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Abstract: Base Excision Repair (BER) addresses base lesions and abasic sites induced by exogenous
and endogenous stressors. X-ray cross complementing group 1 (XRCC1) functions as a scaffold
protein in BER and single-strand break repair (SSBR), facilitating and coordinating repair through its
interaction with a host of critical repair proteins. Alterations of XRCC1 protein and gene expression
levels are observed in many cancers, including colorectal, ovarian, and breast cancer. While in-
creases in the expression level of XRCC1 are reported, the transcription factors responsible for this
up-regulation are not known. In this study, we identify the signal transducer and activator of
transcription 3 (STAT3) as a novel regulator of XRCC1 through chromatin immunoprecipitation.
Activation of STAT3 through phosphorylation at Y705 by cytokine (IL-6) signaling increases the
expression of XRCC1 and the occupancy of STAT3 within the XRCC1 promoter. In triple negative
breast cancer, the constitutive activation of STAT3 upregulates XRCC1 gene and protein expression
levels. Increased expression of XRCC1 is associated with aggressiveness and resistance to DNA
damaging chemotherapeutics. Thus, we propose that activated STAT3 regulates XRCC1 under stress
and growth conditions, but constitutive activation in cancers results in dysregulation of XRCC1 and
subsequently BER and SSBR.

Keywords: base excision repair; STAT transcription factor; STAT3; breast cancer; DNA repair;
chemoresistance; cytokine; stress; XRCC1

1. Introduction

Base excision repair (BER) is an essential DNA repair pathway responsible for detect-
ing and repairing abasic sites and base lesions. X-ray cross complementing group 1 (XRCC1)
is a scaffold protein in the BER pathway. Although it lacks enzymatic activity, XRCC1
has a critical role in BER through recruiting and coordinating other DNA repair proteins,
like DNA polymerase β (POL β) and DNA ligase III (LIG3), at DNA damage sites. XRCC1’s
facilitation of protein–protein interactions provides for overlap in functions between the
BER and single-strand break repair (SSBR) pathways [1,2]. In addition to BER and SSBR,
XRCC1 also participates in double-strand break repair (DSBR) through its interaction with
PARP1 in the error-prone alternative non-homologous end-joining (a-NHEJ) [3–5], as well
as in nucleotide excision repair (NER) through interaction with LIG3 [6].

Given XRCC1’s critical scaffold functions, it is unsurprising that XRCC1 is ubiqui-
tously expressed in most tissues, though low levels of XRCC1 are found in terminally
differentiated muscle cells and neurons, causing impaired BER [7,8]. In tissues that should
have abundant amounts of XRCC1, its loss can have profound consequences. In mice,
Xrcc1-deficiency is lethal at day 7 [9]. Human cells that have lower levels of XRCC1 show
significant sensitivity to DNA damaging agents like methyl methanesulfonate (MMS),
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poly(ADP-ribose) polymerase (PARP) inhibitors, and other DNA damage response and
repair inhibitors [10–14]. Additionally, mutations in XRCC1 that reduce its ability to bind
PARP1, POLβ, or interact with DNA have been shown to increase hypersensitivity to DNA
damaging agents and increase genomic instability and chromosomal aberrations, promot-
ing transformation [15–22]. While several single nucleotide polymorphisms, R399Q and
R280H, have been correlated with cancer risk, variations in the gene and protein expression
levels of XRCC1 are more commonly noted, particularly in ovarian, breast, and gastric
cancers [14,23–28].

In breast cancer, low expression of XRCC1 correlated with improved response to
poly(ADP-ribose) polymerase (PARP) inhibitors [14,26,27]. However, the prevalence of
XRCC1 deficiency was ~15%, although XRCC1 deficiency was closer to 30% when breast
tumors were BRCA1 deficient [13,14]. When we examined XRCC1 expression more closely
in breast cancer using the UALCAN TCGA portal, we noted significantly increased expres-
sion of XRCC1 in luminal (566 cases, p < 10−12 compared with normal) and triple negative
breast cancers (TNBC, 116 cases, p < 0.001) [11,29]. TNBC model cell lines confirmed the
overexpression of XRCC1 at the gene and protein level [11,30,31]. XRCC1 overexpression
is correlated with increased aggressive features and reduced cancer-specific survival in
ovarian tumor samples [23]. Overexpression of XRCC1 also promotes chemoresistance in
ovarian, gastric, and gallbladder cancer cell lines [23–25].

Despite reports demonstrating the overexpression of XRCC1, the transcriptional
regulation of XRCC1 remains poorly understood, with only two transcription regulators
identified thus far. The cell cycle regulator E2F transcription factor 1 (E2F1) was the first
transcription factor regulating XRCC1 to be identified [32]. E2F1 was shown to induce a
robust BER response through increased XRCC1 gene and protein expression following DNA
damage induced by the alkylating agent MMS [32]. More recently, the basal transcription
factor, Sp1, was confirmed to control the transcription of XRCC1 [33]. This transcriptional
regulation was shown to be governed by the DNA damage sensor ataxia telangiectasia
mutated kinase (ATM). Following persistent DNA damage, ATM becomes phosphorylated
and, in turn, phosphorylates Sp1. Phosphorylation of Sp1-reduced XRCC1 expression,
promoting apoptosis [33].

