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Misuse of prescription opioids is a leading cause of premature
death in the United States. We use state government adminis-
trative data and machine learning methods to examine whether
the risk of future opioid dependence, abuse, or poisoning can be
predicted in advance of an initial opioid prescription. Our mod-
els accurately predict these outcomes and identify particular prior
nonopioid prescriptions, medical history, incarceration, and demo-
graphics as strong predictors. Using our estimates, we simulate
a hypothetical policy which restricts new opioid prescriptions to
only those with low predicted risk. The policy’s potential ben-
efits likely outweigh costs across demographic subgroups, even
for lenient definitions of “high risk.” Our findings suggest new
avenues for prevention using state administrative data, which
could aid providers in making better, data-informed decisions
when weighing the medical benefits of opioid therapy against
the risks.

opioids | evidence-based policy | predictive modeling |
machine learning | administrative data

Prescription opioids rank among the highest in terms of poten-
tial for dependence, abuse, and poisoning. In 2016, more

Americans under the age of 50 y died from drug overdoses than
from car crashes or gun violence, a trend driven by increases in
opioid overdoses (1).

However, opioids may also be an important therapy for those
who suffer from chronic pain. The majority of those prescribed
opioids do not experience adverse outcomes; a survey of studies
of opioid use found that rates of misuse, abuse, and addic-
tion averaged between 8% and 12% (2). This rate is, however,
higher than an early (and widely cited) claim that less than
1% of hospitalized patients receiving narcotics developed an
addiction (3).

Moreover, many of those suffering from adverse outcomes
were introduced to opioids through a legitimate opioid prescrip-
tion. One study of 6 y of medical and pharmacy claims found
that 79.9% of opioid abusers had a prescription prior to their
first abuse diagnosis (4). Of the opioid abusers who did not them-
selves have a prior prescription, 50.8% had a family member with
a prior prescription.

Given the risks and long-term consequences of adverse out-
comes following legitimate opioid prescriptions, many providers
now report a lack of confidence in managing their patients’
chronic pain through opioid therapy (5). Providers could bene-
fit from better information on the risks of initiating a patient on
opioid therapy, especially when that patient has never received
an opioid prescription before.

Prior studies have identified risk factors for opioid abuse and
dependence through descriptive analysis and statistical modeling
of both medical claims and electronic health records (6–10), and
two studies have also evaluated the predictive performance of
such models (11, 12). However, these studies focus on individ-
uals already persistently receiving opioid therapy and describe
patterns of opioid use which are indicative of dependency and
misuse within this subpopulation. Previous research has not yet

developed a predictive model that is applicable to the larger pop-
ulation of recipients of opioid therapy using data on individuals
known only prior to a prescription being given.

In this study, we use integrated administrative data to esti-
mate models of adverse opioid-related outcomes for Medicaid
enrollees in Rhode Island and conduct policy simulations of
restricting opioid prescriptions to only those with low predicted
risk. By some estimates, the opioid epidemic created $5.5 bil-
lion in additional health care costs to the Medicaid program
nationally in 2013 (13). Estimating our model on state admin-
istrative data provides an avenue for state policymakers to
predict the risk associated with prescribing opioids to Medicaid
enrollees, which could be used to inform providers’ treatment
decisions.

Materials and Methods
We use deidentified administrative records from a research data lake we
helped build for the State of Rhode Island to support science- and data-
driven policy (14). The data lake is housed in a secure enclave, and personally
identifiable information has been removed and replaced with anonymous
identifiers so that researchers with approved access can join and analyze
records associated with the same individual across data sources while pre-
serving anonymity (15). Because this study does not involve data that are
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both identifiable and private, Brown University’s Institutional Review Board
does not classify it as research with human subjects. The database includes
Medicaid records from 2005 to 2017 and data on major social benefit and
insurance programs, employment, incarceration, and criminal history.

We construct a panel dataset of 80,768 individuals who received an
opioid prescription or injection according to the Medicaid claims records
between 2006 and 2012 (16). There are 400,024 distinct Medicaid enrollees
in this period. Further details and descriptive statistics are in SI Appendix,
section 2 and Table S1.

