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The use of small molecules became one key cornerstone of targeted anti-cancer
therapy. Among them, tyrosine kinase inhibitors (TKIs) are especially important, as
they were the first molecules to proof the concept of targeted anti-cancer treatment.
Since 2001, TKIs can be successfully used to treat chronic myelogenous leukemia
(CML). CML is a hematologic neoplasm, predominantly caused by reciprocal
translocation t(9;22)(q34;q11) leading to formation of the so-called BCR-ABL1
fusion gene. By binding to the BCR-ABL1 kinase and inhibition of downstream
target phosphorylation, TKIs, such as imatinib or nilotinib, can be used as single
agents to treat CML patients resulting in 80 % 10-year survival rates. However,
treatment failure can be observed in 20-25 % of CML patients occurring either
dependent or independent from the BCR-ABL1 kinase. Here, we review approved
TKIs that are indicated for the treatment of CML, their side effects and limitations. We
point out mechanisms of TKI resistance focusing either on BCR-ABL1-dependent
mechanisms by summarizing the clinically observed BCR-ABL1-mutations and their
implications on TKI binding, as well as on BCR-ABL1-independent mechanisms of
resistances. For the latter, we discuss potential mechanisms, among them
cytochrome P450 implications, drug efflux transporter variants and expression,
microRNA deregulation, as well as the role of alternative signaling pathways.
Further, we give insights on how TKI resistance could be analyzed and what
could be learned from studying TKI resistance in CML in vitro.
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INTRODUCTION

The development of tyrosine kinase inhibitors tremendously changed anti-cancer drug
therapy and opened new treatment options and strategies. Successfully enabling new
therapy regimen by specific blockade of the ATP-binding domain of a tyrosine kinase led
to increased patient survival rates, less side effects and improved outcome for the patients.
Initially established for the use in chronic myelogenous leukemia (CML) by targeting the BCR-
ABL1 fusion protein, the outstanding therapeutic success made tyrosine kinase inhibitors a
prominent example of the concept of targeted therapy. Meanwhile, there are multiple
therapeutic options in which tyrosine kinase inhibitors (TKIs) are first-line choice in
therapy or co-therapy, i.e. targeting epidermal growth factor receptor (EGFR) subtypes
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using erlotinib or gefitinib in HER1-overexpressing tumors,
as well as lapatinib to inhibit HER2 in HER2-positive breast
cancer, targeting angiogenesis via vascular endothelial
growth factor receptor VEGF(R) inhibition or blockade of
kinases, such as c-kit (CD117), platelet derived growth factor
receptor (PDGFR), or anaplastic lymphoma kinase (ALK),
just to name a few (Jiao et al., 2018). Nevertheless, acquired
therapy resistances occur during the treatment with TKIs.
Here, we review the TKIs used in CML regarding their side
effects and limitations. Moreover, we discuss potential
mechanisms of impaired TKI response in CML, in
particular genomics of BCR-ABL1, the impact of variants
in cytochrome P450 enzymes and drug transporters, as well
as alternative mechanisms of resistance. In addition, we
summarize what can be learned from CML for the
treatment other neoplasms.

Role Model of Successful TKI-Based
Anti-cancer Therapy: Chronic Myelogenous
Leukemia
The hematopoietic neoplasm chronic myelogenous leukemia
(CML) is a rare disorder predominantly caused by reciprocal
translocation t (9; 22) (q34; q11) resulting in formation of the
so-called Philadelphia chromosome (Ph) and the BCR-ABL1
fusion gene (Nowell and Hungerford, 1960; Rowley, 1973;
Heisterkamp et al., 1983). This fusion gene makes up for 95%
of all CML and 20% of Ph + acute lymphatic leukemia (ALL)
cases and is the main driver of malignant cell progression in
these leukemias (Radich, 2001; Soverini et al., 2019). For
several decades, CML has been a fatal disease with hardly any
effective treatment using arsenic substances, radiotherapy,
cytostatic drugs, i.e., busulfan and hydroxyurea, or
interferon-α, with the latter compounds at least resulting
in normalization of the blood visible as hematological
remission or even cytogenetic response (Kennedy, 1972;
Morstyn et al., 1981; Hukku et al., 1983; Talpaz et al.,
1987). Nevertheless, since the development of a tyrosine
kinase inhibitor targeting BCR-ABL1 in the 90s century,
CML can be effectively treated using the 2-phenyl-
aminopyrimidine imatinib resulting in more than 80% 10-
years survival rates in a life-long treatment regimen (Druker
et al., 1996; Hochhaus et al., 2017). Since then, tyrosine kinase
inhibitors, in particular imatinib, became first-line therapy in
CML superseding previous treatment strategies (Hochhaus
et al., 2020). This showed for the first time that kinases can be
used as druggable targets for anti-cancer treatment.
Nevertheless, CML requires a life-long treatment with the
respective TKI, as discontinuation might provoke relapses of
remaining CML cells. Although several markers are
considered to identify suitable patients for therapy
termination, e.g. duration of therapy or response rate
before discontinuation, BCR-ABL1/ABL1 ratio, or Sokal
score, median relapse rate of patients is approximately
51% (Campiotti et al., 2017; Etienne et al., 2017).
Therefore, further studies are needed to identify eligible
patients to safely discontinue the treatment.