Expression of BER factors, like 3-alkyladenine DNA glycosylase (AAG) or N-methylpurine
DNA glycosylase (MPG), 8-oxoguanine DNA glycosylase 1 (OGG1), apurinic/apyrimidinic
endonuclease 1 (APE1), poly(ADP-ribose) polymerase 1 (PARP1), POL β, and now XRCC1,
have been shown to influence tumor characteristics and dictate chemotherapy respo-
nse [14,23–25,28,34–37]. While several transcription regulators have been identified for
PARP1, POL β, and several DNA glycosylases, our understanding of the transcriptional
regulation of these genes is still developing [38,39]. More importantly, the transcriptional
regulation of XRCC1 is poorly understood in general, and even less is known about the
drivers of dysregulation in cancer.

In this study, we have identified the signal transducer and activator of transcription 3
(STAT3) as a novel transcriptional regulator of XRCC1. The STAT family of transcription
factors play a unique role in signal transduction and are critical to mediating cellular re-
sponses to external stimuli, particularly from cytokines and mitogens. During development
and growth, STAT family signaling is critical to tissue differentiation and function [40].
However, aberrant STAT3 signaling has been linked to many of the hallmarks of cancer,
including cell growth, proliferation, survival, immune evasion, metastasis, and angiogene-
sis [41]. Here, we found that STAT3 binding at the XRCC1 promoter is significantly higher
in TNBC models but is also observed in nontumorigenic human embryonic kidney cells
(HEK293T). Occupancy at the binding site is increased when STAT3 is over-expressed or
activated by cytokine IL-6 signaling. Importantly, in TNBC, the constitutive activation of
STAT3 drives the increased expression of XRCC1, and inhibition of STAT3 or decreased
expression of STAT3 reduces the expression of XRCC1. These data indicate that STAT3
conditionally regulates XRCC1 expression and contributes to the overexpression of XRCC1
observed in TNBC.
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2. Results
2.1. XRCC1 Promoter Has Active Regions Driving Reporter Expression Not Associated with
Known Transcription Factors

We performed a promoter-luciferase assay to identify the active regions of the XRCC1
promoter that are capable of driving reporter expression. A series of truncated promoter
regions were inserted into a pGL3-Basic vector backbone plasmid, and the luminescence
values were measured in MDA-231 and HEK293T cells (Figure 1 and Supplementary
Materials Figure S1). Using this assay, we identified a region capable of driving reporter
expression between −612 and −35 that was not previously associated with known tran-
scription factors [32,33].
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Figure 1. XRCC1 promoter expression in MDA-231 cells has actively transcribed regions between
−612 and −35. (A) XRCC1 promoter fragments with known transcription factor sites were in-
serted into the pGL3 luciferase reporter. (B) Reporter plasmids were transfected into MDA-231,
and luminescence was read after 24 h. **** p < 0.0001.

To identify potential transcription factor candidates associated with this region, we per-
formed a promoter binding ELISA (Material and Methods). Multiple potential binders
within the −612 and −35 XRCC1 promoter region were identified, including CBF, NF1,
HNF4, and STAT3 (Supplementary Materials Figure S2). Of the transcription factors show-
ing positive binding, we found STAT3 to be of particular interest due to its prominent role
in multiple cancers, including triple negative breast cancer [42,43]. Additionally, we per-
formed an in silico search using CiiiDER (www.ciiider.org, accessed on 9 November 2020)
to confirm potential transcription factors. CiiiDER predicted potential transcription factor
binding sites in regions of interest and confirmed a potential STAT3 binding site within the
−612 to −35 region of the XRCC1 promoter (Figure 2A) [44].

www.ciiider.org
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Figure 2. The XRCC1 promoter contains a STAT3 binding site. (A) CiiiDER identified an STAT3
binding sequence within the XRCC1 promoter (red font). (B) ChIP analysis of XRCC1 promoter in
MDA-231 cells show a significant enrichment of STAT3 between -452 and -358. (C) The knockdown
of STAT3 with shRNA #1 eliminates STAT3 binding within the -452 to -358 fragment. CHiP using
primers specific for the SP1 binding site within the XRCC1 promoter was performed as a positive
control. (D) STAT3 binding also occurs within the -452 to -358 fragment of the XRCC1 promoter in
MDA-468 cells. * p < 0.05 ** p < 0.01, **** p < 0.0001.

2.2. ChIP Confirmed the STAT3 Binding Site within the XRCC1 Promoter

Chromatin Immunoprecipitation (ChIP) was utilized to map the regions of the XRCC1
promoter in MDA-231 that contain the STAT3 binding site. A significant fold enrichment
above IgG isotype control (2.426 ± 0.11, p < 0.001) indicated that binding of STAT3 occurred
within a 96-base pair (bp) region between -452 to -358 of the XRCC1 promoter (Figure 2B).
Knockdown of STAT3 with shRNA #1 (sh#1) in MDA-231 eliminated STAT3 binding in the
-452 to -358 region (Figure 2C). STAT3 binding was further confirmed in another TNBC cell
line, MDA-468, where 1.826 ± 0.066 (p < 0.0001) enrichment in binding at the -452 to -358
region of the XRCC1 promoter was seen above IgG isotype control and consistent with
the known SP1 binding site (Figure 2D). These findings indicate that the XRCC1 promoter
contains a STAT3 binding site with significant occupancy in TNBC cell lines.