We define an adverse opioid-related outcome as receiving a diagnosis
of opioid dependence, abuse, or poisoning∗ or receiving treatment for an
opioid use disorder in the 5 y following initial prescription. SI Appendix, Fig.
S1 shows the cumulative frequency of adverse outcomes from the time of
initial prescription, which peaks at 5.7% by year 5.

We construct variables from observations in the 12 mo prior to when
an individual receives an opioid prescription. These include 84 variables for
demographics, incarceration, citations, arrests, car crashes, wages, unem-
ployment rates, household composition, and payments received from social
benefit and insurance programs.

We construct 327 variables from Medicaid claims and enrollment records,
including summary counts of the number of distinct diseases, chronic con-
ditions, and procedures. The pharmacy claims data include 39,805 distinct
drug product codes, and we use a pharmacological classification to con-
solidate these into prior prescriptions indicators for 262 drug categories.
There are 8,494 distinct diagnosis codes and 6,507 distinct procedure codes
observed in the claims data. We intend to simultaneously reduce the dimen-
sionality of these variables and estimate the underlying latent structure of
the occurrence of the codes. One approach is to use the preexisting hier-
archical structure of the codes: to use, for instance, the fact that all ICD-9
codes starting with 303, 304, or 305 relate to use of psychoactive substances.
However, this constrains the model to nest codes in ways that may or may
not be helpful for our predictive modeling purposes. For example, is it the
case that codes 305.0 (nondependent alcohol abuse) and 305.2 (nondepen-
dent cannabis abuse) are together more likely to predict our outcome, as a
combined measure of nondependent substance abuse? Or is 305.0 together
with 303.0 (acute alcoholic intoxication) and 303.9 (other and unspecified
alcohol dependence) a broader measure of alcohol use? Because we do
not know a priori how to optimally nest the codes, we instead use natu-
ral language-processing topic-modeling techniques to consolidate the codes
into 50 topics, based on the text descriptions and frequencies of the codes.
For example, the 10 most frequent words in topic no. 39 are “hand sprain
lateral closed fracture foot minimum examination ankle views.” The vari-
able for topic no. 39 measures how strongly this combination of diagnoses
and procedures for hand, foot, and ankle injuries is represented in each
individual’s medical history. Details on the topic modeling implementation
appear in SI Appendix, section 3.

Finally, we construct 890 interaction terms from the 84 non-Medicaid and
327 Medicaid variables, for a total of 1,301 variables. We consider interac-
tions among demographics, between the Medicaid summary counts and all
non-Medicaid variables and between payments received from social benefit
and insurance programs and all non-Medicaid variables.

We estimate predictive models using machine-learning algorithms that
search over variables and functions of those variables to maximize out-of-
sample predictive fit. We fit three kinds of models: a regularized regression,
an ensemble, and a neural network. These models vary in complexity (17).
For example, the prediction function from a regularized regression is a
linear combination of explanatory variables whose regression weights are
algorithmically selected from a set of variables and functions of those vari-
ables predetermined by the researcher. Neural networks can approximate
any function, potentially delivering tighter predictive fit. However, their
prediction functions are algorithmically determined layers of functions of
covariates and are therefore more difficult to summarize or understand.

For the regularized regression, we use a bootstrapped LASSO (BOLASSO)
with 100 bootstrap relicates to avoid arbitrary variable selection among
highly correlated subsets of variables (18) and a post-BOLASSO regression on
the subset of variables that are consistently selected among the 100 boot-
strap replicates. For the ensemble model, we average the predictions across
the 100 bootstrap replicates from the BOLASSO. For the neural network, we
use a recurrent neural network which can explicitly model the time depen-
dence of the variables (19). In all models, data were split at the beginning of
the study into randomly sampled training, validation, and testing sets using

*This includes both opioid and heroin poisoning. See SI Appendix, section 2C for details.

the ratio 50:25:25. We report the results of model predictions on the testing
set (the “hold-out” sample), which was withheld from analysis prior to the
preparation of this paper. SI Appendix, section 4 contains details on model
implementation.

