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Abstract

Recent studies showed that induced microRNA-449a (miR-449a) enhances a G2/M cell

cycle checkpoint arrest in prostate cancer (LNCaP) and lung adenocarcinoma cell lines. In

the case of LNCaP cells, upregulated miR-449a directly downregulates c-Myc that is

required to induce the cell cycle regulators Cdc25A and Cdc2/CyclinB whose inactivation

blocks G2 to M phase transition. However, the molecular mechanisms involved are yet

unclear, although in other prostate cancer cells the interactions among p53, miR-449a and

Sirt-1 can affect the induction of the G2/M arrest. In order to clarify these molecular mecha-

nisms, in this work we propose a boolean model of the G2/M checkpoint arrest regulation

contemplating the influence of miR-449a. The model shows that the cell fate determination

between two cellular phenotypes: G2/M-Arrest for DNA repair and G2/M-induced apoptosis

is stochastic and influenced by miR-449a state of activation. The results were compared

with experimental data available presenting agreement. We also found that several feed-

back loops are involved in this cell fate regulation and we indicate, through in silico gain or

loss of function perturbations of genes, which of these feedback loops are more efficient to

favor a specific phenotype.

Introduction

It is well established that the p53 protein contributes to both G1/S and G2/M cell cycle check-

point arrests in several cell types [1]. In LNCaP (prostate cancer) cell lines, a functional p53

contributes to increase cell survival under radiation response [2]. A recent paper by Mao et al.

[3] suggests that miR-449a induces the G2/M checkpoint in LNCaP cells in response to ioniz-

ing radiation (IR). The work proposed a new induction mechanism for the G2/M checkpoint

through downregulation of the Myc proto-oncogene protein (c-Myc) by miR-449a induction

due to IR. Transfected mir-449a can also enhance the G2/M checkpoint activation and apopto-

sis in post-irradiated lung adenocarcinoma cells lines [4]. MicroRNAs are small, highly

conserved, noncoding RNAs that negatively regulate protein expression and inhibit the trans-

lation of specific mRNAs. The miR-449 family of miRNAs (miR-449a, miR-449b and miR-
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449c) is located in the second intron of cell division cycle 20B (Cdc20B) gene located in chro-

mosome 5. MiR-449a has decreased expression in several cancer cell lines [3, 5–8]. Under

inhibited c-Myc, the cell cycle regulators: the cell division cycle 25 A (Cdc25A) and the com-

plex formed by the cell division cycle protein 2 homolog and the Cyclin B complex (Cdc2/

CyclinB) are not induced promoting a G2/M arrest. It was suggested that radiation can induce

mir-449a directly [3], however we should expect that the DNA damage induced by radiation

contributes to the induction of checkpoint arrest as well. In addition, in other prostate cancer

cells the well known molecular interactions observed among p53, miR-449a and Sirtuin-1

(Sirt-1) might affect the regulation of G2/M arrest [9, 10]. Then, in order to bring more realism

to the mechanisms involved in the induction of the G2/M checkpoint in LNCaP cells by mir-

449a, in this work we propose a boolean model of this checkpoint regulation (Fig 1).

Materials and methods

The boolean formalism

Based on the published biochemical information, the approach starts with the definition of a

regulatory graph, wherein each node represents a model component and each directed arc rep-

resents an (activatory or inhibitory) interaction between two components. The activities of all

components are associated with boolean variables (taking only the values 0 or 1). The corre-

sponding discretization reflects the ‘threshold effect’ of the regulatory interactions between

components: a component is considered ‘active’ (1 or ON) as long as this activity level is suffi-

cient to exert an effect, otherwise it is considered inactive (0 or OFF). Logical rules, based on

the classical logical operators AND, OR, and NOT, define the evolution of the activity level of

a component dependent on those of its regulators, see Table 1.

Fig 1. Regulatory network for G2/M checkpoint in response to IR. Elliptic nodes in black represent proteins and the

yellow node is miR-449a. The input elliptic node in red denote IR (Ionizing Radiation), whereas rectangular light gray

nodes represent model outputs (Proliferation, G2/M Arrest and Apoptosis). Green and red arcs denote positive and

negative interactions, respectively.

https://doi.org/10.1371/journal.pone.0200768.g001
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There are two main types of regulatory circuits (also known as feedback loops): negative

and positive circuits. Negative circuits can give rise to oscillations [11], whereas positive cir-

cuits are responsible for multistationarity [11]. The approach allows in silico gain (GoF) or loss

of function (LoF) perturbations to test phenotype changes by forcing the value of a node to

remain ON or OFF, respectively. Node values can be updated synchronously or asynchro-

nously. In the synchronous case, all nodes are updated at the same time [12] and the evolution

is completely deterministic. For the asynchronous case, random nodes are selected at each

time and then updated [13], which can give rise to non deterministic behavior. Throughout

this work, we have used only the asynchronous updating scheme.