2.3. STAT3 Expression Attenuated XRCC1 Expression

The transcription factor activity of STAT3 is activated by its phosphorylation at Y705
(pSTAT3) and subsequent dimerization and translocation into the nucleus. To confirm the
regulatory role of STAT3 in XRCC1 expression, we first used two shRNA constructs to target
STAT3 mRNA and reduce its gene expression in MDA-231. Each shRNA construct reduced
the protein expression of STAT3 and reduced the presence of activated phosphorylated
STAT3 (pSTAT3, Figure 3A). The reduction in STAT3 significantly reduced XRCC1 protein
expression (sh#1 0.435 ± 0.019 and sh#2 0.313 ± 0.063) levels at 48 h (Figure 3B) and
reduced XRCC1 mRNA levels (sh#1: 0.506 ± 0.089 and sh#2: 0.693 ± 0.015) (Figure 3C).
We then increased the expression of STAT3 by ectopic expression of a FLAG-tagged protein
(Figure 4). Overexpression of STAT3 also increased the levels of activated STAT3 (pSTAT3).
Increased levels of STAT3 and pSTAT3 resulted in increased XRCC1 protein (2.07 ± 0.19,
Figure 4B) and mRNA (3.52 ± 0.086) levels (Figure 4C).
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fication of protein expression changes in XRCC1 resulting from shRNA-mediated knockdown of 
STAT3. (C) Quantification of XRCC1 mRNA expression following shRNA-mediated knockdown of 
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Figure 3. shRNA knockdown of STAT3 reduces the expression of XRCC1 in MDA-231 cells. (A) Rep-
resentative immunoblots of phospho-STAT3 (Y705), STAT3 and XRCC1 protein expression following
shRNA mediated knockdown of STAT3. α-tubulin is used as a loading control. (B) Quantification
of protein expression changes in XRCC1 resulting from shRNA-mediated knockdown of STAT3.
(C) Quantification of XRCC1 mRNA expression following shRNA-mediated knockdown of STAT3.
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Figure 4. Ectopic overexpression of STAT3 increases the expression of XRCC1 in MDA-231 cells.
(A) Representative immunoblot of phospho-STAT3 (Y705), STAT3 and XRCC1 protein expression fol-
lowing ectopic expression of STAT3-FLAG. α-tubulin is used as a loading control. (B) Quantification
of protein expression changes in XRCC1 resulting from ectopic expression of STAT3-FLAG. (C) Quan-
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Given that pSTAT3 is the active transcription factor, we also specifically targeted the
activated STAT3 using the pSTAT3 inhibitor, alantolactone, to block phosphorylation of
STAT3 without significantly reducing the protein levels of STAT3. Pharmacological inhibi-
tion of pSTAT3 with 15 µM alantolactone produced the same trend as the shRNA constructs
(Figure 5). In MDA-231, levels of pSTAT3 were reduced at 4 h of alantolactone exposure,
but the protein levels of STAT3 were only slightly reduced (Figure 5A). However, XRCC1
protein (0.649 ± 0.051, Figure 5B) and XRCC1 mRNA expression levels (0.675 ± 0.038,
Figure 5C) were significantly reduced in the presence of alantolactone. A similar trend
was observed in MDA-468 cells, which showed a high STAT3 protein expression level
(Figure 5D). Treatment with alantolactone significantly reduced the presence of pSTAT3
(Figure 5D) and both XRCC1 protein (0.760 ± 0.026, Figure 5E) and mRNA expression lev-
els (0.758 ± 0.020, Figure 5F). A significant reduction of XRCC1 protein and mRNA levels,
along with STAT3 and pSTAT3 expression, was maintained even after 24 h of exposure to
15 µM alantolactone in the MDA-231 cells (Supplementary Materials Figure S3).
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XRCC1 in MDA-231 and MDA-468 cells. (A) Representative immunoblots of phospho-STAT3 (Y705), STAT3 and XRCC1
protein expression after 4 h of exposure to 15 µM alantolactone in MDA-231 cells. α-tubulin is used as a loading control.
(B) Quantification of protein expression changes in XRCC1 resulting from 4 h of alantolactone exposure in MDA-231 cells.
(C) Quantification of XRCC1 mRNA expression following 4 h of alantolactone exposure in MDA-231 cells. (D) Representative
immunoblots of phospho-STAT3 (Y705), STAT3 and XRCC1 protein expression after 4 h of exposure to 15 µM alantolactone
in MDA-468 cells. (E) Quantification of protein expression changes in XRCC1 resulting from 4 h of alantolactone exposure
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** p < 0.01, *** p < 0.001, **** p < 0.0001.
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2.4. STAT3 Regulation Is Prevalent in TNBC

