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B cell lymphoma 6A regulates
immune development and
function in zebrafish
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Mohamed L. Sobah1, Alister C. Ward1,3†

and Clifford Liongue1,3*†

1School of Medicine, Deakin University, Geelong, VIC, Australia, 2Department of Medical Laboratory
Technology, Southern Technical University, Basra, Iraq, 3Institute for Mental and Physical Health
and Clinical Translation, Deakin University, Geelong, VIC, Australia
BCL6A is a transcriptional repressor implicated in the development and survival

of B and T lymphoctyes, which is also highly expressed in many non-Hodgkin’s

lymphomas, such as diffuse large B cell lymphoma and follicular lymphoma.

Roles in other cell types, including macrophages and non-hematopoietic cells,

have also been suggested but require further investigation. This study sought to

identify and characterize zebrafish BCL6A and investigate its role in immune

cell development and function, with a focus on early macrophages.

Bioinformatics analysis identified a homologue for BCL6A (bcl6aa), as well as

an additional fish-specific duplicate (bcl6ab) and a homologue for the closely-

related BCL6B (bcl6b). The human BCL6A and zebrafish Bcl6aa proteins were

highly conserved across the constituent BTB/POZ, PEST and zinc finger

domains. Expression of bcl6aa during early zebrafish embryogenesis was

observed in the lateral plate mesoderm, a site of early myeloid cell

development, with later expression seen in the brain, eye and thymus.

Homozygous bcl6aa mutants developed normally until around 14 days post

fertilization (dpf), after which their subsequent growth and maturation was

severely impacted along with their relative survival, with heterozygous bcl6aa

mutants showing an intermediate phenotype. Analysis of immune cell

development revealed significantly decreased lymphoid and macrophage

cells in both homozygous and heterozygous bcl6aa mutants, being

exacerbated in homozygous mutants. In contrast, the number of neutrophils

was unaffected. Only the homozygous bcl6aa mutants showed decreased

macrophage mobility in response to wounding and reduced ability to contain

bacterial infection. Collectively, this suggests strong conservation of BCL6A

across evolution, including a role in macrophage biology.
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Introduction

The B cell lymphoma 6A (BCL6A) protein consists of an

evolutionarily conserved domain structure, comprising an N-

terminal Broad-complex, Tramtrack and Brick-a-brac/Pox virus

andZincfinger family (BTB/POZ) domain, a central PESTdomain

and a C-terminal zinc finger domain comprising an array of six

C2H2/Krüppel-type zinc fingers (Melnick et al., 2002; Ahmad et al.,

2003;Ghetuet al., 2008). It acts as a strong transcriptional repressor,

with the zinc finger domain facilitating binding to specific DNA

sequences (Dent et al., 1997; Liu et al., 2016) and the BTB/POZ

domain enabling recruitment of corepressors, such as SMRT,

NCOR, BCOR, MTA3 and CTBP1 (Basso and Dalla-Favera,

2010). BCL6-related proteins are found across a broad range of

species. This includes vertebrates, which have been shown to

possess distinct but highly-related BCL6A and BCL6B proteins

(Okabe et al., 1998), as well as invertebrates, typified by a BCL6-

related protein identified in fruit-fly that is referred to as Ken &

Barbie (Ken) (Arbouzova et al., 2006).

BCL6A plays a number of critical roles in B and T cell

development and function (Wang et al., 2018; Yuan et al., 2022).

Bcl6a knockout mice exhibited a failure in germinal centre

formation in lymph node follicles (Dent et al., 1997; Phan and

Dalla-Favera, 2004; Cattoretti et al., 2005) preventing somatic

hypermutation and production of high-affinity antibodies (Basso

and Dalla-Favera, 2010). This was in part a result of significantly

decreased numbers of follicular T helper (Tfh) cells (Nurieva

et al., 2009), a lineage in which BCL6A acts as a master regulator

(Choi and Crotty, 2021), but also of impaired B cell commitment

to the germinal centre B cell lineage (Huang et al., 2014) as well

as their subsequent survival (Basso and Dalla-Favera, 2012).