Tyrosine Kinase Inhibitors in CML:
Indications, Side Effects and Treatment
Limitations
The fusion gene BCR-ABL1 arises from the breakpoint cluster
region (BCR) and the Abelson tyrosine kinase 1 (ABL1). While
the physiological function of the phosphoprotein BCR is
relatively unclear, ABL1 encodes for a cytosolic tyrosine kinase
involved in the regulation of proliferation (McCubrey et al., 2008;
Bixby and Talpaz, 2011). In Ph + cells, BCR-ABL1 is
constitutively active, which results in malignant progression.
Imatinib binds to the type II conformation of BCR-ABL1 and
inhibits binding of ATP to the ATP binding domain preventing
phosphorylation of downstream target proteins (Druker et al.,
1996; Nagar et al., 2002). This results in proliferation stop and
apoptotic cell death. Besides, BCR-ABL1, imatinib also binds to
other tyrosine kinases: ABL1 and ABL2 (also named Abelson-
related gene ARG), the membrane kinase c-kit (CD117), platelet-
derived growth factor receptor beta (PDGFRβ) and colony
stimulating factor 1 (M-CSF) (Buchdunger et al., 1995;
Buchdunger et al., 1996; Heinrich et al., 2000; Dewar et al.,
2005). While inhibition of both ABL paralogs might
contribute to the observed side effects of imatinib treatment
(Buchdunger et al., 1996), imatinib is used to target c-kit-
mutated gastrointestinal stroma tumors (GIST) or PDGFRβ-
mutated chronic myelomonocytic leukemia (CMML, Table 1)
(Poveda et al., 2017; Valent et al., 2019). For inhibition of M-CSF,
the influence on therapeutic outcome or side effects remains
unclear (Dewar et al., 2005). The occurring side effects of imatinib
treatment (but also of later generation TKIs) are gastrointestinal
disorders, i.e. nausea or emesis, dermatitis, and in severe cases
leukocytopenia, heart failure or liver disorders (Hahn et al., 2003;
Kalmanti et al., 2015; Steegmann et al., 2016). Although the side
effects are much less severe compared to classical chemotherapy
using cytostatic drugs and no absolute contraindications or life-
threatening complications have been observed yet, in
approximately 10% of patients, distinctive side effects lead to
interruption or termination of the therapy with the majority
occurring over time or after a drug holiday (O’Brien et al., 2003a;
Hochhaus et al., 2020).

While the use of tyrosine kinase inhibitors in CML is
tremendously successful, approximately 20–25% of all treated
CML patients suffer from loss of previously achieved cytogenetic
or major molecular response within 5 years of treatment
(Milojkovic and Apperley, 2009; Hochhaus et al., 2017). This
stresses the utter need for treatment alternatives. For this purpose,
the second and third generation TKIs were developed. Besides
imatinib, there are four clinically approved tyrosine kinase
inhibitors namely second-generation inhibitors nilotinib,
dasatinib and bosutinib and third-generation ponatinib, which
differ in their potency, side effects, targets and efficacy against
BCR-ABL mutations. Nilotinib, which also binds to the inactive
conformation of BCR-ABL1, is 20-fold more potent than
imatinib, but also binds to mitogen activated protein (MAP)-
kinases and might provoke cardiovascular events in 20% of
patients more frequently than imatinib (5%) (Manley et al.,
2010; Hughes et al., 2019a). In addition, cerebrovascular
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events, hypertension, hypercholesterolemia, diabetes as well as
pancreatitis are contradictory (Rosti et al., 2009). Besides similar
adverse effects compared to imatinib, the second generation TKI
dasatinib, which binds to the active BCR-ABL1 conformation, is
likely to cause pleuro-pulmonary toxicity or pleural effusion in
approximately 37% of the patients, while being less specific
(Kitagawa et al., 2013; Cortes et al., 2016). The broad
specificity SRC/ABL inhibitor bosutinib, which was initially
designed to inhibit SRC in SRC-overexpressing tumors, but
also shows high activity against ABL (and BCR-ABL) (Keller
et al., 2009), binds to the BCR-ABL1 kinase independent from the
kinase conformation, while provoking transient diarrhea in about
30% of patients (Remsing Rix et al., 2009). In addition, increased
levels of transaminases might be a temporary side effect
(Hochhaus et al., 2020).