STAT3 is constitutively activated in TNBC, but levels of pSTAT3 are more tightly
regulated in normal tissues and expressed at a much lower level [43,45,46]. Therefore,
to determine if STAT3 regulation of XRCC1 is specific to TNBC, we measured STAT3
binding and activation in the human embryonic kidney cell line HEK293T. The ChIP of
HEK293T cells showed a very low binding occupancy of STAT3 in the -452 to -358 region
(1.50 ± 0.13) (Figure 6A). Immunoblotting also showed low levels of STAT3 and pSTAT3
in these cells (Figure 6B and Supplementary Materials Figure S4). Ectopic expression of
the FLAG-tagged STAT3 increased STAT3 and pSTAT3 and subsequently increased the
binding occupancy of STAT3 in the -452 to -358 region (3.93 ± 0.82, Figure 6A). Interestingly,
the ectopic expression of STAT3 in HEK293T did not significantly increase XRCC1 protein
content (1.03 ± 0.035), indicating that STAT3 has a less significant role in regulating XRCC1
expression in HEK293T and occurs through a cancer-related, possibly TNBC-specific,
mechanism.
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To understand the specificity for TNBC, we examined physiologically relevant mecha-
nisms for STAT3 regulation of XRCC1 in TNBC. IL-6 is a negative prognostic marker in
breast cancer patients mainly due to its role in regulating STAT3 and its downstream targets
promoting tumor cell proliferation, survival, and angiogenesis [43,47]. IL-6 is known to
increase phosphorylation of STAT3 through JAK activation. Therefore, we examined if
IL-6 activated STAT3 and resulted in changes in XRCC1 expression. Following exposure to
IL-6 (50 ng/mL) for 30 min, 1, and 4 h, a significant increase in pSTAT3 was observed in
MDA-231 cells and correlated with an increase in expression of XRCC1 at both the gene
and protein levels (Figure 7).
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We further confirmed the induced activation of pSTAT3 and regulation of XRCC1
expression in HEK293T cells (Figure 8). HEK293T cells exposed to IL-6 showed increased
activation of STAT3 (Figure 8A) and significantly increased STAT3 occupancy at the XRCC1
promoter (2.20 ± 0.26, Figure 8B). XRCC1 gene and protein expression also increased in
HEK293T cells exposed to IL-6 (Figure 8C,D), supporting the conditional regulation of
XRCC1 by STAT3 after physiological stress.
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Figure 8. IL-6 increases phospho-STAT3, increases the occupancy of STAT3 at the XRCC1 promoter,
and increases the expression of XRCC1 in HEK293T. (A) Representative immunoblot of phospho-
STAT3 (Y705), STAT3 and XRCC1 protein expression after 30 min, 1 and 4 h of exposure to 50 ng/mL
IL-6. α-tubulin is used as a loading control. (B) ChIP analysis shows that IL-6 increases the STAT3
occupancy on the XRCC1 promoter. (C) Quantification of protein expression changes in XRCC1
resulting from 50 ng/mL IL-6. (D) Quantification of XRCC1 mRNA expression following 50 ng/mL
IL-6. * p < 0.05, ** p < 0.01, *** p < 0.001.
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We also confirmed that pSTAT3 activation by the mitogen, epidermal growth factor
(EGF), would also increase the gene and protein expression of XRCC1 in MDA-231 cells
(Supplementary Materials Figure S5). Exposure to 30 ng/mL EGF activated STAT3, as well
as the epidermal growth factor receptor (EGFR), and increased the protein and gene
expression of XRCC1 within 24 h of exposure (Supplementary Materials Figure S5).

3. Discussion

Dysregulation of DNA repair proteins is a hallmark of cancer. Changes in the expres-
sion of DNA repair proteins can increase susceptibility to DNA damaging therapies or
increase chemoresistance [11,27,30]. While various factors can regulate gene expression,
transcription factors play a critical role in basal transcription and response to stress and
stimuli. Despite the critical role BER has in addressing exogenous and endogenous threats,
our knowledge of the transcription factors that regulate BER factors is lacking [38,39].
Surprisingly, only two transcription factors, E2F1 and Sp1, have been identified in the
transcriptional regulation of XRCC1 [32,33].

In this study, we have identified a novel regulator of XRCC1, STAT3, which selectively
upregulates XRCC1 in TNBC. Previously, we showed that alterations in XRCC1 gene and
protein expression occur across a panel of TNBC cell lines [11]. Here, we determined
that STAT3 binds within the XRCC1 promoter in MDA-231, MDA-468, and HEK293T
cells (Figures 2, 6 and 8). Yet, the site only has significant occupancy when STAT3 is
activated. Constitutive activation of STAT3 occurs in TNBC cells and is reflected by
increased occupancy at the binding site (Figure 2). However, pSTAT3 is low in the HEK293T
cells, and occupancy at the STAT3 binding site in the XRCC1 promoter is similarly low
(Figure 6). This conditional regulation may explain why the promoter assay shows stable
output between -612 and -310, despite the STAT3 site being deleted in the -310 construct
(Figure 1 and Supplementary Materials Figure S1).

shRNA-mediated knockdown of STAT3 significantly reduced both the gene and pro-
tein expression of XRCC1 (Figure 3). Importantly, it also reduced the occupancy at the
STAT3 binding site within the XRCC1 promoter in MDA-231 cells (Figure 2C). We further
confirmed the dependence on activated, phosphorylated STAT3 (Y705) by chemical inhi-
bition with alantolactone. Alantolactone targets the SH2 domain of STAT3 and prevents
phosphorylation at Y705 [48]. In the presence of 15 µM alantolactone, we again showed
a significant reduction in both the gene and protein expression of XRCC1 (Figure 5 and
Supplementary Materials Figure S3).

Given that TNBC cell lines showed higher levels of pSTAT3, we examined phys-
iologically relevant stimuli that could lead to activated STAT3 and increased XRCC1
expression. Several reports have demonstrated that inflammatory signaling through IL-6R
promotes constitutive activation in TNBC [47,49,50]. These signaling events are proposed
to play a role in breast cancer development and progression through aberrant signal-
ing [47]. Using IL-6, we demonstrated that STAT3 is activated in HEK293T and MDA-231
and subsequently increases the gene and protein expression of XRCC1 (Figures 7 and 8).
More importantly, we showed that IL-6 increased the occupancy of STAT3 at the STAT3
binding site within the HEK293T XRCC1 promoter, which showed low occupancy under
normal growth conditions (Figure 8).