Bcl6a knockout mice also displayed reduced pre-B cell self-

renewal and differentiation in the bone marrow (Duy et al.,

2010), with B cell responses to cytokines affected (Basso and

Dalla-Favera, 2012). Other T cell subsets were also variably

affected, with T helper 2 (Th2) and Th17 cells dramatically

increased (Mondal et al., 2010; Choi and Crotty, 2021) and

memory T cells decreased (Ichii et al., 2004). BCL6A is also

considered oncogenic, being highly expressed in many B cell

lymphomas such as diffuse large B cell lymphoma (DLBCL) and

follicular lymphoma (FL) (Wagner et al., 2011; Green et al.,

2014). Bcl6a knockout mice also had perturbed dendritic cell

development (Ohtsuka et al., 2011), while their macrophages

showed altered morphology and defective motility (Pixley et al.,

2005) as well as enhanced expression of inflammatory cytokines

and chemokines (Toney et al., 2000; Li et al., 2020). Bcl6a-

deficient mice displayed significantly decreased body weight

postnatally (Dent et al., 1997). They also showed poor

survival, with most not surviving past 9 weeks, attributed to

severe Th2-mediated inflammation of the heart, lungs, liver and

spleen (Dent et al., 1997; Yoshida et al., 1999).

Zebrafish is now well established as a model for immune cell

development and function. It possesses B, T and NK cells,
Frontiers in Cellular and Infection Microbiology 02
neutrophils, macrophages, dendritic cells and other immune

lineages (Gore et al., 2018). These are generated through

conserved developmental processes, which extends to the

multiple developmental waves (Bertrand and Traver, 2009),

and the associated transcription factors (Kwan and North,

2017). Moreover, their accessibility for genetic and other

manipulations, optical transparency and the availability of

lineage-specific transgenic lines has enabled new insights into

innate immune cell function (Linnerz and Hall, 2020; Rosowski,

2020). This study sought to use zebrafish as a model to further

investigate BCL6A function, identifying and characterizing a

BCL6A homologue that was ablated via genome editing to

understand the impacts on overall development, growth and

survival, including immune cell development and function with

a focus on early macrophages.
Materials and methods

Bioinformatics

Sequence searches were performed using BLAST on relevant

online genetic databases, with Genomescan (Massachusetts

Institute of Technology, Cambridge, MA) used to predict

protein coding sequences from genomic DNA (Yeh et al.,

2001). Sequence analysis, manipulation and assembly were

carried out using Sequencher version 4.10.0 (Gene Codes).

ClustalX 2.1 (Jeanmougin et al., 1998) was used to generate

sequence alignments, from which phylogenetic trees were

generated using the Neighbor-Joining algorithm (Saitou and

Nei, 1987) with replicates of 1000 and viewed with NJ plot

(Perriere and Gouy, 1996) and Treeview 1.6.6 (Page, 1996).

Synteny analysis was performed using Ensembl.
Zebrafish husbandry

Wild-type and Tg(mpeg1.1::GFP) (Ellett et al., 2011) zebrafish

were maintained using standard husbandry practices (Lawrence,

2007). This included feeding thrice daily with a mixture of live feed

(artemia and rotifers) and a dry granulated foodstuff (Otohime

Hirame Japan). Embryos were obtained from spawning tanks, and

in somecaseswere injectedwith either controlmorpholino (5’-CCTC

TTACCTCAGTTACAATTTATA)or anti-sense bcl6aamorpholino

targeting the intron 2/exon 3 boundary (5’-AGAGCCCA

CTGTGGAGAAATTATGA) at 0.5 mM. All experiments were

approved by the Deakin University Animal Welfare Committee.
Genome editing

The zebrafish bcl6aa gene was targeted using genome editing

withCRISPR/Cas9. Embryoswere injectedwith guideRNA(gRNA),
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designed to a region of exon 3 encoding the BTB/POZdomain using