Ponatinib is considered to be a second line TKI used in case of
T315I mutation (see below) and resistance to first or second
generation TKIs (Cortes et al., 2013). Compared to the other
TKIs, the highest number of adverse events occurs during
treatment with 30% cardiovascular toxicity and cardiovascular
risk factors being contraindicated. Further, the risk of arterial
occlusion events should be considered by monitoring
hypertension, hyperlipidemia, diabetes and smoking cessation
(Hochhaus et al., 2020). Ponatinib binds to the inactive state,
precisely the DFG (Asp-Phe-Gly)-out motif, of BCR-ABL1. It
should be added that treatment with TKIs is especially effective in
chronic phase CML, while the treatment of advanced phases or
terminal blast crises, which became rare due to excellent response
rates, includes classical chemotherapy or allogenic stem cell
transplantation (comprehensively summarized in (Hochhaus
et al., 2020).

Regarding genomics of adverse events, little is known about
the relevance of SNVs during TKI treatment of CML. Overall, it
seems that drug-drug interactions or variants in drug transporters
play a more important role in drug resistance than in the
occurrence of adverse events (see below).

Genomics of Therapy Resistances:
BCR-ABL1-Mutations
About approximately 50% of all TKI resistances in CML occur
due to mutations or overexpression/amplification of the BCR-
ABL1 kinase leading to loss of TKI binding and re-activation of
the downstream phosphorylation cascade (Gorre et al., 2001;
Jabbour et al., 2011; Baccarani et al., 2013; Rosti et al., 2017).
BCR-ABL1 consists of the breakpoint cluster region protein and

the tyrosine kinase ABL. The latter is structured by the
N-terminal lobe and C-terminal lobe fused by a hinge region.
In the N-lobe, ß-sheets and an a-helix, as well as an SRC-
homology domain regulating the tyrosine kinase activity are
located. The two ß-sheets are fused by a P-loop, which
contributes to binding of ATP. In the C-lobe, the ATP
binding site and the activation loop with conserved DFG
required for kinase activation (aspartate, phenylalanine, glycine
381–383) are situated (Reddy and Aggarwal, 2012). Imatinib
binds to the inactive conformation of the BCR-ABL1 ATP
binding pocket and requires six hydrogen bonds and the
conformation switch of activation domain and P-loop into the
active conformation (Reddy and Aggarwal, 2012). Therefore,
mutations altering the necessary amino acids can
tremendously limit the function of the drug (Eiring and
Deininger, 2014). Binding of imatinib is entirely abolished by
the so-called gatekeeper mutation T315I, in which one hydrogen
bond is removed inside the ATP binding pocket. This mutation
also leads to loss of action of the second generation TKIs. The
only remaining treatment option to this date is ponatinib, which
is a pan-BCR-ABL1 inhibitor and binds to the ATP binding
domain independent from the T315 hydrogen bond, although
this mutation requires increase of the ponatinib dose (O’Hare
et al., 2012; de Lavallade and Kizilors, 2016; Braun et al., 2020;
Luciano et al., 2020). Nevertheless, a second step mutation on the
same residue from isoleucine to methionine results in failure of
ponatinib as well (Zabriskie et al., 2014). Besides these TKIs, the
allosteric inhibitor of ABL1 asciminib, as a mimic of the
N-terminal myristoyl group of ABL1 (and therefore named
specifically targeting the ABL myristoyl pocket-(STAMP)-
inhibitor), might be an alternative to overcome resistances due
to BCR-ABL1 mutations, which are located in the ATP binding
domain. As the myristoyl group is lost in the BCR-ABL1 fusion
protein, autoregulation of ABL1 is prevented resulting in
malignant activation of the signaling transduction cascade,
which might be overcome by asciminib (Schoepfer et al., 2018;
Hughes et al., 2019b; Eide et al., 2019).

Moreover, mutations in the P-loop, i.e. G250E or Y253H,
destabilizing binding of imatinib or in the activation loop, i.e.
H396R, prevent the activation loop to maintain the closed
position lead to imatinib failure (Reddy and Aggarwal, 2012).
However, nilotinib is known to fail as well in the two depicted
mutations in the P-loop, while bosutinib is partially resistant to
G250E, but a therapeutic option in Y253H (Soverini et al., 2014).
This shows the utter need for stratification by the BCR-ABL1
mutation pattern to determine to best TKI for the therapy

TABLE 1 | Therapeutic targets, impact of metabolic pathways and drug transporters of tyrosine kinase inhibitors, used for the treatment of CML.

Tyrosine kinase
inhibitor

Therapeutic target CYP3A4/5 OCT1 ABCB1 ABCG2

Imatinib BCR-ABL1 PDGFRβ c-KIT + ? + +
Nilotinib BCR-ABL1 PDGFRβ c-KIT CSF-1R DDR + ? + +
Dasatinib Multi kinase inhibitor BCR-ABL1 src family PDGFRβ c-KIT + ? + +
Bosutinib Dual BCR-ABL1/Src inhibitor + ? − -
Ponatinib BCR-ABL1 T315I + ? + +

Adapted from Deng et al., 2014. +: strong evidence, substrate or inhibitor; -: no evidence; ?: evidence unclear.
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(Table 2; Figure 1). This is also the case for patients with
intolerance to one distinct TKIs.

