

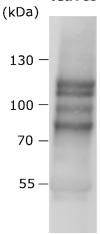
Supplementary Material

Lewis A glycans are present on proteins involved in cell wall biosynthesis and appear evolutionarily conserved among natural *Arabidopsis thaliana* accessions

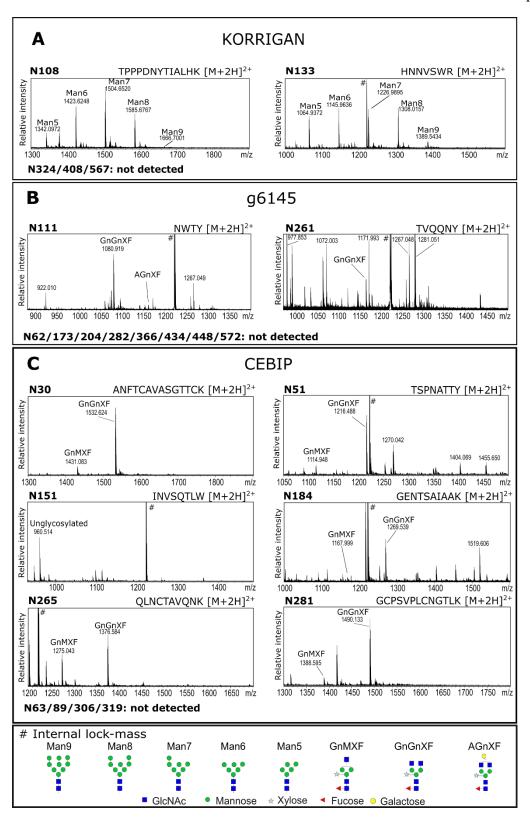
Gernot Beihammer, Daniel Maresch, Friedrich Altmann, Els J.M. Van Damme, Richard Strasser

Contents

- **Table S1.** List of proteins identified in leaves and stems of *N. benthamiana*.
- **Table S2.** Accessions of *A. thaliana* from the 1001 genome project for which Lewis A levels were monitored in stems and siliques.
- **Figure S1.** Immunoblot analysis of total protein extracts from leaves of *N. benthamiana*.
- **Figure S2.** Site-specific N-glycan analysis of KORRIGAN, g6145 and CEBIP expressed in leaves of *N. benthamiana*.
- **Figure S3.** Site-specific N-glycan analysis of COBL4 purified from leaves of infiltrated N. benthamiana.
- **Figure S4.** Site-specific N-glycan analysis of COBL4 purified from stems of stably expressing Arabidopsis Col-0 plants.
- **Figure S5.** Immunoblot analysis of total protein extracts from stems and siliques of wild-type and Lewis A-deficient Arabidopsis plants, respectively.
- **Figure S6.** Root growth analysis of Col-0 and *galt1-fut13* plants.
- **Figure S7.** Immunoblot analysis of total protein extracts from stems and siliques of various accessions of *A. thaliana* containing amino acid variations in GALT1.
- **Figure S8.** Immunoblot analysis of total protein extracts from stems of Col-0, IP-Vim-0, and the Lewis A-deficient lines *galt1-fut13* and *galt1*
- **Figure S9.** Analysis of *GALT1* and *FUT13* transcripts in stems of Col-0, PYLl-6 and IP-Vim-0.
- **Figure S10.** Immunoblot analysis of total protein extracts from stems and siliques of various ecotypes of *A. thaliana*.


Table S1. List of proteins identified in leaves and stems of *N. benthamiana*. Proteins were affinity-purified using the JIM84 antibody and identified via mass spectrometry using peptide mapping. The number of potential N-glycosylation sites is based on predictions using the NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/). The localization and proposed function are based on information from the UniProt-database (https://www.uniprot.org/) and predictions using TargetP (http://www.cbs.dtu.dk/services/TargetP/).