These data provide evidence that STAT3 is a conditional regulator of XRCC1 in re-
sponse to stress and inflammatory signals. Under normal physiological conditions, activa-
tion of STAT3 is tightly controlled by several intrinsic inhibitors, including protein tyrosine
phosphatases, the suppressors of cytokine signaling, and the protein inhibitor of activated
STAT [42]. These regulatory mechanisms allow STAT3 to exert its physiological functions
and limit the aberrant signaling seen in cancer. The low level of STAT3 and pSTAT3 in the
HEK293T cells confirm the tightly checked role of STAT3 in these nontumorigenic cells and
also that XRCC1 expression is not driven by STAT3 in this cell line (Figure 6). Interestingly,
the ectopic overexpression of STAT3 increased the levels of pSTAT3 and the occupancy of
STAT3 at the XRCC1 promoter in HEK293T but did not increase the expression of XRCC1
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(1 vs. 1.03, Figure 6). However, after stimulation with IL-6, we see a dramatic increase in the
presence of activated pSTAT3 and increased XRCC1 protein and gene expression (Figure 8).
Therefore, the expression and activation of STAT3 alone is not enough to stimulate the
transcription of XRCC1 in this nontumorigenic cell line.

Transformation involves numerous cellular and genomic changes that reduce inhibi-
tions on growth and proliferation signals. These changes also reduce apoptotic signaling,
cell cycle control mechanisms and alter DNA damage response. As a result, we see overex-
pression of STAT3 being sufficient to drive XRCC1 expression in MDA-231 cells (Figure 4),
as well as stimulation by IL-6 and EGF (Figure 7 and Supplementary Materials Figure S5).
These results are consistent with two recent studies, which examined the role STAT3 plays
in regulating growth and invasion in TNBC cell lines [51,52]. Both studies used CHiP-seq
to examine the transcriptional regulation of genes by STAT3. While their focus was on pro-
liferation, migration and invasion genes, examination of the CHiP-seq results (GSE85579
and GSE152203) at the XRCC1 promoter showed STAT3 binding sites within the MDA-MB-
231, MDA-MB-468, and HCC70 cells [51,52]. These CHiP-seq results in basal-like TNBC
cell lines support our findings of higher expression and activation of STAT3 resulting in
increased XRCC1 expression [11,51,52]. Further validation of the pSTAT3 dependence
of these sites is needed to better understand the impact of the conditional regulation of
XRCC1 by pSTAT3 in TNBC.

The more blunted response in HEK293T cells and reports of under-expression of
XRCC1 in hormone-positive breast cancers suggest that activated STAT3 regulation of
XRCC1 may be highly tissue specific and dependent on exogenous signals like IL-6 or
EGF [27]. This tissue specificity is supported by the finding that stimulation by IL-6 is more
robust than ectopic expression alone (~3-fold vs. 2-fold) in HEK293T. The difference in
expression from IL-6 vs. ectopic STAT3 may be related to the downregulation of inhibiting
factors such as SOCS3 or could reflect the additional changes in redox balance and reactive
species induced by IL-6 [47,53–55]. Additional studies are needed to differentiate these con-
tributors in the STAT3-related transcriptional control of XRCC1, although, in all likelihood,
these mechanisms are probably inter-related.

In TNBC, IL-6 plays a critical role in breast cancer growth and maintenance [47,55,56].
TNBC tumor cells can autonomously produce IL-6, resulting in the constitutive activation
of STAT3 [55,56]. Activated STAT3 acts as a transcription factor controlling the expression
of genes involved in regulating cell proliferation, anti-apoptosis, migration, invasion,
angiogenesis, chemoresistance, immune escape, and autophagy [43]. Here, for the first
time, we have linked STAT3 activation by cytokines and stress factors to the regulation of a
DNA repair protein, XRCC1. In our previous work with TNBC cell lines, we noted the over-
expression of XRCC1 in pre-clinical TNBC cell lines, which contrasted with previous reports
on hormone-positive breast cancers noting a deficiency in XRCC1 expression [11,14,27,30].
By examining the effects of XRCC1 over-expression, we noted resistance of the alkylating
agents to MMS in highly over-expressed XRCC1 cell lines. Other reports have associated
the upregulation of XRCC1 with increased risk of breast cancer; poor survival across low
and high-risk breast cancer subtypes; increased tumor aggressiveness; and resistance to
cisplatin, PARP inhibitors, and ionizing radiation [9,26,27,57]. However, the mechanism
driving the overexpression of XRCC1 in TNBC and other cell lines has not been identified.

We were able to reverse MMS resistance through shRNA-mediated knockdown of
XRCC1 expression [11]. Additionally, the under-expression of XRCC1, seen in some
hormone-positive breast cancers, is correlated with increased sensitivity to chemothera-
peutics, including ionizing radiation, cisplatin, and PARP inhibitors [14,26,27,35]. Together,
these results suggest that attenuation of XRCC1 expression influences breast cancer eti-
ology and response to therapy. While we have identified pSTAT3 as a novel regulator
of XRCC1 in TNBC, it is also likely that activated STAT3 regulates XRCC1 under stress
and growth conditions in nontumorigenic cells. However, it is not until pSTAT3 levels
become dysregulated that sustained increases in XRCC1 expression and subsequently
changes in BER and SSBR would be observed, contributing to chemoresistance and tumor
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aggressiveness. The constitutive activation of STAT3 in TNBC allowed this regulation to be
identified more readily.

