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Abstract: Reports of bite from Protobothrops mucrosquamatus (Pmu) are frequent in Taiwan, and its
wide-spread distribution and diverse habitats drove us to investigate its envenoming effects and
relevant venom variations. We used reversed-phase high-performance liquid chromatography and
mass spectrometry to analyze 163 Pmu venom samples collected from northern and southeastern
Taiwan. Twenty-two major protein fractions were separated and analyzed, and their contents
were determined semi-quantitatively. The results showed that despite the trivial differences in
the protein family, there is an existing variation in acidic phospholipases A2s, serine proteinases,
metalloproteinases, C-type lectin-like proteins, and other less abundant components in the Pmu
venoms. Moreover, clinical manifestations of 209 Pmu envenomed patients hospitalized in northern
or southeastern Taiwan revealed significant differences in local symptoms, such as ecchymosis and
blistering. The mechanism of these local effects and possibly relevant venom components were
examined. Further analysis showed that certain venom components with inter-population variation
might work alone or synergistically with others to aggravate the local effects. Therefore, our findings
of the venom variation may help one to improve antivenom production and better understand and
manage Pmu bites.

Keywords: Protobothrops mucrosquamatus; inter-population venom variation; snake venom metallo-
proteinases; phospholipase A2; venom-induced blistering

Key Contribution: Characterization of the inter-population variations of Pmu venom may help
one to better understand the pathophysiological effects of envenomation and improve antivenom
production and the management of Pmu bites.
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1. Introduction

Protobothrops mucrosquamatus (Pmu) is a pit viper widely distributed in southern and
southeastern Asia, including north-eastern India, Myanmar, northern Thailand, Laos,
Vietnam, southern China, Taiwan, and Japan (Ryukyu islands) [1]. The World Health
Organization (WHO) has categorized Pmu as the most medically important venomous
snake in Taiwan and China [2]. In addition, it is one of the most common snakebite
incidents that have led to morbidity or even mortality in Taiwan [3]. As for its envenoming
effects on humans, Pmu bites result in local tissue swelling; pain; ecchymosis; blistering
(bullae formation); wound necrosis; compartment syndrome; and systemic effects, such as
thrombocytopenia, coagulopathy, rhabdomyolysis, and renal impairment [4]. However,
differences in human envenoming effects between the two regions were not compared in
those studies.

The composition of Pmu venom is predominately snake venom metalloproteinases
(SVMPs) and phospholipases A2 (PLA2s), followed by snake venom C-type lectin-like
proteins (Snaclecs), snake venom serine proteinases (SVSPs), cysteine-rich secretory pro-
teins (CRISPs), and L-amino acid oxidases (LAOs) [5,6]. Since the clinical manifestations of
the same species snake bites are closely related to the venom composition, intra-specific
variations in the profile and amount of each venom component may have resulted in
diversified envenoming effects [7–9]. Intra-specific venom variations can be further cat-
egorized as intra-population (differences within populations; individual variation) and
inter-population (differences between populations) variabilities; such variation is common
among pit vipers [10,11].

Recently, two retrospective studies related to clinical manifestations of Pmu bites
were conducted by two medical centers in Northern and Southeastern Taiwan, respec-
tively [12,13]. Northern and Southeastern Taiwan are separated by the Central Mountain
Range (highest peak, 3952 m), and non-alpine snakes, such as Pmu, inhabiting these two
biogeographical regions can be considered as two distinct populations. In previous studies,
a Taiwanese pit viper, Trimeresurus stejnegeri stejnegeri, was found to show inter-population
venom variations, such as PLA2 variation, in the two regions [14,15]. These findings drove
us to further investigate inter-population venom variations in Pmu venom.

However, the venom variation of Pmu remains little understood [14], and its associa-
tion with the effects of human envenoming have not been studied. Therefore, in this study,
we first compared Pmu venom components between northern and southeastern Taiwan.
Secondly, we examined the clinical manifestations of Pmu envenoming between these two
regions. We believe that this study can further assist venom and antivenom research and
improve the management of Pmu bites in Taiwan.