Genomics of Therapy Resistances:
BCR-ABL1-independent Mechanisms
Besides mutations in BCR-ABL1, resistances can occur
independently from the kinase. These include multiple aspects,
which will be reviewed thereafter (Figure 1).

Impact of Drug Metabolism: CYP3A4/
CYP3A5
TKIs are substrates for cytochrome P450, mainly for CYP3A4
and CYP3A5 (Haouala et al., 2011). Therefore, it is not surprising
that drug-drug interactions may occur with a large number of co-
medications causing induction or inhibition of this metabolic
pathway. These include rifampicin, anticonvulsants, i.e.
carbamazepine, or herbal products, e.g. St. John’s wort, that
are confirmed PXR ligands inducing certain cytochrome P450
enzymes including CYP3A4 and 3A5. As a consequence,

enhanced metabolism of TKIs diminishes the striven TKI
plasma concentration contributing to chemoresistance (Peng
et al., 2005; Tian et al., 2018). Imatinib itself is considered to
be a moderate CYP3A4 inhibitor, while being a substrate
(O’Brien et al., 2003b; Filppula et al., 2012). CYP3A4
metabolizes imatinib to the active, but less cytotoxic
metabolite N-desmethyl-imatinib (CPG74588) (Mlejnek et al.,
2011). Interestingly, the autoinhibition of CYP3A4 reveals a
second pathway, namely CYP2C8, to be involved in hepatic
elimination after imatinib exposure (Filppula et al., 2013).
Moreover, it was observed that a higher activity of CYP3A4
and CYP3A5 was present in CML patients achieving complete
molecular remission compared to poor responders (Green et al.,
2010). It was discussed whether pharmacological long-acting
metabolites would have contributed to this observation.

Similar to the role of the enzyme activity, the presence of
pharmacogenetic variants might limit enzyme activity and
thereby affecting the metabolism of imatinib. The main
clinically relevant polymorphisms are CYP3A4*20
(rs67666821) expressed as a truncated protein with loss in
enzymatic activity and CYP3A4*22 (rs35599367) resulting in

TABLE 2 | Examples of mutations in the BCR-ABL1 protein and their influence on TKI response in CML.

Protein mutation Localisation
in the protein

Consequence on structure,
TKI binding

Clinical options

BCR-ABL1
T315I ATP binding pocket Loss of binding of imatinib, nilotinib, dasatinib, bosutinib Switch to ponatinib
T315M ATP binding pocket Second step mutation, loss of function of ponatinib No treatment option, asciminib?
G250E P-loop Failure of imatinib, nilotinib, bosutinib Use of dasatinib or ponatinib
Y253H P-loop Failure of imatinib, nilotinib Switch to dasatinib, bosutinib or ponatinib
H396R Activation loop Failure of imatinib Switch to second generation TKIs

Adapted from Hochhaus et al., 2020; de Lavallade et al., 2016; Soverini et al., 2014; Zabriskie et al., 2014.

FIGURE 1 | Schematic representation of pharmacogenetic variants leading to TKI resistance in CML. Mutations in BCR-ABL1 (depicted by the protein loci of the
mutation) can lead to TKI loss of function. Further, mutations in downstream signaling pathways (Mut) might provoke constitutive activation of the pathway or may lead to
activation of alternative signaling pathways that undertake the signaling transduction to sustain proliferation and survival of the tumor cell. Variants in cytochrome 450
enzymes (indicated by stars) could facilitate loss of metabolism of the respective TKI and thereby impaired turnover. In addition, variants in ABCB1 or ABCB2
(circles) might lead to altered TKI efflux and TKI response. The general role of the drug importer OCT1 is still controversially discussed. SNVs in mRNAs (polygons) can
also lead to impaired binding of microRNAs, which itself results in altered gene expression potentially contributing to TKI resistance. TKI: tyrosine kinase inhibitor.
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loss of about 20% enzyme activity, while evidence for variants
with increased enzyme activity is lacking (Werk and Cascorbi,
2014; Saiz-Rodriguez et al., 2020). CYP3A4 and CYP3A5 share a
high sequence homology and overlap in their substrate spectra
(Williams et al., 2002). For CYP3A5, the main variants are non-
functional CYP3A5*3 (rs776746), CYP3A5*6 (rs10264272),
CYP3A5*7 (rs41303343) that differ in their expression patterns
between the ethnicities (Kuehl et al., 2001; Werk and Cascorbi,
2014). CML patients with known CYP3A4 polymorphisms might
suffer from impaired TKI metabolism resulting in increased
adverse effects, but presumably also the response to the TKI
might be improved. However, there is conflicting data on the role
of CYP450 variants on the response to TKIs. Interestingly, for
CYP3A5*3, inferior imatinib response of the variant compared to
wild-type carriers was observed in several studies contradicting
the presumption of improved imatinib response in the presence
of a non-functional CYP3A5 protein (Liu et al., 2002; Kim et al.,
2009; Bedewy and El-Maghraby, 2013; Harivenkatesh et al.,
2017). In contrast, a meta-analysis for CYP3A5*3 revealed an
association of higher complete cytogenetic response rates under
imatinib treatment at least in the Asian population (Cargnin et al.,
2018). However, future conformational studies are necessary to
confirm these findings in other cohorts. An association of the TKI
response to the other variants mentioned has not been fully
elucidated, yet some studies point to a contribution of CYP2C8*2
and CYP3A4*7 to alterations in imatinib trough levels in
homozygous carriers resulting either in an increase or decrease
in the concentration (Adehin et al., 2019). The main genetic