This work illuminates the complex regulatory mechanisms of BER proteins like XRCC1.
Dysregulation of DNA repair proteins is a hallmark of cancer, yet basal and stress-induced
regulatory mechanisms for these proteins are poorly delineated [38,39]. Here, we have
identified a stress-specific regulatory mechanism for increasing the protein levels of XRCC1,
which becomes dysregulated in TNBC and potentially other cancers.

4. Materials and Methods
4.1. Cell Culture

MDA-MB-231(MDA-231), MDA-MB-468 (MDA-468), and HEK293T were purchased
from the American Type Culture Collection (ATCC HTB-26, HTB-132, and CRL-3216,
respectively; Manassas, VA, USA) within the last 24 months and passaged < 15 times for
all experiments. Cells were tested biweekly during experiments for mycoplasma contami-
nation using the Lonza MycoAlert® (Lonza #LT07-318). MDA-231 and MDA-468 cells were
grown in DMEM High Glucose + GlutaMAX™ (Life Technologies, Carlsbad, CA, USA,
#10566016) and supplemented with 1% sodium pyruvate (Life Technologies, #11360070)
and 10% FBS (Premium Select, R&D systems, Minneapolis, MN, USA). HEK293T cells were
grown in DMEM High Glucose + L-Glutamine (HyClone, Logan, UT, USA, # SH30022.01)
and supplemented with 1% sodium pyruvate (Life Technologies #11360070) and 10% FBS.
Cells were maintained in a humidified 37 ◦C incubator with 5% carbon dioxide.

4.2. Promoter Luciferase Assay

Transcriptional activity at the XRCC1 promoter was measured using a dual promoter-
luciferase assay similar to Chen et al. [32]. The pGL3 plasmid containing the full-length
XRCC1 promoter from Chen et al. was provided by Dr. Charles Lopez (Oregon Health
Sciences University, Portland, OR, USA). XRCC1 promoter fragments XRCC1, ∆766, ∆612,
∆310, and ∆35 were cloned using XRCC1 promoter-specific primers (Table 1) from genomic
DNA harvested from MDA-231 cells. Promoter PCR fragments were digested with Nhel
Anza™ (Thermo Fisher Scientific, Waltham, MA, USA, #IVGN0066) and NcoI Anza™
(Thermo Fisher Scientific#IVGN0026) and then ligated into a pGL3 plasmid backbone with
Anza™ T4 DNA Ligase (Thermo Fisher Scientific #IVGN2104). The final plasmid constructs
with the correct promoter fragment insertion were confirmed by Sanger sequencing by
Eurofins. MDA-231 cells were transfected with 0.4 µg of plasmid DNA and 0.1 µg of pRSV
β galactosidase plasmid DNA using Jetprime (Polyplus transfection, New York, NY, USA,
#114−15, 1:6). HEK293T cells were transfected with 0.4 µg of plasmid DNA and 0.1 µg
of pRSV β galactosidase plasmid DNA (Promega, Madison, WI, USA) using Jetprime
transfection reagent (1:2). pGL3 was used as a negative control to ensure the assay was
working correctly. Using the β-Galactosidase Enzyme Assay System with Reporter Lysis
Buffer (Promega #E2000) and the Luciferase Assay System (Promega #E1500), transfected
cells were lysed 24 h after transfection, and luminescence and absorbance were collected
using an Infinite® M1000 PRO, TECAN (Mannedorf, Switzerland). Luminescence values
were normalized to the respective β-galactosidase absorbance to control for transfection
efficiency. The assay was performed in parallel plates in technical triplicate over three
biological replicates. Results represent the average of the three biological replicates ±
standard error of the mean (SEM).
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Table 1. Promoters for luciferase assay cloning.

Primer Sequence

XRCC1 Full Length Forward CTTACGCGTGCTAGCGGACGCAGAACCC
XRCC1 Full Length Reverse GCGTCTTCCATGGTCACCGAGTCCTGGCTGC

XRCC1 ∆766 Forward CTTACGCGTGCTAGCGCAAGGGGACAGAGAGAAGAG
XRCC1 ∆612 Forward CTTACGCGTGCTAGCGAGGCCGAGGCAGGTGGATC
XRCC1 ∆310 Forward CTTACGCGTGCTAGCGGATTTGCTTTCTCGGCTTC
XRCC1 ∆35 Forward CTTACGCGTGCTAGCGGCCGGGGTTTGAAAGGC

4.3. Promoter Binding ELISA

Potential transcription factors binding the XRCC1 promoter were identified using the
transcription factor binding array (Signosis Santa Clara, CA, USA #FA-1001-NE). Following
the manufacturers’ instructions. Nuclear extracts were isolated from MDA-231, and the
binding of transcription factors was tested using the XRCC1 full length and XRCC1 ∆35
PCR products described in the promoter luciferase sections, with the primers detailed
in Table 1. The promoter binding ELISA was performed with two biological replicates,
using Sp1 as a positive binding control.