2. Results and Discussion
2.1. Venom Proteome of Individual Pmu

The individual variation in venom components of 163 adult Pmu venoms is shown in
Figure 1. Twenty-two protein peaks (labeled Fr 1–22) were identified for most individual
Pmu venoms in the reverse phase high-performance liquid chromatography (RP-HPLC)
profiles (Figure 1A–C). Shotgun proteomics with liquid chromatography tandem mass spec-
trometry (LC-MS/MS) analysis showed 31 venom components, categorized into nine major
protein families: SVMP, PLA2, Snaclec, SVSP, CRISP, 5’-nucleotidase (5’-NT), phospholipase
B (PLB), glutaminyl-peptide cyclotransferase (QPCT), and LAO. The major venom toxins in
each fraction are listed in Table 1. Additionally, detailed proteomics data, including peptide
sequences in MS, were provided in the supplementary Table S1. The average amount of
the nine protein families of Pmu venoms is shown in Table 2. We found that Pmu venom
contained abundant SVMPs (45.1%) and PLA2s (25.0%), followed by Snaclecs (12.8%) and
SVSPs (8.23%); however, it contained low contents of 5’-NT (3.85%), LAO (2.37%), CRISP
(1.42%), PLB (0.77%), and QPCT (0.46%). These results support the finding of Aird, S. D
et al. on Ryukyu Pmu venom proteomics, genomcis, and transcriptomes [6,16] and agree
with Villalta, M. et al.’s study using pooled Pmu venom from Taiwan [5].
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Table 1. Assignment of the HPLC-fractions of Pmu venom based on MS/MS study.

Frcation Protein Name a Protein Family Species Accession No.

1 basic PLA2 homolog, TMV-K49 PLA2 Pmu P22640
2 basic PLA2 homolog PLA2 Pmu ~P22640
3 cysteine-rich venom protein, TM-CRVP CRISP Pmu P79845
4 acidic R6-PLA2, TmPL-III PLA2 Pmu Q9I968
5 basic N6-PLA2, Trimucrotoxin PLA2 Pmu Q90W39
6 acidic E6-PLA2, TmPL-I PLA2 Pmu Q91506
7 plasminogen activator, TSV-PA SVSP T. stejnegeri Q91516
8 kallikrein-CohID-4 SVSP C. o. helleri T1DMM6
9 beta-fibrinogenase mucrofibrase-3 SVSP Pmu Q91509
9 trimecetin-beta subunit Snaclec Pmu Q5FZI5

10 beta-fibrinogenase mucrofibrase-2 SVSP Pmu Q91508
11 trimerelysin-2 PI-SVMP P. flavoviridis P20165
12 mucrocetin-alpha subunit Snaclec Pmu Q6TPH0
12 trimecetin-beta subunit Snaclec Pmu Q5FZI5
13 L-amino acid oxidase LAO P. flavoviridis T2HRS5
14 ecto-5’-nucleotidase 5’-NT P. elegans A0A077L6M5
15 Zn-metalloproteinase, PMMP-3 PII-SVMP Pmu E9NW28
15 trimecetin-beta subunit Snaclec Pmu Q5FZI5
16 Zn-metalloproteinase, PMMP-3 PII-SVMP Pmu E9NW28
17 trimecetin-beta subunit Snaclec Pmu Q5FZI5
18 Zn-metalloproteinase, PMMP-3 PII-SVMP Pmu E9NW28
19 Zn-metalloproteinase, PMMP-3 PII-SVMP Pmu E9NW28
20 Zn-metalloproteinase, TM-3 PII-SVMP Pmu O57413
20 trimecetin-alpha subunit Snaclec Pmu Q5FZI6
20 trimecetin-beta subunit Snaclec Pmu Q5FZI5
20 phospholipase B-like PLB Pmu A0A1W7RER1
20 glutaminyl cyclotransferases QPCT Pmu M9ND11
20 L-amino acid oxidase LAO P. elegans A0A077L6L4
21 Zn-metalloproteinase, PMMP-1 PII-SVMP Pmu E9NW26
22 Zn-metalloprotease P-IIIa (Fragment) PIII-SVMP P. elegans A0A077L7D6
22 flavorase PIII-SVMP P. flavoviridis G1UJB2

a abbreviations: PLA2, phospholipases A2; PI-, PII-, PIII-SVMP, PI-, PII-, or PIII-class of venom metalloproteinase;
Snaclec, snake venom C-type lectin like proteins; SVSP, snake venom serine protease; LAO, L-amino acid oxidase;
CRISP, cysteine-rich secretory protein; 5’-NT, 5’-nucleotidase; PLB, phospholipase B; and QPCT, glutaminyl-
peptide cyclotransferase.

Table 2. Relative abundance of the venom proteins of individual Pmu in the two geographic regions
presents by mean value.