The asynchronous update is defined through a regulatory network (G, K) containing a set

of n regulatory components (representing molecules or biological processes), G = (g1, g2, . . .

gn), where each gi is boolean. K is a transition function defined as K(g) = (K1(g), . . . Kn(g)),

where each logical function, Ki(g), defines the values of each gi in terms of the influence of

the edges that connect the gi. Mathematically, the asynchronous updating can be defined for

all i 6¼ j as:

giðt þ 1Þ ¼ giðtÞ þ Sign ½KiðgiðtÞÞ � giðtÞ�

gjðt þ 1Þ ¼ gjðtÞ:
ð1Þ

In this work we used the tool GINsim 2.9.5, which is a Java software suite, freely available

for download from (http://compbio.igc.gulbenkian.pt/nmd/node/82) [14]. Using GINsim, we

Table 1. Logical rules controlling the states of the nodes in Fig 1. The logical operators AND, OR and NOT are used to define the rules for each node in terms of the

state of its regulators. There is a single boolean input, IR.

Nodes Level Rules Biological interpretation

IR 1 Ionizing radiation present

ATM 1 IR AND (NOT Wip1 OR E2F1)

ATR 1 IR

miR-449a 1 IR Activation by IR

Sirt-1 1 E2F1 OR NOT miR-449a

p53-MAIN 1 (ATM OR ATR OR (E2F1 AND 14-3-3s)) AND NOT mdm2 p53 activation

Mdm2 1 (NOT Wip1 OR p53-MAIN OR RB) AND NOT ATM AND NOT ATR

p53-Arrest 1 (p53-MAIN:1 OR NOT p53-INP1) AND NOT p53-Killer AND NOT Sirt-1 p53 phosphorylated at Ser-15 and Ser-20

p53-Killer 1 NOT p53-Arrest AND (NOT Sirt-1 OR NOT Wip1) AND p53-MAIN p53 phosphorylated at Ser-15, Ser-20 and Ser-46

p53-INP1 1 p53-Arrest OR p53-Killer Control of p53 accumulation

Wip1 1 p53-Arrest

p21 1 (p53-Arrest OR p53-Killer) AND NOT c-Myc

14-3-3s 1 p53-Arrest OR p53-Killer

c-Myc 1 (E2F1 OR NOT RB) AND NOT miR-449a

E2F1 1 (NOT RB AND ((ATM AND ATR AND NOT miR-449a) OR NOT Sirt-1)) OR c-Myc OR
Cdc25ABC

RB 1 NOT mdm2 AND NOT Cdc25ABC AND NOT Sirt-1 Dephosphorylated RB bound to E2F1

Cdc25ABC 1 NOT miR-449a OR c-Myc) AND NOT ATM AND NOT ATR AND NOT 14-3-3s

Cdc2-CycB 1 Cdc25ABC OR (NOT p21 AND NOT 14-3-3s)

Proliferation 1 NOT p53-MAIN AND (Cdc2-CycB OR E2F1) p53-MAIN inhibition and activation of cycle

regulators

G2/M-Arrest 1 p21 OR 14-3-3s G2/M checkpoint arrest phenotype

G2/

M-Apoptosis

1 p53-Killer Apoptosis phenotype

https://doi.org/10.1371/journal.pone.0200768.t001
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can compute the dynamical behavior of the model for any initial state. The state of each model

component is iteratively updated, according to the logical formulae. The resulting dynamics is

represented in terms of state transition graphs (STG). All probabilities of each phenotype pre-

sented in this study were computed using the Monte Carlo Algorithm provided by GINsim

[14].