variants are summarized in Table 3. Regarding adverse events, it
seems that CYP3A4 interactions play a larger role in adverse
events or lack of TKI response than genetic variants in CYP3A4,
as observed for e.g. phenytoin, cyclosporin A or ketoconazole
(Dutreix et al., 2004; Atiq et al., 2016; Osorio et al., 2019).
Therefore, assessment of cytochrome P450 genotypes or
function is not performed in the clinical routine to this date.
Further studies are necessary to analyze the relevance of these
enzymes in relation to drug resistance and adverse events.

Impact of Drug Transporters
Besides hepatic metabolism, drug transporters are known to be
involved in drug resistance impairing the intracellular drug
concentration or limiting the bioavailability of a drug in
certain tissues. For CML, several drug transporters are
discussed being either drug importers or efflux transporters
(see Table 3).

OCT1
The organic cation transporter 1 OCT1/SLC22A1 is considered to
be involved in the import of some TKIs into the tumor cells.
However, data regarding its relevance in CML is controversial, as
an upregulation of OCT1 in imatinib resistance was shown
(White et al., 2006; Engler et al., 2010), while others clearly
demonstrated the absence of a OCT1 regulation (Davies et al.,
2009; Nies et al., 2014). Interestingly, it was shown that OCT1
expression and activity might be used as a prognostic marker for
long-term imatinib response of CML patients (Watkins et al.,

TABLE 3 | Pharmacogenetic variants in cytochrome P450 enzymes and in drug transporters and their relevance to TKI response in CML.

Pharmacogenetic variant Rs-number Consequence Evidence

Cytochrome P450 enzymes
CYP3A4*20 rs67666821 Truncated protein —

CYP3A4*22 rs35599367 Intronic SNP, C > T —

CYP3A5*3 rs776746 Cryptic splice site with premature stop codon, A > G Unclear, contradictory data
CYP3A5*6 rs10264272 Synonymous, G > A —

CYP3A5*7 rs41303343 Insertion, frameshift mutation Decrease in imatinib trough
concentration?

CYP2C8*2 rs11572103 Missense, T > A Increase in imatinib trough level?
Drug transportersOCT1
181C > T rs1208357 R61C —

480C > G rs683369 L160F —

1022C > T rs2282143 P341L —

1222A > G rs628031 M408V —

1260-1262delGAT rs72552763 M420del —

ABCB1
1199G > A/T rs2229109 S400 N/L Relevance unclear
1236C > T rs1128503 Synonymous Increased imatinib response?,

no association to nilotinib,
dasatinib, ponatinib

2677G > T/A rs2032582 A893 S/T Increased imatinib response?,
no association to nilotinib,
dasatinib, ponatinib

3435C > T rs1045642 Synonymous Increased imatinib response?,
no association to nilotinib,
dasatinib, ponatinib

ABCG2
34G > A rs2231137 V12M Improved response to imatinib?
421C > A rs2231142 Q141K Conflicting data
−15,622C > T rs7699188 Low expression of BCRP Unclear?

Adapted from Werk and Cascorbi, 2014; White et al., 2006; Watkins et al., 2015; Bruckmueller and Cascorbi, 2021; -: lack of evidence.
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2015). Regarding pharmacogenetics, the main variants in OCT1
are 181C > T (R61C, rs12208357), 480C > G (L160F, rs683369),
both located in exon 1; exon 6 1022C > T (P341L, rs2282143),
1222A >G (M408V, rs628031) and 1260-1262delGAT (M420del,
rs72552763), both located in exon 7. Nevertheless, several studies
did not confirm an influence of any OCT1 variant on imatinib
response (Watkins et al., 2015).