Protein Family a Northern Southeastern Total p-Value

Sample number n = 119 n = 44 n = 163
SVMP, total 45.95 42.76 45.1 0.001

-PI or PII class 43.09 39.34 42.11 <0.001
-PIII class 2.86 3.42 3.01 0.011

PLA2 25.56 23.48 25.0 0.033
SVSP 8.26 8.15 8.23 0.364

Snaclec 13.15 11.86 12.8 0.01
CRISP 1.11 2.25 1.42 <0.001
LAO 2.15 2.97 2.37 0.01
5’-NT 2.63 7.15 3.85 <0.001
PLB 0.74 0.86 0.77 0.172

QPCT 0.44 0.52 0.46 0.05
a abbreviations are the same as in Table 1.
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Figure 1. HPLC and SDS-PAGE analyses of Pmu venom. In total, 100 µg of the Pmu crude venom
protein from (A) Pmu001, (B) Pmu002, and (C) Pmu003 sample was separated by RP-HPLC; (D) each
fraction separated in Figure 1C was subjected to the SDS-PAGE analysis under reducing conditions.
Molecular mass of the markers (in kDa) are indicated at the gel left.

2.2. Comparison of Inter-Population Variations in Pmu Venom

The inter-population variation in venom protein families of 163 adult Pmu venoms
(119 patients in northern and 44 in southeastern Taiwan) was compared in Table 2 and
Figure S1. No significant difference was found for dominant protein families, such as
SVMP (45.95% vs. 42.76%), PLA2s (25.56% vs. 23.48%), Snaclec (13.15% vs. 11.86%),
SVSP (8.26% vs. 8.15%), and other minor protein families. Even though the difference
in the average abundance of venom protein families between the two regions was trivial
compared to other pit viper species (Table 2), the details of different protein fractions are
worth investigating in order to further understand how they may be related to specific
clinical manifestations.
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The details of different protein fractions in the venom of individual Pmu between
populations was compared. The results showed that protein fractions varied between Pmu
populations from these two regions (Table 3).

Table 3. Presence of the HPLC-fraction in Pmu venom obtained from the two geographic regions.

Fraction Northern, n (%) a Southeastern, n (%) Protein Family p-Value

1 119 ( 100 ) 44 ( 100 ) PLA2 1
2 17 ( 14.3 ) 2 ( 4.55 ) PLA2 0.103
3 95 ( 79.8 ) 39 ( 88.6 ) CRISP 0.192
4 23 ( 19.3 ) 21 ( 47.7 ) PLA2 TmPL-III <0.001
5 116 ( 97.5 ) 42 ( 95.5 ) PLA2 0.612
6 115 ( 96.6 ) 40 ( 90.9 ) PLA2 0.213
7 98 ( 82.4 ) 29 ( 65.9 ) SVSP 0.025
8 27 ( 22.7 ) 25 ( 56.8 ) KN-like SVSP <0.001
9 119 ( 100 ) 44 ( 100 ) SVSP, Snaclec 1

10 56 ( 47.1 ) 37 ( 84.1 ) SVSP <0.001
11 104 ( 87.4 ) 32 ( 72.7 ) PI-SVMP 0.025
12 116 ( 97.5 ) 42 ( 95.5 ) Snaclec 0.612
13 94 ( 79.0 ) 43 ( 97.7 ) LAO 0.003
14 74 ( 62.2 ) 39 ( 88.6 ) 5’-NT 0.001
15 119 ( 100 ) 42 ( 95.5 ) PII-SVMP, Snaclec 0.072
16 59 ( 49.6 ) 17 ( 38.6 ) PII-SVMP 0.214
17 93 ( 78.2 ) 18 ( 40.9 ) Snaclec <0.001
18 100 ( 84.0 ) 21 ( 47.7 ) PII-SVMP <0.001
19 97 ( 81.5 ) 29 ( 65.9 ) PII-SVMP 0.035
20 119 ( 100 ) 44 ( 100 ) SVMP, others b 1
21 78 ( 65.6 ) 30 ( 68.2 ) PII-SVMP 0.752
22 111 ( 93.3 ) 44 ( 100 ) PIII-SVMP 0.109

a Values in parentheses are % of the 119 (Northern) or 44 (Southeastern) Pmu samples containing the specific
fraction. b Snaclec, PLB, LAO, and QPCT.

