weber, I., and Torralba,

A. (2017). “Learning cross-modal embeddings for cooking recipes and food

images,” in CVPR (Honolulu, HI).

Sano, N., Machino, N., Yada, K., and Suzuki, T. (2015). Recommendation system

for grocery store considering data sparsity. Procedia Comput. Sci. 60, 1406–

1413. doi: 10.1016/j.procs.2015.08.216

Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., and Welling,

M. (2018). “Modeling relational data with graph convolutional networks,” in

ESWC (Heraklion).

Teng, C., Lin, Y., and Adamic, L. A. (2012). “Recipe recommendation using

ingredient networks,” inWebSci (Evanston, IL).

Tian, Y., Zhang, C., Metoyer, R. A., and Chawla, N. (2021). “Recipe representation

learning with networks,” in Proceedings of the 30th ACM International

Conference on Information & Knowledge Management 1824–1833.

doi: 10.1145/3459637.3482468

Trattner, C., and Elsweiler, D. (2017a). Food recommender systems: important

contributions, challenges and future research directions. arXiv preprint arXiv:

1711.02760.

Trattner, C., and Elsweiler, D. (2017b). “Investigating the healthiness of internet-

sourced recipes implications for meal planning and recommender systems,” in

WWW (Perth, WA).

Trattner, C., and Elsweiler, D. (2019). “An evaluation of recommendation

algorithms for online recipe portals,” in RecSys (Copenhagen).

U.S. Department of Agriculture, A. R. S. (2019). Usda National Nutrient

Database for Standard Reference, Release 27. Methods and Application

of Food Composition Laboratory Home Page, Available online at:

http://www.ars.usda.gov/nea/bhnrc/mafcl.

Ueda,M., Takahata,M., andNakajima, S. (2011). “User’s food preference extraction

for personalized cooking recipe recommendation,” in ISWC (Bonn).

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-sne. J.

Mach. Learn. Res. 9, 2579–2605. Available online at: http://jmlr.org/papers/v9/

vandermaaten08a.html

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.

(2017). “Attention is all you need,” in NeurIPS (Long Beach, CA).

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y.

(2018). “Graph attention networks,” in ICLR (Vancouver, BC).

Vivek, M., Manju, N., and Vijay, M. (2018). “Machine learning based food recipe

recommendation system,” in ICCR.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2021).

A comprehensive survey on graph neural networks. IEEE Trans.

Neural Netw. Learn. Syst. 32, 4–24. doi: 10.1109/TNNLS.2020.

2978386

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-I., and Jegelka, S. (2018).

“Representation learning on graphs with jumping knowledge networks,” in

ICML (Stockholm).

Frontiers in Big Data | www.frontiersin.org 12 January 2022 | Volume 4 | Article 778417

https://doi.org/10.1109/TMM.2019.2945180
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TPAMI.2019.2927476
https://doi.org/10.1109/TMM.2019.2958761
https://doi.org/10.3389/fict.2017.00015
https://doi.org/10.1038/s41598-020-79422-8
https://doi.org/10.1016/j.procs.2015.08.216
https://doi.org/10.1145/3459637.3482468
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1109/TNNLS.2020.2978386
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Tian et al. Recipe Recommendation With HGAT

Yang, L., Hsieh, A., Yang, H., Pollak, J., Dell, N., Belongie, S., Cole, C., and Estrin,

D. (2017). Yum-me: a personalized nutrient-based meal recommender system.

ACM Trans. Inf. Syst. 36, 1–31. doi: 10.1145/3072614

Zhang, F., Yuan, N. J., Zheng, K., Lian, D., Xie, X., and Rui, Y. (2016).

“Exploiting dining preference for restaurant recommendation,” in WWW

(Montreal, QC).

Zhou, C., Bai, J., Song, J., Liu, X., Zhao, Z., Chen, X., et al. (2018). “Atrank: an

attention-based user behavior modeling framework for recommendation,” in

AAAI (New Orleans, LA).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Tian, Zhang, Metoyer and Chawla. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Big Data | www.frontiersin.org 13 January 2022 | Volume 4 | Article 778417

https://doi.org/10.1145/3072614
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Recipe Recommendation With Hierarchical Graph Attention Network
	1. Introduction
	2. Related Work
	3. Proposed Model
	3.1. Type-Specific Transformation
	3.2. Node-Level Attention
	3.3. Relation-Level Attention
	3.4. Recipe Recommendation

	4. Experiments
	4.1. Dataset
	4.2. Experimental Setup
	4.3. Baseline Methods
	4.4. Implementation Details
	4.5. Performance Comparison (RQ1)
	4.6. Ablation Studies (RQ2)
	4.7. Parameter Sensitivity (RQ3)
	4.7.1. Impact of Different Embedding Dimensions
	4.7.2. Impact of Different Propagation Layers
	4.7.3. Impact of Different Score Predictors

	4.8. Case Study: Embedding Visualization

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

