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Abstract
Background: Lipid metabolism is closely related to the occurrence and development of 
breast cancer. Our purpose was to establish a novel model based on lipid metabolism- 
related	 long	noncoding	RNAs	 (lncRNAs)	and	evaluate	 the	potential	clinical	value	 in	
predicting prognosis for patients suffering from breast cancer.
Methods: RNA	data	and	clinical	 information	 for	breast	 cancer	were	obtained	 from	
the	cancer	genome	atlas	 (TCGA)	database.	Lipid	metabolism-	related	 lncRNAs	were	
identified via the criteria of correlation coefficient |R2| > 0.4 and p < 0.001, and prog-
nostic	 lncRNAs	were	identified	to	establish	model	through	Cox	regression	analysis.	
The training set and validation set were established to certify the feasibility, and all 
samples	were	separated	into	high-	risk	group	or	low-	risk	group.	Gene	Ontology	(GO)	
and	Gene	Set	Enrichment	Analysis	 (GSEA)	were	 conducted	 to	evaluate	 the	poten-
tial	 biological	 functions,	 and	 the	 immune	 infiltration	 levels	were	 explored	 through	
Cibersortx	database.
Results: A	 total	 of	 14	 lncRNAs	 were	 identified	 as	 protective	 genes	 (AC022150.4,	
AC061992.1,	 AC090948.3,	 AC092794.1,	 AC107464.3,	 AL021707.8,	 AL451085.2,	
AL606834.2,	 FLJ42351,	 LINC00926,	 LINC01871,	 TNFRSF14−AS1,	 U73166.1	 and	
USP30−AS1)	with	HRs	<	1	while	10	lncRNAs	(AC022150.2,	AC090948.1,	AC243960.1,	
AL021707.6,	 ITGB2−AS1,	 OTUD6B−AS1,	 SP2−AS1,	 TOLLIP−AS1,	 Z68871.1	 and	
ZNF337−AS1)	were	associated	with	 increased	risk	with	HRs	>1.	A	total	of	24	prog-
nostic	lncRNAs	were	selected	to	construct	the	model.	The	patients	in	low-	risk	group	
were	associated	with	better	prognosis	in	both	training	set	(p <	0.001)	and	validation	
set	(p <	0.001).	The	univariate	and	multivariate	Cox	regression	analyses	revealed	that	
risk	score	was	an	independent	prognostic	factors	in	both	training	set	(p <	0.001)	and	
validation	set	(p <	0.001).	GO	and	GSEA	analyses	revealed	that	these	lncRNAs	were	
related to metabolism- related signal pathway and immune cells signal pathway. Risk 
score	was	negatively	correlated	with	B	cells	(r =	−0.097,	p =	0.002),	NK	cells	(r =	−0.097,	
p =	0.002),	Plasma	cells	(r =	−0.111,	p =	3.329e-	04),	T-	cells	CD4	(r =	−0.064,	p =	0.039)	
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1  |  INTRODUC TION

As	the	most	commonly	diagnosed	cancer	 in	women,	breast	cancer	
may occur in one in eight women during their lifetimes.1,2	Although	
cancer treatment has significantly improved in recent decades, its 
mortality	 is	still	high	and	accounts	for	approximately	6.4%	of	mor-
tality rate.3 In recent decades, metabolic changes have been widely 
observed in a variety of cancer cells.4 Due to the consistent change 
of nutrients in the tumor microenvironment, cancer cells maintain 
rapid proliferation, survival, migration, invasion and metastasis via 
lipid metabolism.5 Lipid accumulation is recognized as a signature 
of cancers.6 The reduction in lipid accumulation could suppress 
tumor growth.7 Epidemiological studies also proved that fatty acid 
synthase that plays vital role in lipid metabolism is associated with 
molecular subtypes and prognosis of breast cancer.8– 10

Long	noncoding	RNAs	(lncRNAs)	were	defined	as	a	type	of	RNA	
more than 200 nucleotides in length without capacity to encode pro-
tein.	 LncRNAs	 participate	 in	many	 significant	 biological	 processes	
and are closely related to breast cancer diagnosis and prognosis.11,12 
However,	the	mechanism	of	lncRNAs	in	transcription	is	still	poorly	
understood. Our analysis was conducted to identify whether lipid 
metabolism	 related	 to	 lncRNAs	 could	 predict	 prognosis	 in	 breast	
cancer accurately.

