Knowing About Device Algorithms to Understand the Rhythm and Role of Managed Ventricular Pacing

Antoine Kossaify¹ and Hiba Hamdar²

¹Electrophysiology Unit, Cardiology Division, USEK-University Hospital Notre Dame des Secours, Byblos, Lebanon. ²Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria.

Clinical Medicine Insights: Case Reports Volume 10: 1-2 © The Author(s) 2017 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/1179547617729651

ABSTRACT: A 66-year-old patient with a DR pacemaker for intermittent atrioventricular block presented with an electrocardiogram (ECG) showing some P waves non followed by QRS complexes, raising suspicion of device dysfunction. The device was equipped with a special algorithm (Managed Ventricular Pacing; Medtronic), and the observed ECG tracing was a normal consequence of the function of such algorithms. Being aware of the function of specific algorithms is essential to adequately analyze rhythms.

KEYWORDS: Pacing, Algorithm, managed, ventricular

RECEIVED: May 1, 2017. ACCEPTED: August 2, 2017.

PEER REVIEW: Two peer reviewers contributed to the peer review report. Reviewers' reports totaled 299 words, excluding any confidential comments to the academic editor.

TYPE: Case Report

FUNDING: The author(s) received no financial support for the research, authorship, and/or publication of this article

Case Presentation

A 66-year-old patient who was implanted with the Adapta DR pacemaker (Medtronic Inc, Minneapolis, MN, USA) presented to the emergency room after his general cardiologist noticed an aberrant electrocardiogram (ECG) (Figure 1) with suspicion of device dysfunction. The patient was asymptomatic. He had his device implanted at our institution 2 years prior for paroxysmal atrioventricular (AV) block and had undergone a regular device follow-up, which showed normal device function. His ECG (Figure 1) displayed sinus rhythm with baseline first-degree AV block and Mobitz 2 seconddegree AV block. After checking the device (Figure 2) and becoming aware of the function of the Managed Ventricular Pacing (MVP; Medtronic) algorithm, the patient was reassured and subsequently discharged.

Discussion

In our institution, we initiated a quality improvement program to enhance physiological pacing by reducing unnecessary ventricular pacing,¹ and therefore, this practice has become more widespread in our facility because we started the program.

The Adapta DR pacemaker (Medtronic) is equipped with the MVP algorithm. This algorithm works using a default atrial-based pacing mode (AAI(R)) with automatic switching to the DDD(R) mode if loss of AV conduction is detected. Loss of AV conduction is defined as 2 of the most recent 4 A-A intervals with no ventricular sensed (Vs) event. Therefore, in the event of a missing Vs event, the device gives a backup ventricular stimulation following the next As or Ap, such that 2 consecutive missing Vs events are not permitted; however, single dropped beats occur before the switch to DDD(R).²

The tracing in Figure 1 shows sinus rhythm, with a dynamic PR interval ranging from 210 to 220 ms, complete right bundle branch block, and intermittent missed QRS complexes (full arrows) compatible with Mobitz 2 second-degree AV block;

DECLARATION OF CONFLICTING INTERESTS: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

CORRESPONDING AUTHOR: Antoine Kossaify, Electrophysiology Unit, Cardiology Division, USEK-University Hospital Notre Dame des Secours, 12345, Byblos, Lebanon P.O. Box # 3. Lebanon Email: antoinekossaify@yahoo.com

this was directly followed by As Vp (A sensed, V paced) events (dashed arrows) with a sensed PR interval of 120 ms as programmed (Figure 2). Thus, it was obvious that the intermittent missed QRS complexes were a normal process consecutive to the function of the MVP algorithm.

Unnecessary ventricular pacing is known to be detrimental, especially when the right ventricle lead is located in the right ventricular (RV) apex and when the baseline hemodynamic condition is compromised.³ Apical RV pacing leads to ventricular dyssynchrony, with subsequent detrimental effects, yielding a higher risk of adverse clinical outcomes such as atrial fibrillation and heart failure on long-term follow-up.4,5

Accordingly, specific pacemaker algorithms, which minimize RV pacing, allow reduction of the negative effects of RV pacing and may prevent clinical deterioration.⁴ Enhancing intrinsic AV conduction is beneficial, and most pacemaker manufacturers have equipped their devices with algorithms that avoid unnecessary ventricular pacing. However, it is necessary to know the function of these algorithms, to avoid misinterpreting a rhythm as pacemaker malfunction.² Moreover, the activation of such algorithms must be based on a case-by-case indication; specifically, activating these algorithms is beneficial in patients with isolated sinus node dysfunction, asymptomatic first-degree AV block and asymptomatic patients with intermittent second-degree AV block. Conversely, it is not recommended to activate these algorithms in cases of complete AV block or in cases of high-grade second-degree AV block, especially when the patient is symptomatic.^{2,4}