We identified PLA2 or its homolog in five major fractions (1, 2, 4, 5, and 6) eluted
from HPLC (Table 1). In contrast to the basic PLA2 homolog (Fr 1, 2, and 5), which did
not show variation, acidic PLA2s (Fr 4 and 6) presented a significant variation (Figure 2A,
Table 3). The major acidic E6-PLA2 (named Pmu-PLA-I, with anti-platelet activity) [17]
was significantly higher in the venom of the northern Pmu population (Fr 6, Figure 2A).
Furthermore, another minor acidic R6-PLA2 (TmPL-III) was only present in low amounts
in some Pmu venom from both regions (Fr 4, Figure 2A). Notably, the proportion of
Pmu venoms containing TmPL-III in the southeastern population was significantly higher
than those in the northern region (47.7% vs. 19.3%, p < 0.001) (Table 3). However, in
a study by Tsai et al., TmPL-III was present in the northern population but absent in
the southwestern population in about 20 Pmu venom samples [18,19]. Therefore, we
suggest that the presence of TmPL-III in Pmu venom varies regionally, with more frequent
occurrence in the southeastern Pmu population. Although there had been claims about the
presence of R49-PLA2, which was found in Chinese Pmu, in Taiwanese Pmu from other
research [20], we did not find R49-PLA2 in our 163 venom samples.

SVMPs derived from the PII-protease domains were the most abundant protein family
in all Pmu venom samples (Table 2). Proteins of this family were identified from the fraction
of 15, 16, 18, 19, 21, 22, and a part of 20 (Table 1). PI-SVMP (Fr 11) and PIII-SVMP (Fr 22) of
the Pmu samples also showed inter-population variability. Most Pmu venoms from the two
regions contain PIII-SVMP (Fr 22) (northern area: 93.3%, southeastern area: 100%, Table 3),
but the relative abundance of PIII-SVMP was significantly higher in the southeastern area
(Figure 2C). Furthermore, a higher proportion of Pmu contains PI-SVMP (Fr 11) in the
northern region (87.4% vs. 72.7%, p = 0.025, Table 3). Additionally, the analytic result of
PI-SVMP (Fr 11) is found to be similar to trimerelysin-2 (trimerelysin-2 like) (accession No.
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P20165) isolated from the venom of Protobothrops flavoviridis, which may have no or low
hemorrhagic activity [21].
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regions are shown in (A) Fr 1 to 8, (B) Fr 9 to 16, and (C) Fr 17 to 22; the northern population is
marked in blue and the southeastern in red. Box plots showing median (line), 25th–75th percentile
(box), and 5th-95th percentile (whiskers) of the individual abundance of the 22 fractions, respectively.
Significance of the Mann–Whitney test are denoted (* = p < 0.05; ** = p < 0.005; *** = p < 0.001).

As for SVSP variants, mucrofibrase-3 (Fr 9) was consistently present in venoms from
both Pmu populations (Table 3), and its relative abundance was similar across the popula-
tions (Figure 2B). On the other hand, inter-population variability was found in other SVSPs
(Fr 7, 8, and 10). For example, a plasminogen activator similar to TSV-PA (accession No.
Q91516, of T. s. stejnegeri venom) was identified in Fr 7. Its relative abundance (Figure 2A)
and proportion of presence (82.4% vs. 65.9%, p = 0.025, Table 3) was significantly higher in
the northern population. As for Snaclecs, trimecetin identified from Fr 15 and 17 was more
prevalent, with higher relative abundance in the northern population (Table 3, Figure 2C).
Both LAO enzymes (accession No. T2HRS5) (Fr 13 and 20) and 5’-NT (Fr 14) were more
frequent and abundant in the venom of the southeastern population (Table 3, Figure 2B).
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In short, we disclosed that the major variations were acidic PLA2 variants (i.e., E6-
and R6-PLA2), Snaclec, and metalloproteases of PII-class by analyzing many individual
Pmu venoms (Table 3, Figure 2). To produce effective antivenom, guidelines recommended
that an adequate number of individual snakes from various regions covering the entire
geographic distribution of specific venomous snake species should be collected together [2].
Our findings may help evaluate the pooled snake venoms based on characters of inter-
population variation and potentially assist in improving antivenom titer against snake
venom from these regions.

2.3. Regional Variation in the Clinical Manifestations of Pmu Envenoming

A total of 209 Pmu envenoming cases, in 149 and 60 patients from northern and
southeastern Taiwan, respectively, were compared to investigate the regional variation
in clinical manifestations (Table 4). A higher proportion of the Pmu envenoming cases in
northern Taiwan developed ecchymosis (75.2% vs. 21.7%, p < 0.001) and blistering (17.5%
vs. 5%, p = 0.019). No significant difference was found for local complications, such as tissue
necrosis (11.4% vs. 5%, p = 0.154) and compartment syndrome (6% vs. 8.3%, p = 0.549), or
in the systemic complications. There were slightly higher proportions of cellulitis (25.5%
vs. 13.3%, p = 0.055) and renal impairment (12.3% vs. 5.4%, p = 0.088) in patients from the
northern region than those from southeastern area.