2  |  MATERIAL S AND METHODS

2.1  |  Gene expression and clinical information of 
breast cancer patients

The	RNA-	seq	data	and	corresponding	clinical	 information	of	1053	
breast cancer tissues and 111 normal tissues were downloaded from 
the	TCGA	database	(http://www.cance rgeno me.nih.gov/).	The	data	
with complete clinical information were retained.

2.2  |  Identifying lipid metabolism- related 
genes and related lncRNAs

We identified 146 lipid metabolism- related genes from 
gene	 set	 “KEGG_GLYCEROLIPID_METABOLISM”,	 “KEGG_
GLYCEROPHOSPHOLIPID_METABOLISM”,	 “SPHINGOLIPID_
METABOLISM”	 and	 “ETHER_LIPID_METABOLISM”	 in	 Gene	 Set	
Enrichment	 Analysis	 (GSEA)	 database	 (https://www.gsea- msigdb.

org/gsea/index.jsp).	Pearson's	correlation	coefficient	was	calculated	
via	R	v4.0.2.	(http://www.r- proje ct.org/).	If	the	square	of	correlation	
coefficient |R2| > 0.4 and p <	0.001,	the	lncRNAs	were	considered	
to be related genes.

2.3  |  Identifying prognostic lncRNAs

“Survival	 package”	 was	 used	 to	 identify	 prognostic	 lncRNAs	 via	
Kaplan–	Meier	test.	Step	Function	was	applied	to	narrow	down	prog-
nostic	genes.	Sankey	diagram	and	co-	expression	network	between	
24	 lncRNAs	 and	 19	 mRNAs	 were	 constructed	 via	 R	 v4.0.2.	 and	
Cytoscape software 3.8.0.

2.4  |  Constructing prognostic model

All	samples	were	separated	into	training	set	and	validation	set	ran-
domly.	The	risk	score	of	each	prognostic	lncRNAs	was	calculated	to	
construct	 the	 predictive	 prognostic	model.	 According	 to	 previous	
article, predictive prognostic model was constructed.13	All	patients	
were separated into two groups based on the risk score. Kaplan– 
Meier	 plot,	 survival	 status	 and	prognostic	 index	distribution	were	
drawn to compare the survival differences.

2.5  |  Evaluating signature of 
clinicopathological variables

Clinicopathological	variables	(primary	tumor	status,	lymph	node	sta-
tus,	age	and	stage)	were	associated	with	the	prognosis	of	breast	can-
cer. Clinicopathological variables and risk score of prognostic model 
were	compared	through	Cox	univariate	and	multivariate	analyses.	The	
receiver	operating	characteristic	curve	(ROC)	plot	was	drawn	to	eval-
uate the accuracy of our model in predicting prognosis of patients.

2.6  |  Gene Ontology and GSEA analyses

“Limma	package”	was	used	to	identify	the	differentially	expressed	genes	
with	the	cut-	off	criteria	of	false	discovery	rate	(FDR)	< 0.05 and |fold 
change	(FC)|	>	2.	Differentially	expressed	 lncRNAs	were	 identified	to	
perform	Gene	Ontology	(GO)	analysis.	GSEA	was	performed	1000	times	
to	 explore	 the	 potential	 functions	 by	 using	 “c2.cp.kegg.v7.2.symbols.

and	T-	cells	CD8	(r =	−0.322,	p =	2.357e-	26)	and	positively	correlated	with	Dendritic	
cells	(r =	0.077,	p =	0.013)	and	Monocytes	(r = 0.228, p =	1.107e-	13).
Conclusion: The	prognostic	model	based	on	lipid	metabolism	lncRNAs	possessed	an	
important value in survival prediction of breast cancer patients.