We use the model predictions to describe the potential costs and bene-
fits of a hypothetical policy that identifies high-risk individuals before their
initial prescription, prevents those prescriptions, and also prevents their
adverse outcomes. Such a hypothetical policy is supported by recent find-
ings that predictive screening tools for opioid use disorder help primary care
providers improve clinical outcomes (20) and by a growing movement advis-
ing clinicians to consider patient risk before initiating opioid therapy (21). It
also has similarities to the Centers for Disease Control’s Patient Review and
Restriction Program for limiting opioid prescriptions (22).

We define two potential costs. Let CA,i denote the cost to an individ-
ual and to society of an adverse outcome for person i and CD,i denote the
“diversion cost” i experiences when diverted from an opioid therapy to an
alternative therapy. This could include assignment to alternative therapies
or to an opioid prescription regimen with a shorter duration and closer mon-
itoring by and communication with a health care professional. Assuming the
prescription restriction policy successfully imposes diversion costs and pre-
vents adverse outcomes for i at a rate αi , it will save the cost αi(CA,i − CD,i)
for each true positive (TPi) who is predicted as high risk and would have
had an adverse outcome. False positive individuals (FPi) accrue CD,i because
they are incorrectly classified as high risk and prevented from obtaining an
opioid prescription. The policy misses the potential savings of CA,i for an
individual i who is a false negative, someone who is incorrectly classified as
low risk but has an adverse outcome. However, there is no net change since
these costs would accrue in the absence or presence of the policy. Finally,
true negative individuals are predicted as low risk, do not have an adverse
outcome, and accrue neither cost.

The net benefit of the hypothetical prescription restriction policy for per-
son i, therefore, is TPiαi(CA,i − CD,i)− FPiCD,i . It is positive when αiTPi/(FPi +

αiTPi)> CD,i/CA,i . This captures the tradeoff between model accuracy (the
probability that i is a true positive, defined as TPi/(FPi + TPi), adjusted in
our setting for the prevention efficacy αi) and i’s “cost ratio” CD,i/CA,i .
If the diversion cost for i, CD,i , is low relative to the adverse outcome
cost CA,i , then it will be beneficial to intervene at a lower risk thresh-
old and accept a lower degree of classification accuracy and/or a lower
diversion efficacy rate of αi . We can use this framework to illustrate
hypothetical policy tradeoffs and to measure fairness across marginalized
subpopulations.

Data Availability. Data are available through individual data-sharing agree-
ments with each of the following Rhode Island agencies and munic-
ipal police departments: RI Department of Corrections, RI Department
of Labor and Training, RI Executive Office of Health and Human Ser-
vices, RI State Police, Central Falls Police Department, Cranston Police
Department, Cumberland Police Department, Middletown Police Depart-
ment, Narragansett Police Department, Providence Police Department,
Warwick Police Department, and Woonsocket Police Department. Email
hhipnas2020@ripl.org for information on how to request data for repli-
cation from the respective state agencies. Analysis code is available from
GitHub at https://github.com/ripl-org/predict-opioids.

Results
Predictive Performance. A common metric for assessing the per-
formance of a machine-learning model is the area under the
receiver-operating characteristic curve (AUC), which measures
the probability that, given two randomly chosen individuals with
different outcomes, the model will correctly assign a higher risk
to the individual with the adverse outcome. A perfect classifier
has an AUC of 1, and a classifier that chooses at random has an
AUC of 0.5. Our models achieve AUCs of 0.778 (95% CI 0.762
to 0.790) for the BOLASSO, 0.786 (95% CI 0.771 to 0.797) for
the LASSO ensemble, and 0.801 (95% CI 0.785 to 0.812) for the
neural network. SI Appendix, Fig. S2 shows that for all models,
the top three deciles of predicted risk have a higher fraction of
true outcomes than the full sample base outcome rate of 0.057.
In our case, the less-transparent, more-complex neural network
does not deliver significant gains in predictive performance.