ABC Transporters
Regarding drug efflux transporters, the CML TKIs are discussed
to be dose-dependent substrates or inhibitors of P-glycoprotein
(P-gp, ABCB1) and breast cancer resistance protein (BCRP,
ABCG2) being drug efflux transporters of the ATP binding
cassette (ABC) family that limit the intracellular concentration
of the respective TKI (Hegedus et al., 2009; Anreddy et al., 2014;
Beretta et al., 2017). In particular imatinib, nilotinib, dasatinib
and ponatinib were shown to be substrates of both, ABCB1 and
ABCG2, whereas bosutinib shows only little affinity and cannot
be considered as substrate of one of the mentioned ABC
transporters (Deng et al., 2014). Being overexpressed, these
transporters are known to contribute to drug resistance in
several tumors (Li et al., 2016; Mohammad et al., 2018).
Besides questions on drug competition and varying expression
of these ABC transporters, pharmacogenetic variants in ABCB1
or ABCG2 might have an impact on the development of drug
resistance (Bruhn and Cascorbi, 2014; Kaehler and Cascorbi,
2019).

ABCB1
ABCB1 is one of the most extensively investigated drug
transporters and broadly analyzed in terms of
pharmacogenetic variants. It could be expected that loss of
function variants or those with impaired protein function
resulting in reduction in efflux capability may lead to
improved response to TKIs. However, so far there is no clear
evidence that ABCB1 variants could be applied as predictive
biomarkers in any drug therapy (Bruckmueller and Cascorbi,
2021). Most pharmacogenetic studies on TKIs focused on the
common variants are 1236C > T (synonymous, exon 12,
rs1128503), 2677G > T/A (A893 S/T, exon 21, rs2032582) and
3435C > T (synonymous, exon 26, rs1045642). Regarding
response to imatinib, there is conflicting data. Whereas in
vitro-experiments using ABCB1-overexpressing cells
demonstrated a moderately increased imatinib response in
triple variants carriers compared to wild-type (Dessilly et al.,
2016b), a comprehensive meta-analysis of clinical studies
revealed lack of significance on molecular response in relation
to any of the above mentioned ABCB1 variants (Wang et al.,
2015). In addition, the role of these variants during treatment
with nilotinib, dasatinib and ponatinib also lacked a clear
association (Dessilly et al., 2016b; Galimberti et al., 2017).
Regarding less common variants, the influence of 1199G >
A/T is also controversially discussed, as for the A variant allele
increased efflux of imatinib, nilotinib and dasatinib was observed
in vitro, while this finding was not detected in other studies
(Skoglund et al., 2013; Dessilly et al., 2016a). Overall, the role of
ABCB1 polymorphisms in TKI resistance remains controversial.

At least, variants do not seem to be suitable as predictive
biomarkers of drug response.

ABCG2
Besides its function as drug efflux transporter, ABCG2 is also
regarded as stem cell factor being highly expressed in
hematopoietic precursor and stem cells (Scharenberg et al.,
2002; Jordanides et al., 2006). Similar to ABCB1, ABCG2
polymorphisms are discussed to alter the transport capability
of this protein. The most important variants are 34G > A (V12M,
exon 2, rs2231137) and 421C > A (Q141K, rs2231142). Some
evidence pointed to homozygous 34G >A resulting in amino acid
exchange from valine to methionine to be associated with an
improved response to imatinib potentially due to reduction in
ABCG2 expression (Kim et al., 2009). For 421C > A, which
presumably affects the conformation of the ATP binding domain,
data is conflicting as it was shown that expression of the variant
limited imatinib bioavailability, while others demonstrated no
effects on the pharmacokinetics of imatinib in vivo (Gardner
et al., 2006; Takahashi et al., 2010; Skoglund et al., 2014).
Nevertheless, Jiang and colleagues suggested a potential use of
this variant to predict imatinib response in CML (Jiang et al.,
2017). In addition to these polymorphisms, the -15,622C > T
promoter SNP (rs7699188) was associated with low expression of
BCRP in multiple tissues, including the liver, likely to decrease
imatinib clearance from the cell (Poonkuzhali et al., 2008).
Additional variants in ABCG2 were also analyzed, but revealed
hardly any effects on TKI clearance or response (Bruckmueller
and Cascorbi, 2021). To conclude, for both, ABCB1 and ABCG2,
a clear association of pharmacogenetic variants to imatinib
response is lacking and future studies are necessary to provide
insights into their relevance in drug resistance.

Adding to the complexity, expression of ABCB1 and ABCG2
in drug resistance seems to be dose-dependent, as in several
studies controversial findings were observed pointing to a
dynamic expression of these proteins (Gromicho et al., 2011;
Eadie et al., 2013; Kaehler et al., 2017). Interestingly, it was shown
that ABCG2 expression in peripheral blood leukocytes could be
used to predict treatment-free remission during imatinib
discontinuation (Rinaldetti et al., 2018). Nevertheless, future
studies are needed to analyze the influence of ABC transporter
variants in neoplasms, such as CML.