G2/M checkpoint molecular mechanisms

The activation of the checkpoints in response to DNA damage induced by IR [15] is well estab-

lished [16, 17]. Cycle arrest for repair or apoptosis can be triggered at G1/S and G2/M check-

points. DNA double-strand breaks (DSB) and single-strand breaks (SSB) activate ATM and

ATR, respectively. Phosphorylations downstream ATM and ATR pathways lead to the activa-

tion of p53 (reviewed by Gobbini [18]). In LNCaP cells line, miR-449a is required for the

induction of the G2/M checkpoint which is our focus here, in fact LNCaP cells knockout for

Mir-449a cannot arrest at G2/M [3]. We define our boolean model in terms of the molecular

interactions involved in the activation of the G2/M checkpoint by DNA damage due to IR con-

templating the interactions of miR-449a [19]. We also consider that IR can induce miR-449a

directly as suggested by Mao et al. [3]. The model encompasses 21 nodes representing proteins

or miRNAs and 61 direct interactions among them. Details about interactions and modeling

techniques are presented in section Methods.

The model has a single input, IR (Fig 1). The logical rules controlling the nodes are pre-

sented in Table 1. Elliptic black nodes represent proteins and the yellow node represents

miR-449a. Rectangular light gray nodes represent model outputs (Proliferation, G2/M Arrest

and G2/M induced Apoptosis), green arrows denote activations and red hammerhead con-

nectors denote inhibitions. In our model the representation of p53 was based on the work of

Zhang et al. [15] that associates more than one node to p53 functions based on the different

circuits that it participates. According to Zhang et al. model, p53 phosphorylated by ATM

and ATR is represented by node p53-MAIN. While p53-Arrest and p53-killer nodes repre-

sent, respectively: p53 inducer of cell cycle arrest and p53 inducer of apoptosis. The Tumor

protein p53 inducible nuclear protein 1 (p53-INP1) controls the conversion between

p53-Arrest and p53-Killer. Additional details about these p53 nodes are given in what

follows.

Activated or upregulated miR-449a suppresses proliferation in LNCaP cells and promotes

apoptosis and cycle arrest by repressing c-Myc, E2F transcription factor 1 (E2F1), Cdc25ABC

and Sirt-1 (Fig 1). It is important to point out that the reported activatory interaction of miR-

449a by E2F1 for some cell lines, is not determinant for the state of the microRNA in LNCaP

cells [3]. Then in the present model, as done in the work of Mao et al., it is ignored. Inhibition

of Sirt-1 by miR-449a restores p53 (p53-MAIN) expression and promotes its acetylation [10].

E2F1 induces Sirt-1 expression and binds to E2F1 which binds to Retinoblastoma 1 protein

(RB). E2F1 is directly inhibited by Sirt-1, forming a negative circuit (E2F1/Sirt-1) [20]. It was

previously reported that functional p53-activated genes were only induced in LNCaP cells [2].

After DNA damage, p53 is phosphorylated by ATM and ATR. Activated p53 induces expres-

sion of E3 ubiquitin protein ligase homolog protein (Mdm2), which in turn, marks p53 for

degradation, forming a negative-circuit (p53-Mdm2) [21]. In the model, based on the different

circuits p53 participates, it is represented by different nodes: p53-MAIN associated with the

interaction with Mdm2 which is required to activate p53-Arrest and p53-Killer. p53-Arrest

representing p53 phosphorylated at Ser-15 and Ser-20, whereas p53-Killer represents p53

additionally phosphorylated at Ser-46 which leads to cell apoptosis [22]. p53-Arrest and

p53-Killer are connected by a positive-circuit and the conversion between p53-Arrest and
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p53-Killer is regulated by Wip1 and p53-INP1 [15]. 14-3-3s also interacts with p53 forming a

positive-circuit (14-3-3s/p53-MAIN) [23]. Binding to 14-3-3s protects p53 from Mdm2-me-

diated ubiquitylation, thereby stabilizing its levels and increasing its transcriptional activity.

The cyclin-dependent kinase inhibitor 1A (p21), Protein Phosphatase 1D (Wip1), 14-3-3

Sigma (14-3-3s) and tumor protein p53 inducible nuclear protein 1 (p53-INP1) are activated

by p53. Wip1 dephosphorylates ATM serine/threonine kinase (ATM). This action makes

ATM activate p53-MAIN to the p53-Arrest form which activates transcription of Wip1, which

in turn inactivates ATM by Wip1, another negative-circuit (Wip1/p53-MAIN/ATM) [24].