Consistent Predictors. Fig. 1 shows the distribution of odds ratios
from the post-BOLASSO regression for the 51 variables which
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Fig. 1. Odds ratios from the post-BOLASSO regression. Those <0.9 and >1.1 are labeled. A complete regression table is available in SI Appendix, Table S2.

the BOLASSO model selected as the strongest, consistent pre-
dictors from the full set of 1,301 variables across the 100 boot-
strap replicates. BOLASSO helps to identify consistent covari-
ates, avoiding arbitrary choices among highly correlated pairs.
While the coefficients on the selected variables do not neces-
sarily have a causal interpretation, they pick up factors which
are strong predictors among observables. For example, observed
claims for routine preventative health (e.g., Fig. 1, topics 4 and
10) may themselves lower risk through increased or more fre-
quent interactions with medical professionals, or they may proxy
for attention to personal health or responsibility which is the
true unobserved underlying factor that reduces risk. The pri-
mary purpose of our post-BOLASSO regression is to identify
the strongest predictors which may point us in the direction of
potential underlying mechanisms for further study.

The two variables with the largest odds ratios (indicating
increased risk) are related to crime: release from prison and
an indicator for an arrest. Individuals released from prison in
the prior year are estimated as 119% more likely to develop an
adverse outcome if given an initial prescription (odds ratio of
2.19), all else equal, and those with an arrest in the prior year
are 76% more likely to do so (odds ratio of 1.76). The next three
variables with the largest odds ratios are prior prescriptions for
benzodiazepines (1.51), centrally acting muscle relaxants (1.39),
and opiate agonists (1.36). Opioid agonists, such as cough syrups
and mild painkillers, may have small dosages of an opioid ingre-
dient (SI Appendix, Table S3), but are not considered strong
enough for chronic opioid therapy and therefore not classified
as or considered to be opioids. Benzodiazepines are relaxants
used to treat, for example, alcohol withdrawal, anxiety, and panic
disorders.

Variables with the smallest odds ratios (indicating decreased
risk) were age 65+ y (0.13, indicating an almost complete, 87%
reduction in risk), Hispanic ethnicity (0.41), age 55 to 64 y (0.43),
African-American race (0.50), and missing marital status (0.51).
Because we use modal marital status across all administrative
sources, the missing indicator is likely a proxy for individuals who
are enrolled only in Medicaid and not in other programs where
marital status is reported.

Twenty-four of the strongest predictors are derived from
Medicaid records. These include enrollment in managed care,
number of unique Medicaid IDs, summary counts of distinct
procedures and CCS diseases, total pharmacy payments, and
three indicators for prior prescriptions. The remainder of the
Medicaid predictors are diagnosis/procedure topics. Some of the
significant themes among the selected topics with positive coef-
ficients are drug/alcohol screening, back pain and injury, sprains
and strains, contusions, psychotherapy, and depression and anx-
iety; and those with negative coefficients are asthma/allergies,
breast cancer, gynecological examination, cholesterol screening,
eyeglasses, dental evaluations, and intellectual disability.

Cost–Benefit Analysis. Whether the prescription diversion policy
delivers benefits overall depends on whether it delivers benefits
for those denied prescriptions. This in turn depends on how the
parameters αi , CD,i , and CAi covary with TPi . Assume for sim-
plicity that α, CD , and CA do not vary across individuals and that
α=1. Fig. 2 shows the break-even cost ratio CD/CA at which
the policy is cost neutral using predictive risk from the neural
network model, with the green line assuming a diversion rate
α=1 and homogeneous diversion and adverse outcome costs
(CD,i =CD , CAi =CA). In the top risk decile, the break-even
ratio is 0.233: It is net beneficial to recommend against opioid
prescriptions for individuals in the top decile if CD is less than
23.3% of CA. It is net beneficial to intervene with the entire
population if CD is less than 5.7% of CA.