Conclusions

Electrocardiogram tracing of patients with pacemakers having algorithms dedicated to enhancing intrinsic AV conduction may show intermittent dropped beats related to P waves nonfollowed by QRS complexes. It is important to know the

() S NC Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

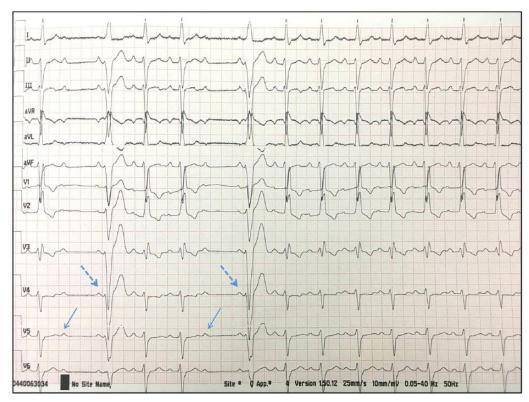


Figure 1. Sinus rhythm, intermittent missed QRS complex (full arrows), followed by AsVp (A sensed, V paced) events (dashed arrows).

Pacemaker Model: Medtronic Adapta ADDR01 Serial Number: NVM947052 Copyright Initial Interrogation Report Battery Status			Pacemaker Model: Meditonic Adapta ADDR01 Serial Number: NWB947062 Initial Interrogation Report Modes		Software SW003 7.3 Copyright (c) Medtronic. Inc. 2005 Page 7 Refractory/Blanking								
							Estimated remaining longevity: Based on Past History	10.5 years, 8.5 - 12 years		Mode Mode Switch Detection Rate	AAIR<=>DDDR On 175 bpm	PVARP Minimum PVARP PVAB	Auto 250 ms 180 ms
							Voltage/Impedance	2.78 V / 251 ohms		Detection Duration Blanked Flutter Search	No Delay	Ventricular Refractory Vent. Blanking (after A. Pace)	230 ms 28 ms
Lead Summary	Atrial	Ventricular	Rates		PMT Intervention PVC Response	Off On							
Measured Threshold	0.500 V at 0.40 ms 03/27/17	1.000 V at 0.40 ms	Lower Rate		Ventricular Safety Pacing	On							
Date Measured	1.500 V / 0.40 ms	2 000 V / 0 40 ms	Upper Tracking Rate		Rate Response								
Programmed Output Capture	Adaptive	Adaptive	Upper Sensor Rate ADL Rate	130 ppm 95 ppm	Optimization	On							
Measured P / R Wave	>2.8 mV	8.0 to 22.4 mV	Intrinsic/AV		ADL Response Exertion Response	3							
Programmed Sensitivity	0.50 mV	4.00 mV	Faceuria	0 ms 0 ms	ADLR Percent Activity Threshold	2.0% Medium/Low							
Measured Impedance	432 ohms	630 ohms	Rate Adaptive AV Of		Activity Deceleration	30 sec Exercise 0.2% 5							
Lead Status	ок	OK											
Lead Model Implanted					Upper Sensor Rate Setpoint	5 17							

Figure 2. Device interrogation showing normal longevity, normal sensing and pacing parameters with MVP algorithm active (AAIR <==>DDDR).

function of such algorithms, to avoid misinterpretations and raised suspicion of pacemaker malfunction.

Author Contributions

Conceived and designed the experiments: AK. Analyzed the data: AK, HH. Wrote the first draft of the manuscript: AK. Contributed to the writing of the manuscript: AK, HH. Agree with manuscript results and conclusions: AK, HH. Jointly developed the structure and arguments for the paper: AK, HH. Made critical revisions and approved final version: AK, HH. All authors reviewed and approved of the final manuscript.

REFERENCES

- Kossaify A, Zoghbi S, Milliez P. Assessment of ventricular pacing in the setting of an institutional improvement program: insights into physiological pacing. *Clin Med Insights Cardiol.* 2012;6:79–85.
- Mugnai G, Tomei R, Vassanelli C. The managed ventricular pacing algorithm can be misinterpreted as pacemaker malfunction. *Europace*. 2013; 15:1783.
- Akerström F, Pachón M, Puchol A, et al. Chronic right ventricular apical pacing: adverse effects and current therapeutic strategies to minimize them. *Int J Cardiol.* 2014;173:351–360.
- Akerström F, Arias MA, Pachón M, Jiménez-López J, Puchol A, Juliá-Calvo J. The importance of avoiding unnecessary right ventricular pacing in clinical practice. *World J Cardiol.* 2013;5:410–419.
- Healey JS, Yee R, Tang A. Right ventricular apical pacing: a necessary evil? Curr Opin Cardiol. 2007;22:33–38.