Table 4. Comparison of the clinical manifestations of Pmu envenomed patients between the two
geographic regions.

Region Northern Southeastern p-Value

Patient number n = 149 ( % ) n = 60 ( % )
Local symptoms

Ecchymosis 112 ( 75.2 ) 13 ( 21.7 ) <0.001
Blistering 26 ( 17.5 ) 3 ( 5 ) 0.019

Local complications
Cellulitis 38 ( 25.5 ) 8 ( 13.3 ) 0.055

Tissue necrosis 17 ( 11.4 ) 3 ( 5 ) 0.154
Compartment syndrome 9 ( 6 ) 5 ( 8.3 ) 0.549
Systemic complications

Thrombocytopenia 18 ( 12.1 ) 8 (n = 57) ( 14 ) 0.705
Coagulopathy 9 ( 6 ) 2 (n = 58) ( 3.5 ) 0.455

Acute renal impairment 8 ( 5.4 ) 7 (n = 57) ( 12.3 ) 0.088
Rhabdomyolysis 17 ( 11.4 ) 3 (n = 27) ( 5.1 ) 0.964

Currently, there are only a few studies that examined the difference in snake enven-
oming effects regarding the geographic locations available, with most of them focusing
on the comparison of the severity score and antivenom dosage following bites between
regions [7–9]. Our study is the first to investigate the clinical manifestation differences of
single species snakebite in northern and southeastern Taiwan. The variation in clinical
effects is likely to be affected by the variation in venom components, as suggested in two
case studies of Crotalus pyrrhus bites in the western and eastern regions of Arizona state
in America, respectively [9]. Although specific antivenom dosages used for envenomed
patients in the northern and southeastern Taiwan differed (with the mean of 4.4 vials for
northern region and 6.4 vials for southeastern area), a solid conclusion for differences in
antivenom usage could not be simply drawn based on this data. Thus, further antivenomic
evaluation of the neutralization effect on major toxic venom components will be essential
for the determination of antivenom administration in managing Pmu bites.

2.4. Possible Venom Components Contributing to Regional Differences in Clinical Manifestations

Since there were significant differences in ecchymosis and blistering with the high
similarity shown in venom components, the results are worthy of further discussion. Ec-
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chymosis is a local hemorrhage near the skin’s surface caused by mechanical injury of
the capillary basement membrane and is found to be more common in Pmu envenoming
of northern victims (Table 4). SVMPs are considered as the main components in viperid
venom that contribute to hemorrhage [22]. SVMPs degrade extracellular matrix proteins in
the capillary basement membrane, causing endothelial cell apoptosis [23–25] and inducing
hemorrhage [26]. P-II and PIII-metalloproteases bind more specifically to the capillary base-
ment membrane than PI-SVMPs, causing higher hemorrhagic activity [26–28]. Furthermore,
the non-catalytic PLA2 (myotoxic and cytotoxic [29,30]) in viperid venom could induce
endothelial cell detachment synergistically with PIII-SVMP [31] and possibly enhance my-
otoxicity caused by non-catalytic SVSP [32]. Based on the biochemical effects of enzymes
and our findings of the variation in venom components and clinical manifestations, we
suggest that a higher incidence of venom-induced ecchymosis in patients from the northern
region is likely to be caused by PI-SVMP (Fr 11) and PII-SVMP (Fr 15, 18, and 19).

Venom-induced blistering, characterized by the separation of the epidermis and der-
mis [33], is a clinical feature more frequently observed in patients from northern Taiwan
(Table 4). SVMPs, particularly PI-SVMPs, induce the proteolytic cleavage of skin base-
ment membrane components at the dermal–epidermal junction [34–38]. Additionally, the
proteolytic action of endogenous matrix metalloproteinases in local tissues activated by in-
flammatory reactions may be involved in blister formation [37,38]. Moreover, the activation
of the complement system induced by PI-SVMPs promotes local tissue inflammation [39].
K49-PLA2 induces cell membrane damage through a non-catalytic mechanism and release
inflammatory mediators in tissues [30,40–42]. Catalytic D49-PLA2s enhance the release of
inflammatory mediators synergistically with K49-PLA2 [29,30]. The high abundance of PI-
SVMP (trimerelysin-2 like), PII-SVMP (PMMP-3), and acidic E6-PLA2 in the northern Pmu
venom may jointly attribute to more severe local symptoms. Therefore, this information
could be important for antivenom manufacturers and clinicians in assessing antivenom
efficacy and effectiveness in managing Pmu bites. Although the differences of minor com-
ponents (i.e., Snaclec, CRISP, LAO, PLB, QPCT, and 5’-NT) in venoms were found between
regions, their clinical significance in Pmu envenoming remains undetermined [43–46]. Fur-
thermore, a proper-designed animal model examining the ecchymosis and blistering effect
by the subcutaneous injection of venom component at different doses may be helpful in the
determination of the causal relationship between the venom component and the associated
clinical effect.