The existing literature provides guidance on reasonable esti-
mates for CD and CA, and we detail the calculation for an
estimate of CA ≈ $450,000 (2010 dollars) in SI Appendix, section
5 and Table S4. Diversion costs are more difficult to quantify.
They may include lost productivity due to chronic pain after
receiving an alternative therapy, or they may include lost time
due to requirements for more frequent monitoring of high-risk
individuals by prescribing physicians. The economic cost of pain
in the United States is conservatively estimated at $560 to $635
billion, with a value of lost productivity from $299 to $335 bil-
lion (23). Treating pain compassionately is a moral imperative
for physicians, who must balance protecting those experiencing
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chronic pain with the significant risk of harm that opioids can
cause individuals, their families, and their communities (24).
However, recent research suggests that opioid therapy may not
be more effective at pain relief than nonopioid therapy in both
the short and the long term. A randomized trial comparing opi-
oid therapy to nonopioid therapy for acute short-term pain found
similar levels of pain relief between the two treatments (25),
and observational studies also show no advantage for opioid
treatment in terms of pain relief, with some patients on higher-
potency opioids reporting more psychological impairment than
those on lower-potency opioids (26, 27).

Estimates of costs of time are often calculated and utilized
in the transportation literature. The value of time (VOT) has
been estimated using stated-preference surveys as well as using
revealed preference methodologies (28, 29). Typical VOT esti-
mates are on the order of $30/h (30). Using a 2,000-h work
year, the VOT estimate would correspond to a $60,000 annual
loss in productivity if diversion costs resulted in loss of 1 y of
full-time VOT.

This suggests that CD is likely lower than the $104,400 break-
even cost (23.2% of $450,000) for the top risk decile predicted
by our model at α=1; $104,400 is above the 86th percentile of
the annual earnings distribution in the United States in 2017
(31). Thus, a low risk threshold that maximizes true positives
at the cost of increased false positives could be optimal. These
findings support a growing belief among some within the med-
ical community that the risks of opioid prescription outweigh
the benefits in many cases of prescription outside of cancer or
palliative care (32).

A benefit of structuring our cost–benefit analysis in terms of
the cost ratio is that a risk threshold can be reevaluated as better
data on these costs become available or as knowledge about opi-
oid dependency improves. For example, the cost–benefit analysis
represented by the green line in Fig. 2 assumes perfect preven-
tion of dependency for predicted high-risk individuals as a result
of the policy (α=1). Individuals may still get access to an opioid
through prescriptions given to friends and family. Approximately

10.7% of dependents (50.8% of 21.1% who did not themselves
have a prescription) claim friends and family as the source of
their first opioid (4), and diversion may still fail if those who do
not receive a prescription subsequently borrow pills from oth-
ers. An α of 0.893 (the red line in Fig. 2) would assume that
10.7% of people go on to seek opioids from a friend or family,
and true positives would then develop a dependency. In this case,
the break-even costs for the top decile would be $95,400 (21.2%
of $450,000).

Furthermore, high-risk individuals who are diverted to alter-
native therapies could have a higher rate of seeking and obtain-
ing alternative opioid sources (e.g., αi and TPi are negatively
correlated). This may occur, for example, if opioid addiction is
rational. Rational addiction models (33) predict that those seek-
ing doctor prescriptions for opioids may be rationally seeking
them prior to their first prescription to form an addiction as
a fully informed, forward-looking, rational decision. Therefore,
while restricting opioids may raise the cost of acquiring them
and decrease the total number of prescribed opioids, diversion
effectiveness may still be imperfect if those seeking prescrip-
tions are making a rational choice and are therefore more
likely to obtain opioids and develop a dependency even without
a prescription.

To explore whether rational addiction may drive first-time pre-
scriptions for opioids, we examine data on adverse outcomes as
a function of patients’ degree of knowledge that they are receiv-
ing an opioid. We use the fact that patients may receive opioids
through epidural or intravenous injections during inpatient pro-
cedures. Under the assumption that these opioid recipients were
less likely to be informed they were receiving an opioid than
those receiving and filling a prescription from a physician, we
would expect fewer adverse outcomes from opioids received
through inpatient procedures than through prescriptions in a
rational addiction framework. We find that, when used as an
explanatory variable for dependency while controlling flexibly
for observable characteristics, an indicator for opioid injection
is not significantly different from zero (SI Appendix, section 6

1920 | www.pnas.org/cgi/doi/10.1073/pnas.1905355117 Hastings et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1905355117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1905355117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1905355117