K E Y W O R D S
bioinformatic	analysis,	biomarkers,	breast	cancer,	lipid	metabolism,	lncRNA
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gmt”	 as	 gene	 sets	 database.	The	p	value	 and	normalized	enrichment	
score	(NES)	were	applied	to	evaluate	the	potential	pathways.

2.7  |  Evaluating the tumor- infiltrating immune cells

The information of tumor- infiltrating immune cells was obtained 
from	the	CIBERSORTx	database14	(https://ciber	sortx.stanf	ord.edu/)	
that contains the proportion of 22 immune cells in each sample. The 
proportions of 22 immune cells were compared between high- risk 
group and low- risk group.

3  |  RESULTS

3.1  |  Identification of lipid metabolism related to 
lncRNAs and prognostic genes

A	total	of	14,142	 lncRNAs	were	 included	 in	TCGA	database,	and	
728	 lipid	metabolism	 related	 to	 lncRNAs	were	eligible	 for	 selec-
tion	 criteria	 (|R2| > 0.4 and p <	 0.001).	 There	were	1053	breast	

cancer	samples	in	TCGA	database,	and	77	prognostic	lncRNAs	as-
sociated	with	 overall	 survival	 (p < 0.05, Figure 1A)	were	 identi-
fied.	Totally,	24	prognostic	lncRNAs	were	narrowed	down	via	Step	
Function.	Among	24	 lncRNAs,	14	 lncRNAs	were	associated	with	
better	 outcome,	 while	 10	 lncRNAs	 were	 associated	 with	 worse	
outcome	 (Figure 1B).	 A	 co-	expression	 network	was	 constructed	
in Figure 1C.

3.2  |  Constructing prognostic model

All	 samples	 were	 divided	 into	 training	 set	 and	 validation	 set	 ran-
domly at a 3:2 ratio. The characteristics of training and validation 
set	were	attached	 in	Appendix	S1. Each prognostic gene attains a 
score, and the risk score of each sample was calculated via the for-
mula.	Finally,	according	to	the	risk	score,	each	sample	was	divided	
into	high-	risk	group	or	 low-	risk	group.	High-	risk	patients	were	as-
sociated	 with	 worse	 prognosis	 in	 both	 training	 set	 (p < 0.001, 
Figure 2A)	and	validation	set	(p < 0.001, Figure 3A).	Survival	status	
and	prognostic	 index	distribution	were	 similar	 in	both	 training	 set	
(Figure 2B,C)	 and	 validation	 set	 (Figure 3B,C).	 The	 univariate	 and	

F I G U R E  1 (A)	The	forest	plot	of	77	prognostic	long	noncoding	RNAs	(lncRNAs)	associated	with	overall	survival.	(B)	The	Sankey	diagram	
of	24	lncRNAs	and	19	mRNAs.	(C)	The	Coexpression	network	of	24	lncRNAs	and	19	mRNAs

https://cibersortx.stanford.edu/
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multivariate	 cox-	regression	 analyses	 were	 performed	 to	 evaluate	
whether risk score was an independent prognostic factor for breast 
cancer. The univariate and multivariate regression revealed that risk 
score	(p <	0.001)	was	independent	prognostic	factor	in	both	training	
set	 (Figure 2D,E)	and	validation	set	 (Figure 3D,E).	Multi-	parameter	
ROC	curves	revealed	that	AUC	values	for	risk	score	in	training	set	
(Figure 2F)	and	validation	set	(Figure 3F)	were	0.834	and	0.962.