2.5. Limitations

Although we found inter-population variations in venom compositions and suggested
the associations of venom variations with clinical manifestations, this study has some
limitations. First, the body size, age, and sex of individual snakes; the amount of venom
injection; and the health status of patients, which are important factors that may have
affected the severity and treatment of envenomation, are difficult to determine in such
retrospective studies. Second, it is challenging to separate and analyze snake venom com-
ponents by RP-HPLC with gel electrophoresis because of their similar molecular weights
or hydrophobicity. Furthermore, the method used for protein resolution or separation
(mainly re-dissolved or reconstituted venom solution) might cause certain non-protein loss
and precipitation of high-molecular-weight constituents, making these components unde-
tectable. Third, the bottom-up venomomics applied in this study may provide incomplete
compositional information of venoms, especially for low-abundance components. The
top-down mass venomics may eliminate the shortcomings of bottom-up workflows [47,48].
Finally, the data of this study were extracted from medical charts that cover a long period.
This introduces the possibility of variations in how the information has been introduced
into the charts; that is, different physicians may introduce a different degree of detail in the
charts. Additionally, different physicians were likely involved in the therapeutic decisions
of these patients. Since this is a retrospective study and has its inherent limitations, results
should be interpreted cautiously. Nevertheless, our pioneering study on the investigation of
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the variation in Pmu venoms and clinical envenoming effects in different regions in Taiwan
has strong potential in improving therapeutic implications in snakebite management.

3. Conclusions

We found that there is inter-population variability in the presence of Pmu venom
protein fractions 4, 7, 8, 10, 11, 13, 14, 17, 18, and 19 (i.e., PLA2 TmPL-III, SVSP, KN-SVSP,
SVSP, PI-SVMP, LAO, 5’-NT, Snaclec, PII-SVMP, and PII-SVMP, respectively). A higher
proportion in fractions 7, 11, 17, 18, and 19 (i.e., SVSP, PI-SVMP, Snaclec, PII-SVMP, and
PII-SVMP, respectively) was noticed in the northern snakes’ population. Additionally, the
amount of relevant protein families is higher in fractions 3, 6, 7, 8, 10, 13, 14, 15, 17, 18, 20,
and 22 in the northern snakes’ population even though the presence of certain fractions
(i.e., 6, 15, and 20) does not differ between regions.

Furthermore, we found a higher risk of developing ecchymosis and blistering in
the northern patients’ population, which is suggested to be associated with the higher
abundance of PI-SVMP (trimerelysin-2 like), PII-SVMP (PMMP-3), Snaclec (Trimecetin),
SVSP (TSV-PA like), and acidic E6-PLA2 in the Pmu venoms obtained from the same areas.
Our study provides objective information on Pmu venoms, and these findings can have
therapeutic implications for future antivenom manufacturing processes, efficacy evaluation
against these major fractions, and snakebite management in Taiwan.

4. Materials and Methods
4.1. Snake Venoms

Venom samples of 163 adult Pmu were obtained from two regions: Taipei Basin and
the surrounding mountain areas in northern Taiwan (n = 119) and East Rift Valley in
southeastern Taiwan (n = 44) (Figure 1). Each individual Pmu was manually restrained
while venom was milked from both half-erected fangs into a 1.5 mL Eppendorf tube. The
fresh yellowish crude venom was lyophilized and stored at –20 ◦C.