EC
O

N
O

M
IC

SC
IE

N
CE

S

A B C

Fig. 3. (A–C) The false discovery rates for minority status (A), incarceration history (B), and disability status (C). The false discovery rate is defined as the
fraction of false positives among all individuals who are predicted to have an adverse outcome, which is the population that the hypothetical policy would
affect. Error bars indicate the 95% confidence interval calculated from 100 bootstrap replicates.

and Tables S5 and S6), suggesting that rational addiction may
not be driving opioid prescription demand among those receiv-
ing their first prescription. Indeed, many researchers point out
that informed, rational addiction decisions may be applicable
to drugs like nicotine (34), but may not apply to mind-altering
drugs or drugs whose effects are not widely known. In the case
of opioids, there is evidence that the risks of prescription opi-
oids and their long-term effects were not widely known to the
public (35).

Our framework provides a way to adapt and evaluate policy by
adjusting α as the information set and health and policy land-
scapes evolve. More generally, αi and TPi may be negatively
correlated for other reasons. SI Appendix, section 7 and Fig. S3
present cost–benefit simulations that allow αi and TPi to be neg-
atively correlated and show there exist parameters for which a
policy could be less effective among the highest-risk individuals.
In general, trialing a policy and evaluating outcomes would allow
policymakers and scientists to uncover individual-level parame-
ter distributions by estimating heterogeneous treatment effects.
This could allow policy to improve dynamically over time and
eventually predict prescription restriction efficacy for diverting
adverse outcomes.

Fairness. In addition to evaluating the overall cost–benefit trade-
off of a prescription restriction policy, our framework can help
policymakers examine measures of “fairness” by quantifying
the extent to which policy costs versus benefits accrue dispro-
portionately to marginalized groups. The predictive model’s
false discovery rate (FDR) is defined as the fraction of false
positives among all individuals who are predicted to have an
adverse outcome. Differences in FDR across subgroups can
occur when the model predictions Ŷ are not independent of
subgroup membership conditional on the true outcomes Y ,
which is a construct for evaluating fairness that is well cited
in the literature (36, 37). Here, we focus on FDR because it
represents a notion of unfairness arising from a disproportion-
ate diversion cost accruing to individuals from marginalized
groups.

Fig. 3 shows the FDR by risk decile and by minority sta-
tus, incarceration history, and disability status. The previously
incarcerated have a significantly lower FDR, as release from
incarceration is a strong positive predictor of adverse outcomes.
There is no significant difference by disability status, and this was
not a selected predictor of adverse outcomes.

Minority status is a negative predictor of adverse outcomes,
all else equal. Members of minority groups (African-American,
Hispanic) have a higher point estimate for FDR in the top-risk
decile of our model. The difference between white and minor-
ity FDRs in the top-risk decile is 3.2% and insignificant. A power
calculation shows that for the top decile we are powered to detect

an 8.2 percentage point difference given our sample size (SI
Appendix, Table S7). For the lower-risk deciles, the FDR dif-
ference becomes significant as a fraction of minorities in the
subsample increases. The break-even diversion costs for whites
and minorities in the top decile are $107,100 and $92,700 (SI
Appendix, Fig. S4), which are above the 86th and 76th percentiles
of the annual earnings distribution.

Thus, while the FDR is higher for minorities, restricting opioid
prescriptions to those with high predicted risk may generate net
benefits in minority and nonminority communities alike. It could
be that diversion costs are higher for minorities than for nonmi-
norities. In our data, minorities receiving an opioid prescription
have roughly the same number of provider visits in the 30 d prior
to an initial prescription, but live on average closer to providers,
suggesting that diversion costs may not be substantially differ-
ent across minority groups to negate overall predicted benefits
from prevention policies (SI Appendix, section 8 and Table S8).
Our predictive modeling and cost–benefit approach allows pol-
icy makers to quantify and weigh benefits and costs within and
across subpopulations when designing a data-driven preventative
policy.

Discussion
Prevention and treatment policies can be complementary
approaches to opioid use disorders. Treatment can help the
many individuals already suffering from adverse outcomes,
while prevention can stem the growth of new cases of opioid
dependence, abuse, or poisoning.