Cdc2/Cyclin B complex is directly inhibited by p21 and 14-3-3s. The mechanism by which

p53 blocks cells at the G2/M checkpoint involves inhibition of Cdc2. p21 or 14-3-3s proteins

sequester Cdc2 in the cytoplasm and directly block the activities of Cdc25 family, resulting in

G2/M arrest [1].

References of each interaction and the GINsim version of the model can be found in the S1

and S2 Files, respectively. In addition, official names of the model elements can be found in

the S1 Table.

Results

Attractors of the wild-type network

The model presents 3 states for the wild-type case dynamics which are associated to different

phenotypes (Fig 2). The first state (IR = 0) is a proliferative stable state, due to activation only

of the cell cycle promoters E2F1, Cdc2-CycB, c-Myc and Cdc25ABC. This state is controlled

by the positive circuit c-Myc/E2F1 in the model [25], see Table 2. The second and third states

(IR = 1) correspond to a bistable state involving two p53-responsive cellular phenotypes: G2/

M-Arrest and G2/M-Apoptosis, that are defined by p53-Arrest and p53-Killer activations,

respectively. The positive circuit encompassing these two nodes controls the bistability. As

we show below, we find that miR-449a determines the functionality of this circuit and others

such as p53/14-3-3s and RB/Mdm2, which are both positive, and the negative circuits: ATM/

p53-MAIN/Wip1, p53-MAIN/Mdm2 and E2F1/Sirt-1. Then, if miR-449a is inactive, these cir-

cuits are not functional.

To estimate the size of the basin of attraction of the states of the wild type case in Fig 2, we

sampled the space of states using a Monte Carlo algorithm (Exact Exit Probabilities) over 1000

runs [26] to calculate the probability of each phenotype (see section Methods). We obtained

that the probability of the proliferative state is 50%, of G2/M-Apoptosis is 34% and of G2/

M-Arrest is 16%.

Fig 2. Stable states of the wild-type case. Left-most column represents IR levels and right-most columns represent

outputs: Proliferation, G2/M-Arrest and G2/M-Apoptosis. Each line represent stable states corresponding to each IR

level and phenotype, respectively. Empty spaces in each line represent zero values. Probabilities for wild type case

states: 50% for Proliferation (without IR), 34% for G2/M-Apoptosis and 16% for G2/M-Arrest.

https://doi.org/10.1371/journal.pone.0200768.g002
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Model validation

The model validation was conducted through simulations of node perturbations to investigate

the correspondence between stable states of the model and experimental observations. In this

way, we constructed Table 3 to show the agreement between our results and experimental

observations [3]. For more details about model validation results see S3 File.

Role of functional circuits and phenotype probabilities

GINsim identified only 10 functional circuits in the model, see the Table 2. Seven of them have

their functionality controlled by miR-449a as mentioned above. We decided to investigate

how these circuits affect the bistable behavior regulated by miR-449a to determine if it was

possible to control the probabilities of the two non proliferative phenotypes (G2/M-Arrest or

G2/M-Apoptosis) in the model. To do that we used perturbations, the results are shown in

Table 4. We considered only the perturbations where miR-449a is activated since we want to

unravel its role in the regulatory process. We calculated the probabilities of each phenotype

using the Monte Carlo algorithm with 1000 runs as previously mentioned. We also determined

that p53-MAIN activation and the positive circuit p53-Arrest/p53-killer are required to pro-

duce the bistability. In this way, we considered only perturbations of circuits where p53-

MAIN, p53-Arrest and p53-killer are involved. In all results we found a higher probability to

obtain apoptosis (although other circuit perturbations can produce the opposite result (see S4

File). As we can see in Table 4, the circuit ATM/p53-MAIN/Wip1 has the stronger effect in

terms of controlling the probabilities of each phenotype.

Table 2. Functional circuits in the model and experimental observations. Cases for which no experimental data

were found are indicated by question marks.

Circuits References

Positive

RB/Mdm2 [27]

E2F1/ATM [28]

E2F1/c-Myc [25]

p53-MAIN/14-3-3s [23]

p53-Killer/p53-Arrest [15]

Negative

p53-MAIN/Mdm2 [21]

p53-INP1/p53-Arrest [15]

ATM/p53-MAIN/Wip1 [24]

Sirt-1/E2F1 [20]

E2F1/Cdc25ABC/ATM ?

https://doi.org/10.1371/journal.pone.0200768.t002

Table 3. The model agrees with all experimental results from Mao et al. [3]. E1 represents GoF and KO represents

LoF of the corresponding gene.