4.2. Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC)

Individual Pmu crude venom was reconstituted in ultrapure water containing 0.1%
trifluoroacetic acid (TFA, Sigma-Aldrich, MO, USA) and 5% acetonitrile (Mallinckrodt
Baker, NJ, USA) and centrifuged at 10,000× g for 10 min. The protein concentration of the
supernatant was determined using the Pierce bicinchoninic acid (BCA) protein assay kit
(Thermo Fisher Scientific, IL, USA). Venom proteins were separated by RP-HPLC following
the method of Villalta, M. et al. study [5]. Briefly, 100 µg of venom protein in 10 µL
ultrapure water containing 0.1% TFA (solution A) was injected into an ultra-pressure liquid
chromatography system (LC-20ADXR, Shimadzu, Kyoto, Japan) equipped with a diode-
array detector (SPD-M20A, Shimadzu, Kyoto, Japan). Chromatography was performed
using a Phenomenex Jupiter C18 (250 × 4.6 mm, 5 µm particle size, 300 Å pore size) column
at 1 mL/min with a linear gradient of 5% solution B (0.1% TFA in acetonitrile) for 5 min,
5–25% solution B for 10 min, 25–45% solution B for 60 min, and 45–70% solution B for
10 min. The effluent was monitored at 215 nm, and eluted peaks were manually collected
and lyophilized.

No individual venom samples in this study have all the HPLC-resolvable protein
fractions. However, we have identified as many fractions as possible. The isolated fractions
were collected and analyzed from representative samples, including Pmu001 (collected
from East Rift Valley), Pmu002 (collected from Taipei Basin), and Pmu003 (collected from
Taipei Basin). Pmu003, containing the most resolvable fractions, was chosen as the primary
reference (Figure 1D). Along with unique fractions obtained from two other samples, all
resolvable fractions were subjected to subsequent sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and tandem mass spectrometry (MS/MS) to identify
the proteins.
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4.3. SDS-PAGE and LC-MS/MS Analysis

Before gel electrophoresis, venom samples in 20 µL Laemmli sample buffer containing
25 mM dithiothreitol (Biosynth AG, Switzerland) were boiled for 5 min and alkylated
with 135 mM iodoacetamide (Amersham Biosciences, UK). Then, venom proteins were
separated through SDS-PAGE, and the gel was stained with Coomassie brilliant blue.
Further preparation of MS samples was conducted by cutting each stained band into a few
slices, which were destained in 10% methanol (Mallinckrodt Baker, NJ, USA), dehydrated in
acetonitrile, and dried in a SpeedVac. Proteins in the gel were digested by sequencing-grade
modified porcine trypsin (20 µg/mL; Promega, Madison, WI, USA) overnight at 37 ◦C.
Then, the tryptic peptides were extracted with 200 µL of 0.1% formic acid (Sigma-Aldrich,
MO, USA) and 50% acetonitrile solution, with 70% acetonitrile in ultrapure water, dried in
SpeedVac, and finally stored at −80 ◦C for subsequent processing.

Peptide mixtures were reconstituted with 0.1% formic acid and analyzed by LC-
MS/MS using an LTQ Orbitrap Velos mass spectrometer coupled with a nano-LC (Thermo
Fisher, San Jose, CA, USA). Further, the sample was loaded into a trap column (Zorbax
300SB-C18, 0.3 × 5 mm; Agilent Technologies, Wilmington, DE) at a flow rate of 0.2 µL/min
in solution A (0.1% formic acid in ultrapure water) and separated on a resolving 10-cm
analytical C18 column (inner diameter, 75 µm) using a 15-µm tip (New Objective, Woburn,
MA, USA). The peptides were eluted using a linear gradient of 0–10% solution B (0.1%
formic acid in acetonitrile) for 3 min, 10–30% solution B for 35 min, 30–35% solution B for
4 min, 35–50% solution B for 1 min, 50–95% solution B for 1 min, and 95% solution B for
8 min, with a flow rate of 0.25 µL/min. The Orbitrap’s resolution was set at 30,000, and
the ion signal of (Si(CH3)2O)6H+ at 445.120025 (m/z) was used as a lock mass for internal
calibration.

For MS scan, the m/z value of scan range was 400–2000 Da. For MS/MS scan, more
than 1 × 104 ions were accumulated in the ion trap, and the m/z values selected were
dynamically excluded for 180 s. Both MS and MS/MS spectra were acquired using one
scan with maximum 1000 and 100 ms fill-times, respectively. MS raw data were analyzed
using Proteome Discoverer Software (v.1.4.1.14; Thermo Fisher, San Jose, CA, USA) and
searched against a non-redundant Swiss-Prot database of Serpents (downloaded in August
2021, 273,008 entries) using MASCOT. Search parameters for tryptic peptides included one
missed cleavage, a mass tolerance of 0.5 Da for fragment ions, fixed cysteine modification
with carbamidomethylation, variable methionine oxidation, variable N-terminal acetylation,
and variable transformation of N-terminal glutamate or glutamine to pyroglutamic acid.
Finally, the criteria used for protein identification were high peptide confidence; the lowest
peptide length was five amino acids, and the minimal number of peptides per protein
was two.