The proven standard treatment for opioid use disorder is
medication-assisted treatment (MAT) (38–40). However, it faces
two significant hurdles. First, MAT is not widely available to
those with opioid use disorders; only 36% of substance abuse
treatment facilities offer one of three different kinds of medi-
cation treatment (41). Second, even when those suffering from
opioid use disorders can be connected to treatment, the costs
associated with treatment are high and recovery from an opioid
use disorder is challenging. The probability of recovery after a
year of MAT is estimated at 50% (42).

Prevention strategies can help prevent further cases of opioid
use disorder. Current strategies are primarily designed around
reducing the quantity or potency of opioid prescriptions to curb
misuse and prevent poisoning among those with existing opioid
use disorders.† These strategies are especially complementary
to a treatment approach. A recent study suggests that limiting

†For example, a major health insurer’s effort to reduce extended-release oxycodone pre-
scription by requiring prior authorization led to an increase in the rate of short-acting
opioid prescriptions and no overall change in the total morphine milligram equivalents
prescribed (43).
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opioid availability for those with an existing disorder may
increase the use of illicit drugs such as heroin.‡

The most widespread approach to preventing misuse by those
with a disorder has been the deployment of prescription drug
monitoring programs (PDMPs). These electronic data systems
present data on the prescription history of controlled drugs to
providers and are now in use in almost every state (40). They
have been shown to reduce prescription rates of opioids and
increase provider comfort in prescribing opioids, as providers can
be reassured that they are not enabling risky opioid-dependency–
related behaviors such as doctor shopping or receiving multiple
overlapping prescriptions (45, 46).

These strategies are reactive rather than proactive; they target
individuals who have already begun opioid treatment and have
likely developed dependency. Our models complement these
policies by providing an opportunity to predict high-risk prescrip-
tions among the larger population of patients based on their
characteristics and health histories before an opioid prescrip-
tion is given for the first time. The models can be applied to the
broader population of Medicaid enrollees, alerting physicians to
possible risk when an opioid prescription is being considered,
along with, for example, risk indicators of existing dependency
from prior opioid prescription patterns.

Our models and hypothetical policy aim to prevent depen-
dency before it occurs. This is complementary to existing efforts
and could make use of the infrastructure already in place, such as
the PDMPs. For example, a PDMP could implement our mod-
eling approach to show providers a risk categorization for all
patients (e.g., a red, yellow, or green indicator for predicted risk).
This could increase information available to providers, expand
the population covered by the PDMP, and help providers con-
sider the benefits and risks of initiating opioid therapy with a new
patient.

The information policy could be implemented without dis-
closing particular and potentially sensitive information about
the individual not known to the physician. By determining a
threshold based on rough high-risk/low-risk categories, it may
be possible to both protect privacy and communicate valuable
information to support health care professionals in determining
the best course of treatment for their patients. For example, the
mean rate of prior incarceration in the top two risk deciles is
9.7%, implying that being in the highest-risk deciles does not
imply an individual is highly likely to have a prior criminal record.

Moreover, diversion costs may be small and effectiveness rela-
tively high as the number of opioid prescriptions will be reduced,
reducing the probability of unintended dependency. Once depen-
dency occurs, MAT typically costs $6,552 to $14,112 annually (47)
and is estimated to be effective 50% of the time (42). This means
that for 1,000 individuals, it would cost $5.7 to $12.3 million over
3 y to bring 88% into remission (SI Appendix, Table S9). Pre-
vention is lower cost than treatment and can reduce treatment
costs going forward by decreasing dependency rates. Given that
PDMP platforms have been deployed in most states, distribu-
tion channels exist for converting the government’s own data into
actionable intelligence accessible by physicians.