		<i>N. i</i>	benthamiana stems		
Identifier	Potential N- glycosylation sites	Predicted localization	Proposed function	Homologue of (protein from A. thaliana)	
g17123.t1	9	Plasma membrane	Cellulose biosynthesis	Endoglucanase 25	
g6145.t1	14	Secreted (GPI- anchored)	Involved in directional growth processes	Mono-copper oxidase-like SKU5	
g37143.t1	11	Golgi apparatus	Involved in coaction of cryptochrome and phytochrome	Calcium ion binding protein	
g59335.t1	10	Plasma membrane	Cellulose biosynthesis	Endoglucanase 25	
g99754.t1	9	Plasma membrane	Hydrolysis of glucosidic linkages	Glucan endo-1,3-beta- glucosidase 1	
g54518.t1	10	Plasma membrane	Hydrolysis of glucosidic linkages	Glucan endo-1,3-beta- glucosidase 1	
g23587.t1	9	Plasma membrane	Hydrolysis of glucosidic linkages	O-Glycosyl hydrolase family 17 protein	
g8142.t1	9	Secreted (GPI- anchored)	Direction of cell expansion	COBRA-like extracellular GPI anchored protein family	
		N. <i>l</i>	benthamiana leaves		
Identifier	Potential N- glycosylation sites	Predicted localization	Proposed function	Homologue of (protein from A. thaliana)	
g6145.t1	14	Secreted (GPI- anchored)	Involved in directional growth processes	Mono-copper oxidase-like SKU5	
g17123.t1	9	Plasma membrane	Cellulose biosynthesis	Endoglucanase 25	
g23587.t1	9	Plasma membrane	Hydrolysis of glucosidic linkages	O-Glycosyl hydrolase family 17 protein	
g54518.t1	10	Plasma membrane	Hydrolysis of glucosidic linkages	Glucan endo-1,3-beta- glucosidase 1	
g21104.t1	7	Secreted	Hydrolysis of xylose from xyloglucan	Alpha-xylosidase 1	


Table S2. Accessions of *A. thaliana* from the 1001 genome project for which Lewis A levels were monitored in stems and siliques. The *GALT1* (At1g26810) polymorphisms relative to the reference genome (https://tools.1001genomes.org/polymorph/) as well as the geographic location of their collection are listed. Only non-silent mutations are included in the list.

Accession ID	Name	Polymorphisms	Resulting amino acid variation	Country
265	PYL-6	833 G>A	R278Q	FRA
1925	MNF-Che-2	1256 A>C	D419A	USA
2016	MNF-Pin-39	728 A>T	Q243L	USA
		759 A>C	K253N	
		1492 G>A	D498N	
4857	UKSW06-257	728 A>T	Q243L	UK
		759 A>C	K253N	
		1421 G>A	C474Y	
6012	Eden-7	759 A>C	K253N	SWE
		1843 G>C	G612R	
7107	Durh-1	728 A>T	Q243L	UK
		759 A>C	K253N	
		1421 G>A	C474Y	
7520	Lp2-2	1052 G>A	R351Q	CZE
	·	759 A>C	K253N	
8240	Kulturen-1	619 C>T	L207P	SWE
		620 T>C		
		728 A>T	Q243L	
		759 A>C	K253N	
8249	Vimmerby	728 A>T	Q243L	SWE
	<u>, </u>	759 A>C	K253N	
		1390 A>T	S464C	
9530	IP-Car-1	355 A>T	I119F	ESP
		728 A>T	Q243L	
		759 A>C	K253N	
		1126 G>T	V376F	
9565	IP-Orb-10	1256 A>C	D419A	ESP
		1928 G>A	W643stop	
9598	IP-Vim-0	728 A>T	Q243L	ESP
		759 A>C	K253N	
		1657 T>A	Y553N	
		1679 C>A	A560E	
9647	Basen-1	728 A>T	Q243L	ITA
		759 A>C	K253N	
		1162 C>T	P388S	
9701	Ivano-1	759 A>C	K253N	BUL
		1171 C>T	P391S	
9822	Aul-0	1256 A>C	D419A	ESP
9968	Timpo-1	239 C>T	S80L	ITA