4.4. Chromatin Immunoprecipitation (ChIP)

MDA-231, MDA-468, and HEK293T cells were grown to confluency in a 150 mm
dish. The cells were crosslinked by the addition of 1% formaldehyde in DMEM with
gentle rocking at room temperature (RT ~23 ◦C) for 8–10 min. Then, 0.1 M glycine was
added for 5 min at RT to quench the formaldehyde. The cells were washed with cold
1× phosphate-buffered saline (PBS) and subsequently lysed with 1 mL of farnham lysis
buffer (5 mM HEPES pH 8.0, 85 mM KCl. 0.5% NP-40) for 20 min on ice, then pelleted
by centrifugation at 2000 rpm and resuspended in RIPA buffer (50mM Tris-HCl pH 8,
150 mM NaCl, 1% sodium deoxycholate, 1mM EDTA, 0.1% SDS, 1% Triton X-100) for
20 min. Isolated chromatin was then sonicated on ice at an amplitude of 12 on a Misonix
S-4000 with 15 s on/50 s off for a total process time of 2.5 min for MDA-231 and MDA-
468 and amplitude of 10 on a Misonix S-4000 with 15 s on/50 s off for a total process
time of 3.5 min for HEK293T. Chromatin was incubated overnight at 4 ◦C on a rotator
using an anti-STAT3 antibody diluted to manufactures’ recommendations for chromatin
immunoprecipitation (Cell Signaling Technology, Danvers, MA, USA #9131S), an anti-Sp1
antibody (Abcam Cambridge, MA, USA #ab13370) diluted 1:100 as a positive control,
a mouse IgG isotype control (Cell Signaling Technology #5415S) and with Protein A/G
magnetic beads (Thermo Fisher Scientific #88802). Magnetic beads were washed with cold
LiCl wash buffer (100 mM Tris-HCl, 500 mM LiCl, 1% NP-40, 1% Triton X-100) and TE
Buffer (10mM Tris-HCl pH 7.5, 0.1mM EDTA). Proteinase K (VWR Life Science Radnor, PA,
USA # E195-5ML) was then added with ChIP Elution Buffer (1% SDS, 0.1 M NaHCO3) and
incubated at 65 ◦C 950 rpm for 2 h. Proteinase K was then inactivated at 90 ◦C for 10 min.
DNA was purified using a PureLink PCR Purification Kit (Life Technologies #K310002 kit).
An IgV browser was used to design primers examining the occupancy across the XRCC1
promoter (Table 2).
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Table 2. Chromatin Immunoprecipitation primers.

Primer Sequence

XRCC1 -564 to -457 Forward TGGGCAACATGGCAAGA
XRCC1 -564 to -457 Reverse CTCCTAAGTAGCTGGGATTACAC
XRCC1 -452 to -358 Forward AGTGGGAGGATCCCTTGG
XRCC1 -452 to -358 Reverse ACAGGGTCTTGCTCTCTCA
XRCC1 -312 to -236 Forward AAAGATTTGCTTTCTCGGCTTC
XRCC1 -312 to -236 Reverse CAGTCGCGCCTCTCTTC
XRCC1 -251 to -110 Forward TTTCTTCCAGACACCAATCCC
XRCC1 -251 to -110 Reverse TAGCAACGAGCGTTTCCTC
XRCC1 -127 to -16 Forward AGGAAACGCTCGTTGCTAA
XRCC1 -127 to -16 Reverse TCGGGCCTTTCAAACCC

XRCC1 SP1 Site Forward [33] ATTGGGAGGCGAGGCTA
XRCC1 SP1 Site Reverse [33] TCTCCAGAGCGGGAAGAG

4.5. Modulated Expression of STAT3

Plasmid constructs for stable depletion of human STAT3 mRNA, pSIH-puro-STAT3
shRNA (referred two as shRNA #1), and its control were gifts from Frank Sinicrope
(Addgene plasmid #26596 and #26597; Watertown, MA, USA). An additional shRNA
construct specific for STAT3 (shRNA Clone ID:NM_003150.3-458s21c1 referred to as shRNA
#2 hereafter) and its pLKO.1 control were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Both shRNA constructs and their controls were used to validate the STAT3 binding
site and expression changes. MDA-231 cells were plated at 200,000 cells/well in a 6-well
culture plate. After 48 h, cells were transfected with 5 µg plasmid DNA (shRNA# 1 or 2
or appropriate vector control) and FuGene 6 (Promega) at a 1:6 ratio (DNA to FuGene).
Cells were allowed to recover for 48 h following transfection. STAT3 was overexpressed
using a pcDNA3.1+ STAT3 ORF clone from Genscript (Piscataway, NJ, USA) that has a C-
terminal Flag-tag. MDA-231 cells were plated at 200,000 cells/well in a 6-well culture plate,
and HEK293T were plated in 10 cm plates at 500,000 cells/plate. After 48h, MDA-231 cells
were transfected with 5 µg of plasmid DNA (STAT3-FLAG and proper vector control) and
Fugene 6 (Promega) in a 1:6 ratio (DNA to Fugene). HEK239T cells were transfected with
10 µg of plasmid DNA (STAT3-FLAG and proper vector control) and Jetprime transfection
agent at a 1:2 ratio (DNA to Jetprime). 48 h post-transfection, cells were rinsed with 1× PBS,
plates were scraped, and the pelleted cells were stored overnight in −80 ◦C. Immunoblot
was then performed as described below.