A limitation of our models is that they are trained on data from
individuals to whom a physician decided to give an opioid pre-
scription. We do not observe the cases where a patient requested
an opioid prescription or had a condition that was treatable by
opioid therapy, but the physician decided not to give an opioid
prescription. In this sense, our models face a “selective labels

‡Abuse-deterrent reformulations of prescription opioids were developed to make it
more difficult to crush or dissolve pills to release the drug more quickly. Unfortunately,
recent evidence suggests that the introduction of abuse-deterrent prescription opioids
into the market caused opioid abusers to substitute away from prescription opioids to
heroin, with differential increases in fatal heroin poisonings (44).

problem” (48, 49), in which the data that can be observed are
determined by prior human decisions whose decision rules are
not known and may respond to the policy once implemented.
For example, if, given the publicity of the opioid crisis, some
physicians decreased opioid prescriptions, having a risk indica-
tor could lead them to increase overall prescribing if they now
feel more confident to prescribe given a low-risk indicator. Any
implementation of a prescription restriction policy based on a
predictive model should be accompanied by a causal analysis
of impact. For example, assume the information policy is rolled
out through the PDMP to a treatment of group of physicians or
providers, but not to a control group. The causal impact could
then be estimated for high- and low-risk patients, allowing infer-
ence on heterogeneous changes in prescribing behavior across
types of physicians for patients with high-predicted versus low-
predicted baseline risk to uncover how physician decision rules
adapt to information. This could then support further improve-
ments to the predictive model, for example predicting diversion
success incorporating physician responses.

Our definition of adverse outcomes is limited by the accu-
racy of diagnosis codes in the Medicaid records. Prior studies
have found that opioid-related diagnoses can be underreported
because of their potential stigma. Although it is unknown pre-
cisely what fraction of opioid use disorders go undiagnosed,
Carrell et al. (50) found that diagnosis codes were missing for as
many as one-quarter of patients for whom their providers were
aware of opioid abuse. Similarly, a study by Barocas et al. (51)
estimated that only 44% of individuals with opioid use disor-
der were identified as such in claims and administrative records.
To address this limitation, we added an adverse outcome based
on procedure codes for the treatment of opioid use disorder,
which could indicate an adverse outcome even in the absence
of a diagnosis.

Including treatment as an indicator of adverse outcomes is also
a limitation. As noted in prior work, receiving treatment for an
opioid use disorder is a positive outcome conditional on already
having a disorder (51, 52). However, the goal of this study is to
suggest opportunities for prevention by examining whether indi-
viduals at a high risk of developing an adverse outcome can be
identified with confidence before they are given a prescription
using administrative data. This complements important research
being done on successfully treating opioid use disorders after
they have occurred (53).

Rhode Island has a research data lake that enables predic-
tive modeling using cross-agency data. While any state or county
could develop a similar research data lake (14, 15), restricting
our predictive model to use only Medicaid claims and enroll-
ment data yields nearly the same accuracy as models using
integrated, cross-agency data. This is because, in the case of opi-
oid dependency, Medicaid claims data contain many variables
correlated with key predictors found in non-Medicaid data. For
example, Medicaid enrollment data contain information on prior
incarceration through payer codes related to receipt of health
services while incarcerated, indicating an incarceration in the
base period. They also contain data on demographics, family
structure, and income from the application process. SI Appendix,
Figs. S5–S7 replicate Figs. 1–3 using only data from Medicaid in
the predictive model, with minimal changes in the results.

That being said, all models achieve an AUC near 0.800,
indicating they have strong predictive power but could still be
improved. While the Rhode Island data lake is uniquely rich in
the connected and anonymized administrative records it holds,
it contains only medical claims records from Medicaid. Those
receiving a first prescription outside of Medicaid and develop-
ing a dependency diagnosed in Medicaid records, or vice versa,
will cause decreased predictive accuracy in our model. Expand-
ing the data to include, for example, state-wide electronic health
records to examine impact on predictive fit, false positive rates,
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fairness, and cost–benefit analysis of diverting opioid prescrip-
tions from those predicted to have high dependency risk is an
important topic for future research.

Conclusion
The opioid epidemic is a complex public health challenge that
requires policy solutions spanning prevention to treatment and
recovery. Our results demonstrate the feasibility of an approach
to prevention based on intervening with high-risk initial prescrip-
tions through predictive modeling. Our data-driven, machine-
learning approach to modeling adverse outcome risk provides
insights into the benefits, costs, and fairness of policies limiting

opioid prescriptions. Intervening at the earliest stage, before
an individual receives an initial opioid prescription, has the
potential to prevent future treatment costs and recovery chal-
lenges and, ultimately, the life-long consequences of opioid use
disorders.
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