N. benthamiana leaves

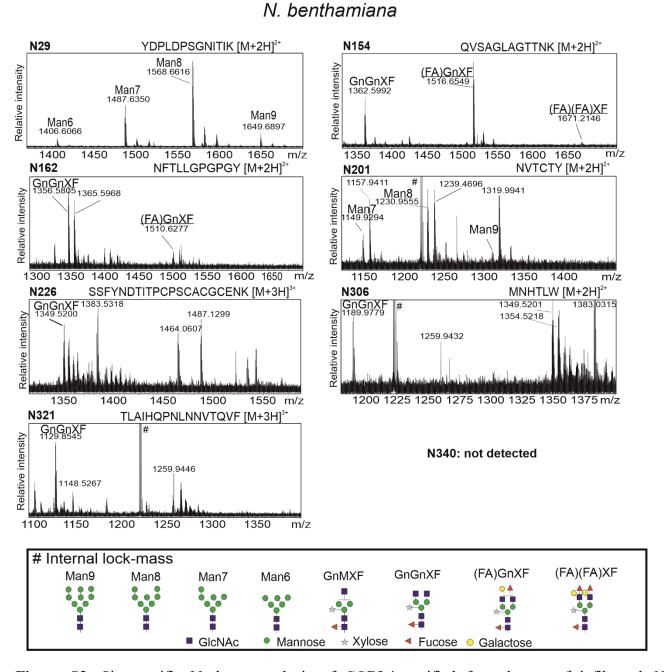

Figure S1. Immunoblot analysis of total protein extracts from leaves of *N. benthamiana*. Proteins were extracted using RIPA buffer, separated via SDS-PAGE and Lewis A bearing glycoproteins detected using the JIM84 antibody.

Figure S2. Site-specific N-glycan analysis of KORRIGAN, g6145 and CEBIP expressed in leaves of *N. benthamiana*. The spectra show sites where Lewis A structures were not detected. Proteins were

purified via their fused tag, separated via SDS-PAGE, excised from the gel and subjected to trypsin/chymotrypsin digestion and MS-analysis.

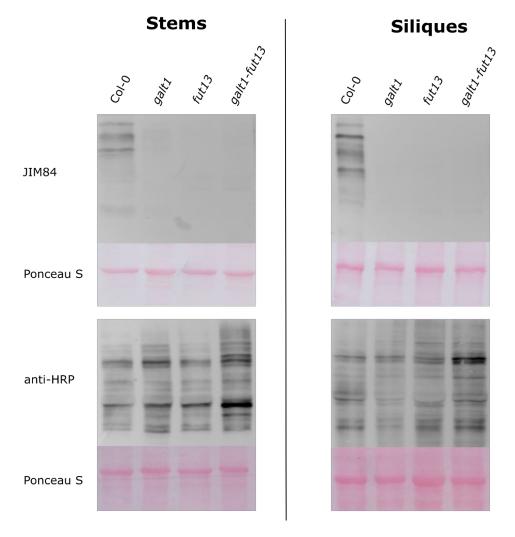
COBL4

Figure S3. Site-specific N-glycan analysis of COBL4 purified from leaves of infiltrated *N. benthamiana*. Proteins were purified, separated via SDS-PAGE, excised from the gel and subjected to a trypsin/chymotrypsin digestion and MS-analysis. N-glycans decorated with Lewis A structures are underlined.

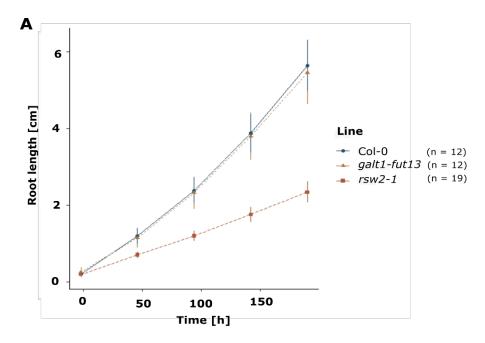
A. thaliana N29 YDPLDPSGNITIK [M+2H]2+ N154 QVSAGLAGTTNK [M+2H]2+ Man8 1568,663 Relative intensity GnGnXF 1362.600 Relative intensity Man7 1487.637 Man9 1649.689 Man6 1406.611 1350 1400 1450 1500 1550 1600 1650 1400 1450 1500 1550 1600 m/z 1650 N162 NFTLLGPGPGY [M+2H]2 N154 - zoom QVSAGLAGTTNK [M+2H]2+ GnGnXF 1357.084 Relative intensity Relative intensity (FA)GnXF 1350 1400 1450 1500 1550 1600 1650 1400 1450 1500 1550 1600 1650 NFTLLGPGPGY [M+2H]24 N201 NVTCTY [M+2H]2+ N162 - zoom Man8 1230,956 Relative intensity Relative intensity (FA)GnXF Man7 1149.930 Man9 1300 1350 1400 1450 1500 1550 1600 1650 m/z 1150 1200 1250 1300 1350 1400 N306 MNHTLW [M+2H]2 N321 TLAIHQPNLNNVTQVF [M+3H]3+ Relative intensity 1383.033 1294.495 GnGnXF 1129.522 1374.519 Relative intensity 1267.049 (FA)GnXF 1344.035 1259.948 1200 1225 1250 1275 1300 1325 1350 1375 m/z 1100 1150 1200 1250 1300 1350 m/z N226/N340: not detected # Internal lock-mass (FA)GnXF Man9 Man8 Man7 Man6 **GnGnXF**