3.3  |  GO and GSEA analyses

The	enrichment	analysis	of	GO	revealed	that	these	lncRNAs	were	re-
lated to cell fate specification, cell fate commitment, T- cell receptor 

complex	and	plasma	membrane	signaling	receptor	complex.	We	se-
lected significantly enriched signaling pathways based on their NES 
and	nominal	(NOM)	p	value.	The	GSEA	analysis	exhibited	significant	
enrichments in metabolism- related signal pathway and immune cells 
signal	pathway	(Figure 4;	Appendix	S2).

3.4  |  The infiltrating status of immune cells

We found that the risk score was negatively correlated with B cells 
(r =	−0.097,	p =	0.002),	NK	cells	(r =	−0.097,	p =	0.002),	Plasma	cells	
(r =	−0.111,	p =	3.329e-	04),	T-	cells	CD4	(r =	−0.064,	p =	0.039)	and	
T-	cells	 CD8	 (r =	 −0.322,	p =	 2.357e-	26)	 and	 positively	 correlated	

F I G U R E  2 (A)	Kaplan–	Meier	curve	of	samples	in	high-	risk	group	and	low-	risk	groups	in	training	set.	(B)	Distribution	of	risk	score	in	
training	set.	(C)	The	relationship	between	survival	status	and	risk	score	in	training	set.	(D)	Forest	plot	of	Cox	univariate	analysis	in	training	
set.	(E)	Forest	plot	of	Cox	multivariate	analysis	in	training	set.	(F)	ROC	curve	of	risk	score	and	clinical	features	in	training	set



    |  5 of 9SHI et al.

with	Dendritic	cells	(r =	0.077,	p =	0.013)	and	Monocytes	(r = 0.228, 
p =	1.107e-	13)	via	the	CIBERSORTx	database	(Figure 5).

4  |  DISCUSSION

In this study, a novel prognostic model was identified based on 
lipid	metabolism-	related	genes.	First,	77	prognostic	lncRNAs	were	
identified,	 and	 narrowed	 down	 to	 24	 genes	 via	 Step	 Function.	
The risk score was calculated to divide each sample into high- risk 
group or low- risk group on the basis of the prognostic genes. To 
verify the accuracy and feasibility, all samples were separated into 
a training set and a validating set. It was observed that patients 
in high- risk group were associated with worse prognosis in both 
training set and validating set. On the other hand, it was found 
that risk score may be an independent prognostic factors in both 
training set and validating set. The product of lipid metabolism 

that secreted into the microenvironment impacts the infiltrating 
immune cell. Consequently, the status of infiltrating immune cells 
was	analyzed	via	CIBERSORTx	database.	It	was	observed	that	the	
risk score may affect the status of B cells, NK cells, Plasma cells, 
T-	cells	CD4,	T-	cells	CD8,	Dendritic	cells	and	Monocytes.	GO	and	
GSEA	analyses	were	performed	to	explore	the	biological	function.	
It was found that genes included in our model were associated 
with cell fate specification, cell fate commitment, T- cell receptor 
complex	and	plasma	membrane	signaling	receptor	complex.	GSEA	
analysis	exhibited	a	significant	enrichment	 in	metabolism-	related	
signal pathway, immune cells signal pathway and cancer- related 
signal pathway.

To	 our	 knowledge,	 AC022150.4,	 AC107464.3,	 AL021707.8,	
AL451085.2,	 AL606834.2,	 FLJ42351,	 TOLLIP-	AS1	 and	 U73166.1	
have not been reported. In addition, the mechanism and biological 
functions	of	AC022150.2,	AC061992.1,	AC090948.1,	AC090948.3,	
AC092794.1,	 AC243960.1,	 AL021707.6,	 LINC00926,	 SP2-	AS1,	