Epigenetics and microRNAs
Besides activation or repression by transcription factors, gene
expression is regulated by epigenetic factors. These imply DNA
methylation or histone modifications as acetylation or
ubiquitinoylation, as well as post-transcriptional regulation.
For CML, there is some evidence on the influence of
methylation during the progression of the CML phases, as it
was shown that the ABL1 promoter is hypermethylated in early
stages of CML, as well as a global hypermethylation in CML blast
crisis occurs (Machova Polakova et al., 2013; Heller et al., 2016).
In TKI drug resistance, an increase in overall methylation was
also observed in patients resistant or intolerant to imatinib
(Jelinek et al., 2011). However, these findings are limited on
distinct genes.
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Besides epigenetic regulation, expression of microRNAs might
be involved in the pathogenesis of CML and drug resistance.
microRNAs are 19–21 nt short ribonucleotides involved in post-
transcriptional regulation of gene expression by binding
specifically to the 3’ UTR of their target mRNAs and
provoking either their degradation or translational stop (Kim,
2005; Krutzfeldt et al., 2006). As microRNAs regulate expression
of tumor suppressor or oncogenes, aberrant microRNA-
expression was demonstrated in several malignancies, as well
as in combination with anti-cancer drugs (Zheng et al., 2010). In
CML, it was shown that the presence of TKIs alters the
microRNA expression pattern in blood samples of CML
patients (Flamant et al., 2010). In addition, the global
microRNA expression pattern seems to differ between either
drug sensitivity and resistance in vitro, in CML patients, as
well as in responding and non-responding CML patients or
CML phases (San Jose-Eneriz et al., 2009; Machova Polakova
et al., 2011; Turrini et al., 2012; Klumper et al., 2020). Moreover,
distinct microRNAs, as shown e.g. for miR-203 or -30a/e, target
the BCR-ABL1 gene and their deregulation might contribute to
altered response to TKIs (Liu et al., 2013; Shibuta et al., 2013;
Hershkovitz-Rokah et al., 2014). Even beyond BCR-ABL1, fine-
tuning of gene expression by microRNAs as e.g. MYC by miR-
144/451 or miR-212/ABCG2 might be involved to regulate the
relevant target genes in the downstream signaling cascade and
contribute to drug resistance (Liu et al., 2012; Kaehler et al., 2017).
Therefore, it is discussed if microRNA expression could be used
as biomarker for response to TKI treatment (Litwinska and
Machalinski, 2017).

It has to be added that SNVs in the 3’ UTRs of microRNA
target genes, as well as expression of alternate 3′ UTR lengths
might tremendously affect microRNA binding resulting in tumor
cell escape from therapy (Kasinski and Slack, 2011). This was
shown e.g., forABCB1 and ABCG2 in various cancer cell lines (To
et al., 2008; Bruhn et al., 2016), as well as for three members of the
ABCC family (Bruhn et al., 2020). Moreover, binding of let-7 was
impaired by mutated KRAS 3’ UTR (Chin et al., 2008).

Alternative Mechanisms of Resistance
The constitutive activation of the BCR-ABL1 fusion protein leads
to pleiotropic stimulation of various signaling pathways involving
JAK/STAT, MAP-kinases and PI3K/Akt signaling pathways.
These result in increased cell proliferation, anti-apoptotic
signaling, as well as altered cell motility and adhesion to
stroma cells (Cilloni and Saglio, 2012). As the majority of
these signaling pathways are oncogene addicted to BCR-ABL1
activity, treatment with BCR-ABL1 inhibitors is highly successful.
However, these pathways can be captured by alternate stimuli, as
shown e.g. for WNT/β-catenin signaling in leukemic stem cells or
JAK2 activation by external stimuli (Braun et al., 2020), which
makes the tumor cell at least partially autonomous from BCR-
ABL1 potentially facilitating therapy failure or unsatisfactory
response rates. Moreover, adaptions of the signaling pathways
cannot only occur due to differential gene expression, but also due
to mutations downstream of BCR-ABL1 or in alternative
signaling pathways. These include re-activation of proliferative
pathways, e.g. hedgehog or PI3K/Akt signaling, or activation of

autophagy (comprehensively reviewed in (Minciacchi et al.,
2021). The main difficulty with this is the detection of the
responsible signaling pathways to find a suitable target (and
drug) combination to circumvent resistance and trigger
synthetic lethality, especially of leukemic stem cells (Cilloni
and Saglio, 2012). As TKIs–at least to date–require a life-long
therapy, they promote the development of mutations, clonal
evolution and selection, which facilitates CML progression, but
also TKI resistance and thereby adaption of the therapeutic
strategy. Luckily, in cases of imatinib failure, a switch to newer
generation TKIs according to the guidelines leads to good
responses in most patients (Baccarani et al., 2013; Hochhaus
et al., 2020).