4.4. Relative Abundance of Protein Families

The relative content of each major protein family was estimated as described by
Calvete et al. [49]. Then, the relative content of each LC-eluted protein-peak was calculated
based on its peak area using LabSolution (v.5.93, Shimadzu, Kyoto, Japan). For venom
protein presenting more than one band in SDS-PAGE, the relative abundance of each
protein was estimated by densitometry using GelQuantNET (BiochemLabSolutions Corp.,
USA). Finally, the abundance of each protein family was calculated as the percentage of the
whole venom proteome.

4.5. Clinical Manifestations of Pmu-Envenomed Patients in Two Taiwan Regions

This is a secondary analysis of the retrospective cohort studies [12,13]. All patients en-
rolled were admitted to two medical centers, Taipei Veterans General Hospital (1991–2006)
in northern Taiwan and Hualien Tzu Chi Hospital (2008–2013) in southeastern Taiwan
(Figure 3). The culprit snake was identified by examining the snake brought-in by the
patient or identifying the snake in a standard picture exhibited in the emergency depart-
ment [12,13]. The case was excluded in the study if the snake could not be identified [13].



Toxins 2022, 14, 643 11 of 15

Toxins 2022, 14, x FOR PEER REVIEW 11 of 15 
 

 

The relative content of each major protein family was estimated as described by Cal-
vete et al. [49]. Then, the relative content of each LC-eluted protein-peak was calculated 
based on its peak area using LabSolution (v.5.93, Shimadzu, Kyoto, Japan). For venom 
protein presenting more than one band in SDS-PAGE, the relative abundance of each pro-
tein was estimated by densitometry using GelQuantNET (BiochemLabSolutions Corp., 
USA). Finally, the abundance of each protein family was calculated as the percentage of 
the whole venom proteome. 

4.5. Clinical Manifestations of Pmu-Envenomed Patients in Two Taiwan Regions 
This is a secondary analysis of the retrospective cohort studies [12,13]. All patients 

enrolled were admitted to two medical centers, Taipei Veterans General Hospital (1991–
2006) in northern Taiwan and Hualien Tzu Chi Hospital (2008–2013) in southeastern Tai-
wan (Figure 3). The culprit snake was identified by examining the snake brought-in by 
the patient or identifying the snake in a standard picture exhibited in the emergency de-
partment [12,13]. The case was excluded in the study if the snake could not be identified 
[13]. 

 
Figure 3. The collection locales of Pmu venom of northern (blue dots) and southeastern (red dots) 
populations, and the locales of Taipei Veterans General Hospital (blue triangle) and Hualien Tzu 
Chi Hospital (red triangle). 

The clinical data collected included patients’ clinical presentation, laboratory anal-
yses, clinical outcomes, and complications. The clinical manifestations of Pmu enven-
omation were classified into three categories: (1) local symptoms, including ecchymosis 
(Figures 4A,B) and blistering (bulla formation) (Figures 4B,C); (2) local complications, in-
cluding cellulitis, wound necrosis (Figure 4D), and compartment syndrome; (3) systemic 
complications, including thrombocytopenia (with platelet count < 150 × 109/L), coagulopa-

Figure 3. The collection locales of Pmu venom of northern (blue dots) and southeastern (red dots)
populations, and the locales of Taipei Veterans General Hospital (blue triangle) and Hualien Tzu Chi
Hospital (red triangle).

The clinical data collected included patients’ clinical presentation, laboratory analyses,
clinical outcomes, and complications. The clinical manifestations of Pmu envenomation
were classified into three categories: (1) local symptoms, including ecchymosis (Figure 4A,B)
and blistering (bulla formation) (Figure 4B,C); (2) local complications, including cellulitis,
wound necrosis (Figure 4D), and compartment syndrome; (3) systemic complications,
including thrombocytopenia (with platelet count < 150 × 109/L), coagulopathy (with
an international normalized ratio >1.25), renal impairment (with serum creatinine level
>1.4 mg/dL), and rhabdomyolysis (with blood creatine kinase level >1000 U/L). The study
protocols were approved by the Institutional Review Board of Taipei Veterans General
Hospital (95-02-25A) and Hualien Tzu Chi Hospital (IRB102-38).
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