4.6. Gene Expression and qPCR

Relative gene expression was performed through mRNA isolation from MDA-231,
MDA-468, and HEK293T cell lines using Invitrogen Cell to Ct kit (Life Technolgoies
#4399002). Following the manufacturers’ recommendations, the cells were plated in a
96-well plate, and the untreated cells were grown to 75% confluency. For transfection,
0.1 µg of plasmid DNA was added with Fugene 6 transfection reagent in a 1:6 ratio (plasmid
DNA to Fugene). Cells were then allowed 48h to recover before being lysed for mRNA
isolation using an Invitrogen Cell to Ct kit (Life Technologies #4399002). The cells were
then lysed, and RT-PCR was performed to produce cDNA using the reagents from the
kit. After cDNA synthesis, qPCR was performed using TaqMan Gene expression primers
(Table 3) and the TaqMan master mix provided with the kit (Applied Biosystems Foster City,
CA, USA #4369016). The assay was performed in technical triplicate over three biological
replicates. Results represent the average of the three biological replicates ± standard error
of the mean (SEM).



Int. J. Mol. Sci. 2021, 22, 5475 14 of 17

Table 3. TaqMan primers.

Gene Primer

XRCC1 Hs00959834_m1 FAM
STAT3 Hs00374280_m1 FAM
ACTIN Hs01060665_g1 VIC

4.7. Cytokine Exposure

Cytokine exposure was performed using recombinant Human IL-6 protein (R&D Sys-
tems, Minneapolis, MN, USA, #206-IL-010/CF). IL-6 was aliquoted in PBS at a concentration
of 100 µg/mL and stored at −80 ◦C for no longer than 3 months before use, as recom-
mended by the manufacturers. Aliquoted IL-6 was added to the cell culture medium to
a final concentration of 50ng/mL. MDA-231 and HEK293T cells were plated in 15 mm
dishes and cultured to 70–80% confluency. Cells were then exposed to IL-6 at a final
concentration of 50ng/mL for 30 min, 1, and 4 h. Cells rinsed with 1X PBS plates were
scraped, and pelleted cells were stored overnight in −80 ◦C. Immunoblot was performed
as described below.

4.8. Immunoblot

Immunoblot was performed as described previously [11]. Briefly, the cells were grown
in 150 mm dishes and cultured to 70–80% confluence. Cells were rinsed with PBS, scraped,
stored overnight at −80 ◦C, then lysed. Protein content was quantified using a Bradford
assay. Then, 20 µg of lysate was separated on 7.5% or 4–15% SDS Page gel (Bio-Rad
#s, 4561025 and 4561084) and transferred to a nitrocellulose membrane. Membranes
were blocked in 5% non-fat dry milk in Tris-buffered saline (VWR #J640-4L) containing
0.1% Tween20 (Thermo Fisher Scientific #BP337, TBS-T) and raised against the following
primary antibodies: XRCC1 (1:1000 #MS434P1) from Fisher Scientific (Pittsburgh, PA, USA);
STAT3 (1:1000, #9139) and pSTAT3 Y705 (1:500, #9131) from Cell Signaling Technology, Inc.;
and α-tubulin (1:5000, #T9026) from Millipore Sigma (St. Louis, MO, USA) summarized in
Table 4. The blots were incubated with either of the horseradish peroxidase (HRP)-labeled
secondary antibodies: goat anti-rabbit-HRP or goat anti-mouse-HRP (#7074P2 and #7076S
respectively) from Cell Signaling Technology, Inc. HRP antibody target proteins were
detected by incubating with WesternBright Sirius (Advansta San Jose, CA, USA #K-12043-
D20). All immunoblotting was conducted with three biological replicates. Where indicated,
protein quantification was conducted with Image Lab Software (Bio-Rad, Hercules, CA,
USA). Band intensity was normalized to loading controls and averaged over the three
biological replicates with SEM presented.

Table 4. Antibodies and dilutions used for immunoblotting experiments.

Antibody Dilution

XRCC1 (Fisher Scientific #MS434P1) 1:1000
STAT3 (Cell Signaling Technology #9139) 1:1000
Alpha-Tubulin (Sigma Aldrich #T9026) 1:5000

pSTAT3 Y705 (Cell Signaling Technology #9131) 1:500

4.9. Statistical Analysis

Assays were performed as three biological replications. One-way ANOVA and means
were compared with Dunnett’s post hoc analysis. Comparison groups are indicated in
graphs. All means are reported ± SEM.

5. Conclusions

Here, we demonstrated that activation of STAT3 through cytokine stimulation or
ectopic overexpression stimulated the expression of XRCC1. Further, we confirmed a
binding site for STAT3 within the XRCC1 promoter with higher occupancy in triple negative
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breast cancer cell lines than in the nontumorigenic HEK293T. Together, these data indicate
that activated STAT3 regulates XRCC1 expression, and constitutive activation of STAT3
leads to dysregulated expression of XRCC1. The consequences of this dysregulation need
more investigation but likely lead to BER dysfunction, which we have previously observed
in triple negative breast cancers [11].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22115475/s1, Figure S1: XRCC1 promoter expression in HEK293T cells has actively
transcribed regions between −612 and −35; Figure S2: Promoter binding ELISA identifies STAT3
as a positive binder to the XRCC1 promoter; Figure S3: Chemical inhibition of the phosphorylation
of STAT3 at Y705 by alantolactone decreases the expression of XRCC1 in MDA-231 at 4 and 24 h;
Figure S4: Immunoblotting of cell lines MDA-231, MDA-468 and HEK293T; Figure S5:EGF increases
phospho-STAT3 and increases the expression of XRCC1 in MDA-231.
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