How to Analyze Genomics of Drug
Resistance: In Vitro-Models
As drug resistant cell lines can hardly be established from primary
material, these cell lines are utterly important to investigate drug
responses. Although these tools are necessary to understand the
biology and the mechanisms of drug resistance, some cancer cell
lines potentially differ from the tumor they derived from and the
transfer to the clinical situation might be limited (Sandberg and
Ernberg, 2005; Ertel et al., 2006). Nevertheless, studies on drug
efficacy using cell lines were successfully transferred to cancer
patients, as shown e.g. for prediction of drug efficacy using gene
expression data of cell lines by artificial intelligence and machine-
learning (Borisov et al., 2018). In addition, cell lines have been
used to develop treatment protocols, as shown for CML using K-
562, but also NB4 cells for acute promyelocytic leukemia
(Mirabelli et al., 2019). The application of drug resistant cell
lines appears still to be the best model to analyze drug resistance
(Rumjanek et al., 2013). These can either be generated by pulse
treatment or continuous administration of increasing drug
concentrations to a given cell line (McDermott et al., 2014).
Regarding CML drug resistance models, the majority of studies
have been performed on the K-562 cell line (e.g., Turrini et al.,
2012; Kaehler et al., 2017), but other cell lines, e.g. LAMA-84 or
KCL-22, have been tested as well. The major drawback with these
cell lines is their origin in blast crisis of CML patients, which
might not reflect the clinical situation of treatment of chronic
phases, where initial therapy failure is observed. Therefore, the
use of cell lines always implies future studies for the transfer of the
observed resistance mechanisms to the clinical situation.

DISCUSSION

Targeted treatment of CML using specific tyrosine kinase
inhibitors of the causal BCR-ABL1 fusion protein is
tremendously successful. With this it was shown that targeting
a single protein in the tumor cell can lead to therapeutic
remission. Since CML cells are highly oncogene addicted to
BCR-ABL1, inhibition of this protein and its downstream
signaling pathways is sufficient to promote the demise of the
tumor cells. This strategy was transferred to other tumors and is
especially successful whenever the tumor cells have a high
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dependency on druggable kinases and has a rather simple
complexity. Additional examples are HER2 inhibition in breast
cancer using lapatinib and/or HER2-specific monoclonal
antibodies trastuzumab and pertuzumab or BRAF mutated
malignant melanoma using the tyrosine kinase inhibitors
vemurafenib or dabrafenib (Swain et al., 2015; Jiao et al.,
2018). While therapy using HER2-inhibition is genuinely
successful in primary or advanced HER2-positive breast
cancer, BRAF inhibition is often undertaken by downstream
mutations leading to time-dependent relapses (Finn et al.,
2012; Pernas and Tolaney, 2019). Therefore, BRAF inhibition
is often combined with immune checkpoint inhibitors,
i.e., ipilimumab, nivolumab or pembrolizumab, while
drastically improved the outcome (Furue et al., 2018). CML
still is one of the few neoplasms, in which a single agent can
be used to successfully treat the disease, as for others, the
combination of different agents often exceeds the response
rates of a monotherapy and reduces the likelihood of drug
resistance (Palmer and Sorger, 2017; Jardim et al., 2020). To
this day, a variety of TKIs can be used for several tumors and are
mainly administered in a co-treatment strategy (Jiao et al., 2018).
Nevertheless, identification of the right (sub) population of
tumors is often the key for successful therapy.

Regarding mechanisms of drug resistance, the findings in TKI
resistant CML are likely to be transferrable to other drug-tumor
combinations. This is the case as e.g. the majority of TKIs are
metabolized by CYP3A4 and transported by ABC efflux
transporters (Di Gion et al., 2011; Scheffler et al., 2011).
Studying various combinations of anti-cancer drugs and tumor
entities, it can be concluded that drug-drug interactions and
pharmacogenetic variants might play a role in the development of
drug resistance in other drug-tumor combinations. However, a

predictive role for these variants at least for ABC transporters is
not possible yet (Bruckmueller and Cascorbi, 2021).

As shown for BCR-ABL1, mutations in the binding domain of
a respective kinase inhibitor or its overexpression/gene
amplification have been observed in multiple tumors leading
to drug resistance, as shown for acquired EGFR T790M
mutations and c-MET receptor tyrosine kinase amplification
promoting gefitinib resistance in lung cancer or KIT exon 14
or 17 and PDGFRA exon 14 mutations providing resistance
against imatinib and reduced efficacy of sunitinib in GIST
(Lynch et al., 2004; Gao et al., 2013; Kobayashi et al., 2013;
Zhang et al., 2019). In addition, observations derived from CML
regarding activation of alternative signaling pathways can also be
observed in other tumor entities. This shows that processes of
drug resistance observable in CML are highly similar to other
drug-tumor combinations.

Overall, the genomics of impaired response against tyrosine
kinase inhibitors observed in CML (Figure 1) might be observed
during the treatment of other tumors using alternate TKIs as well.
Mechanisms of resistance against TKIs often consist of a variety
of layers, on mutations of the TKI target gene, in metabolic
enzymes, drug transporters or in proteins of downstream or
alternative signaling pathways. Adaption of the therapeutic
regimen and development of new compounds overcoming
these obstacles are necessary to further improve therapy
response to TKIs.
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