COBL4

Figure S4. Site-specific N-glycan analysis of COBL4 purified from stems of stably expressing Arabidopsis Col-0 plants. Proteins were purified, separated via SDS-PAGE, excised from the gel and


Mannose

★ Xylose


Fucose
Galactose

GlcNAc

subjected to a trypsin/chymotrypsin digestion and MS-analysis. N-glycans decorated with Lewis A structures are underlined.

Figure S5. Immunoblot analysis of total protein extracts from stems and siliques of wild-type and Lewis A-deficient Arabidopsis plants, respectively. The JIM84 antibody was used to detect glycoproteins decorated with Lewis A structures, anti-HRP antibody for detection of plant N-glycans carrying β 1,2-xylose and core α 1,3-fucose.

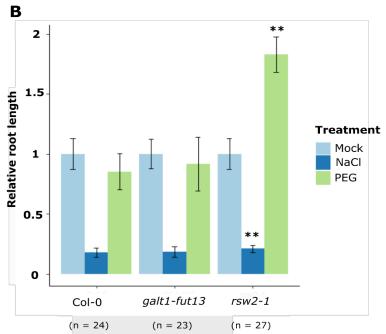
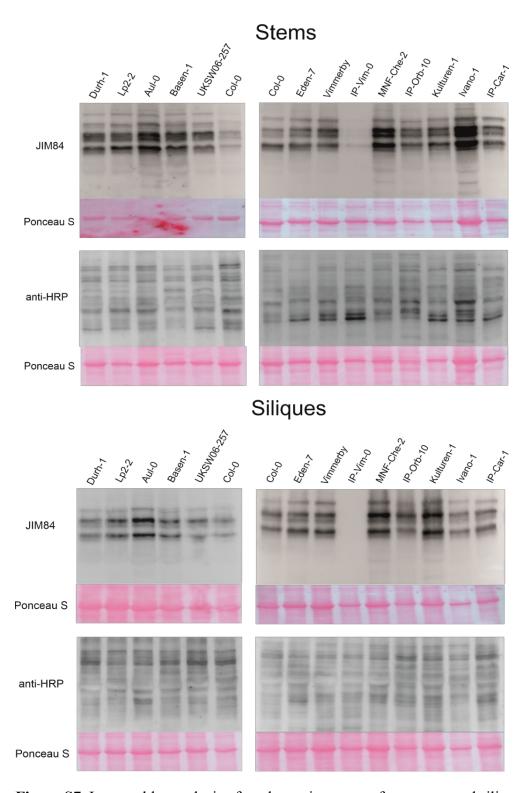
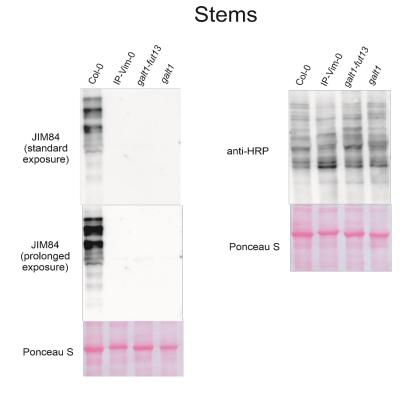




Figure S6. Root growth analysis of Col-0 and *galt1-fut13* plants. *rsw2-1* was included as a control. (A) Analysis of root growth dynamics of plants grown on half-strength MS-medium. Following stratification, root length was measured after 48, 96, 144, 192 and 240 hours. Error bars indicate standard deviation. (B) Abiotic stress treatment of seedlings using either 150 mM NaCl or PEG6000 at a water potential of -0.5 MPa to mimic drought stress. Error bars represent standard deviation, asterisks indicate statistically significant differences in the relative root lengths compared to Col-0 seedlings based on a Student's t-test (* $p \le 0.05$, ** $p \le 0.01$).