F I G U R E  3 (A)	Kaplan–	Meier	curve	of	samples	in	high-	risk	group	and	low-	risk	groups	in	validation	set.	(B)	Distribution	of	risk	score	in	
validation	set.	(C)	The	relationship	between	survival	status	and	risk	score	in	validation	set.	(D)	Forest	plot	of	Cox	univariate	analysis	in	
validation	set.	(E)	Forest	plot	of	Cox	multivariate	analysis	in	validation	set.	(F)	ROC	curve	of	risk	score	and	clinical	features	in	validation	set
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TNFRSF14-	AS1	 and	 Z68871.1	 have	 not	 been	 previously	 investi-
gated	 in	 cancer.	 Previous	 studies	 indicated	 that	 ITGB2-	AS1	 could	
promote progression, migration and invasion in many types of can-
cers, including pancreatic ductal adenocarcinoma, renal cell carci-
noma, osteosarcoma and breast cancer.15– 18 Chu et al. proved that 
FOXO3A/LINC00926/PGK1	 is	 a	 critical	 axis	 to	 regulate	 breast	
cancer	 growth	 and	 progression.	 In	 this	 axis,	 LINC00926	 inhibits	
proliferation, migration and invasion in breast cancer via PGK1- 
mediated Warburg effect.19 These findings are consistent with our 
analysis.	OTUD6B-	AS1	may	act	different	roles	 in	different	cancers.	
OTUD6B-	AS1	suppresses	viability,	migration	and	invasion	in	thyroid	
carcinomas, colorectal cancer cell and renal cell carcinoma.20– 23 On 

the	 other	 hand,	 OTUD6B-	AS1	 promotes	 hepatocellular	 carcinoma	
cells proliferation and invasion and induces chemoresistance in 
breast cancer cell and cervical cancer cell.24– 26	How	to	make	a	wide	
use	 of	 OTUD6B-	AS1	 is	 worth	 exploring	 and	 may	 provide	 a	 novel	
strategy to cancer treatment. The diversity of the composition of 
immune cell may promote tumor development and influence the re-
sponse to therapy.27 The infiltrating status of immune cells analysis 
revealed that B cells, NK cells, Plasma cells, T- cells CD4, T- cells CD8, 
Dendritic	cells	and	Monocytes	were	associated	with	the	risk	score	of	
our	model.	Among	these	immune	cells,	CD8+ T cells were most rele-
vant to the risk score. CD8+ T cells plays critical portion in anti- tumor 
mechanism. The low level of CD8 T- cell infiltration status predicts 

F I G U R E  4 Gene	Ontology	and	gene	set	enrichment	analyses
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F I G U R E  5 The	relationship	between	risk	score	and	immune	infiltration	levels
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rapid progression and inefficient response to immunotherapy.28 Yang 
et	al.	indicated	that	the	inhibition	of	ACAT1	(known	as	a	key	enzyme	
in	lipid	metabolism)	contributes	to	the	increase	in	plasma	membrane,	
which leads to the proliferation of CD8+ T cells via enhancing T- cell 
receptor aggregation and signal transduction.29 In our results, it was 
obvious that the risk score was negatively correlated with CD8+ T 
cells.	GSEA	also	revealed	that	risk	score	was	down-	regulated	in	T-	cell	
receptor signaling pathway, which may acquire a better understand-
ing of immune cells functions in lipid metabolism signaling pathway.

There	are	several	 limitations	 in	our	study.	All	breast	cancer	 in-
formation	was	obtained	from	the	TCGA	database,	and	the	patients	
were	primarily	Americans.	Breast	cancer	patients	from	other	regions	
further require confirmation with additional evidence. Inevitable 
bias	 exists	 in	 the	 study,	 because	 the	 validation	 set	was	 also	 form	
TCGA	database.

5  |  CONCLUSION

In summary, a novel prognostic model that could predict the progno-
sis of breast cancer patients based on 24 lipid metabolism related to 
lncRNAs	was	identified.	This	prognostic	model	not	only	guides	the	
occurrence of breast cancer but also could provide evidence of the 
response to immunotherapy.
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