Stimulus/Perturbations Response/phenotype

MiR-449 in response to IR Upregulation

miR-449a KO Proliferation

miR-449a E1 Inhibits proliferation/Induce cell cycle arrest and apoptosis

MiR-449 and Myc in response to IR Negative correlation

Myc KO G2/M arrest, Apoptosis

https://doi.org/10.1371/journal.pone.0200768.t003
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We found that our model can also present oscillatory dynamics for some specific perturba-

tions not presented in Table 4 [21, 24]. Interestingly, we also observed that perturbations of

the E2F1/ATM and E2F1/Cdc25ABC/ATM circuits, whose functionality is not controlled by

miR-449a, can have a higher effect on the probability of obtaining G2/M-Arrest. According to

our model, these circuits have their functionality affected by p53-MAIN and RB, respectively,

See S4 File.

Discussion and conclusion

In this study, we proposed a logical model of G2/M-arrest regulation in LNCaP cells focusing

on the role of miR-449a. Our model describes the induction of G2/M arrest and apoptosis in

terms of two IR-responsive mechanisms according to the literature [3, 9, 10]: DNA damage

and miR-449a. The p53 pathway is induced by DNA damage and miR-449a can be induced

directly by IR as suggested by Mao et al. [3]. These two pathways must crosstalk through Sirt-1

since this was already observed in other prostate cells [9, 10]. Sirt-1 functionality is controlled

by miR-449a and it can indirectly affect p53 dynamics. Indeed, Kheir et al. [29], showed that

miR-449a can induce p53 by repression of Sirt-1 leading to cell apoptosis.

In the absence of IR, the wild type case (Fig 2) predicts only a proliferative phenotype which

is supported by the work of Mao et al. [3]. However, when DNA damage due to IR is present,

miR-449a is induced activating the p53 pathway and one of the possible outcomes, G2/M

Arrest (p53-Arrest) or Apoptosis (p53-Killer). The role of miR-449a and p53 in the induction

of G2/M arrest and apoptosis in LNCaP cells in our model is characterized in Table 4. These

results show that miR-449a controls several circuits and that p53 is essential to induce bistabil-

ity between these phenotypes through the p53-Arrest/p53-Killer circuit. This result agrees

with Zhang et al. [15] work that show a two-phase dynamics of p53 in response to IR. More-

over, the model predicts that the system favors an apoptotic phenotype for the bistability case

in response to IR according to the probabilities. This type of bistable control of phenotypes

that we propose here was already used to explain cell fate determination between apoptosis or

senescence at the G1/S checkpoint observed in some non-Hodgkin lymphoma cells [30].

In summary, the model agrees with experimental results and predicts that miR-449a acti-

vates several circuits that produce oscillations and bistability. The only disagreement between

Table 4. Perturbations of the circuits whose functionality is controlled by miR-449a that affect the probabilities of the bistable dynamics in the model. Probabilities

were calculated using a Monte Carlo algorithm with 1000 runs in GINsim. E1 represents GoF and KO represents LoF of the corresponding element of the circuit.

Circuits miR-449a

Negative Perturbations E1

Phenotype Probability

ATM/p53-MAIN/Wip1 KO/E1/KO G2/M or Apoptosis 25%, 75%

E1/E1/KO G2/M or Apoptosis 25%, 75%

KO/E1/E1 G2/M or Apoptosis 37%, 63%

E1/E1/E1 G2/M or Apoptosis 37%, 63%

p53-MAIN/Mdm2 E1/KO G2/M or Apoptosis 21%, 79%

E2F1/Sirt-1 KO/KO G2/M or Apoptosis 31%, 69%

E1/KO G2/M or Apoptosis 36%, 64%

Positive

RB/Mdm2 E1/KO G2/M or Apoptosis 29%, 71%

p53-MAIN/14-3-3s E1/KO G2/M or Apoptosis 22%, 78%

E1/E1 G2/M or Apoptosis 25%, 75%

https://doi.org/10.1371/journal.pone.0200768.t004
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our model and Mao’s et al. [3] is that our model favors apoptosis rather than G2/M arrest in

response to IR.

Thus, through exploration of the mechanisms involved in induction of apoptosis and G2/M

arrest phenotypes in LNCaP cells, our work provides a tool to help improve cancer therapy.
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