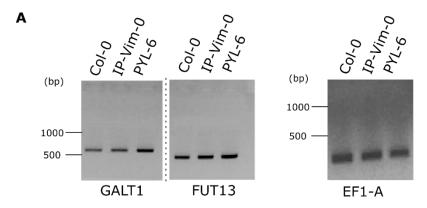


Figure S7. Immunoblot analysis of total protein extracts from stems and siliques of various accessions of *A. thaliana* containing amino acid variations in GALT1. Proteins were extracted using RIPA buffer, separated on an SDS-PAGE and either Lewis A bearing glycoproteins detected using the JIM84

antibody or plant N-glycans carrying β 1,2-xylose and core α 1,3-fucose detected using the anti-HRP antibody.

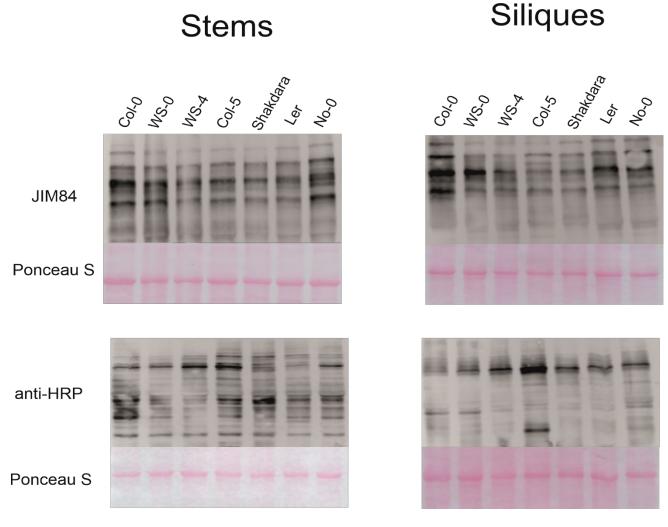


Figure S8. Immunoblot analysis of total protein extracts from stems of Col-0, IP-Vim-0 and Lewis Adeficient lines of *A. thaliana*. Proteins were extracted using RIPA buffer, separated on an SDS-PAGE and either Lewis A bearing glycoproteins detected using the JIM84 antibody or plant N-glycans carrying β 1,2-xylose and core α 1,3-fucose detected using the anti-HRP antibody.

Score 1297 bits(7	702)	Expect 0.0	Identities 706/708(99%)	Gaps 0/708(0%)	Strand Plus/Plus
Query 5				TGCAGTATGATGATGT	
Sbjct 12					
Query 65				AAAGTCCTCTTGTTAAC	
Sbjct 12				AAAGTCCTCTTGTTAA	
Query 12				TAATGCCCTTTGTTGAT	
Sbjct 13					
Query 18				TCGGGACAGAGGTTGAC	
Sbjct 13					
Query 24				GTGTAGATGAAGTGTT	
Sbjct 14					
Query 30				GACTGATCAATTCCGAC	
Sbjct 15					
Query 36				ATGAGGAATGGCCTGA	
Sbjct 15					
Query 42				CTCGTGACATAGAAGAA	
Sbjct 16					
Query 48				AGCTAGAAGATGTGGC	
Sbjct 16					
Query 54				CTCATTACGAAAACGAT	
Sbjct 17					
Query 60				CTCATTACCAAAGCCCT	
Sbjct 18					
Query 66				GCTCTCTTTGCTGCCGC	
Sbjct 18					

Figure S9. Analysis of *GALT1* and *FUT13* transcripts in stems of Col-0, PYL-6 and IP-Vim-0. **(A)** PCR amplification of *GALT1* and *FUT13* cDNA obtained from RNA extracted from stems of the different ecotypes. *EF1-ALPHA* (EF1-A, At5g60390) was included as a reference gene. **(B)** Alignment of bases 1218-1925 of *GALT1* in Col-0 (lower sequence) and IP-Vim-0 (upper sequence) after sequencing. SNPs are underlined in black. The alignment was done using Blast (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_L OC=blasthome).

Figure S10. Immunoblot analysis of total protein extracts from stems and siliques of various ecotypes of *A. thaliana*. Proteins were extracted using RIPA buffer, separated on an SDS-PAGE and either Lewis A bearing glycoproteins detected using the JIM84 antibody or plant N-glycans carrying β 1,2-xylose and core α 1,3-fucose detected using the anti-HRP antibody.