the zifit protocol (Hwang et al., 2013) with the primers 5’-

T A G G T C C A G A C T G A T G G C G T T C a n d 5 ’ -

AAACGAACGCCATCAGTCTGGA, along with Cas9-encoding

mRNA and raised to adulthood. Founders were identified with

high-resolution melt (HRM) analysis of PCR products with

Precision Melt Suremix and Analysis Software (BioRad) (Garritano

et al., 2009) using primers spanning the targeted region (5’-

C A C A G T GGG C T C T T C T A C T C T A T C a n d 5 ’ -

GGATTGCGAAACCCTCTGG). These fish were outcrossed two

times to wild-type fish to remove off-target mutations before in-

crossing. Sequence analysis was performed with primers 5’-

GCGACCTAAAAAGTTGACTAAAATC and 5’-CCTGGACTT

TATGAATCTGTGGC to identify a bcl6aa mutant allele (mdu21),

which was also crossed onto the Tg(mpeg1.1::GFP) background.
Whole-mount in situ hybridization

Embryos were dechorionated and fixed in 4% (w/v)

paraformaldehyde (PFA) at 4°C prior to WISH with DIG-

labeled anti-sense probes, as described (Thisse and Thisse,

2008). Imaging was performed using Olympus MVX10

fluorescence microscope and DP72 camera using Cellsens

Dimension 1.6 software, with ImageJ used for quantitation, as

required (Abramoff et al., 2004).
Quantitative real-time reverse-
transcription PCR

Total RNA was extracted from whole embryos or juvenile

zebrafish using an RNeasy Mini Kit (Qiagen) according to the

manufacturer’s protocol for animal tissues. This was subjected to

quantitative real-time reverse-transcription PCR with immune

cell gene specific primers (cd4, cd8, cd79a, ighm, mpeg1.1, mpo,

nklb, nkld and tcr) (Sertori et al., 2022) along with ccr2 (5’-

TGGCAACGCAAAGGCTTTCAGTGA; 5’-TCAGCTAG

GGCTAGGTTGAAGAG) , cx c r4b ( 5 ’ -CCCATCAC

AAGCACCACAAG; CGATAGCATCATTTTAGACAACAG),

il1b (5’-GGACTTCGCAGCACAAAATG; 5’-GTTCACTT

CACGCTCTTGGATG), tgfb1 (5’-AAATAGCAGGTTTG

TCCCGC; 5’-CACTTCCAGCCCAGGTCTT) and tnfa (5’-

GACTGAGGAACAAGTGCTTATGAG; 5’-TGCCCAGT

CTGTCTCCTTCTC). Data were normalized to b-actin (actb)

and fold change calculated using the DDCt method (Livak and

Schmittgen, 2001).
Wounding assay

Wounding assays were performed on 3 dpf embryos (n>20

mixed progeny) by excising the end of the caudal tail fin with a
Frontiers in Cellular and Infection Microbiology 03
scalpel after anesthesia with 0.1 mg/mL benzocaine (Hall et al.,

2007) in a conservative manner as described (Meier et al., 2022),

with the number of migrating cells and the number of embryos

with migrating cells counted up to 8 h after wounding using

fluorescence microscopy.
Infection assay

Embryos at 4 dpf were injected with 2-5 nl ~ 5×109 CFU/mL

E. coli expressing GFP (#25922GFP, ATCC) into the venous

return, with bacteria visualized by fluorescence microscopy, as

described (Basheer et al., 2020).
Statistics

Statistical analyses were performed using Graph Pad Prism

(Version 8) software. To determine the statistical significance of

various treatments, the unpaired independent student’s t test

was employed, with Welch’s correction, where appropriate.
Results

Identification and characterization of
BCL6-related genes in zebrafish

Bioinformatic analysis identified putative zebrafish

homologues for both the BCL6A and BCL6B genes, as well as

an additional related sequence, with all three genes also being

present in another teleost fish, torafugu (Takifugu rubripes). One

of these showed conserved synteny with human and mouse

BCL6A and their adjacent genes LPP, TPRG1 and TP63

(Figure 1A), with the encoded proteins forming a clade with

mammalian BCL6A (Figure 1B), and so was designated bcl6aa.

The fish-specific gene showed conserved synteny across fish

genomes, but not with bcl6aa or bcl6b genes (Figure 1A), but

the encoded proteins formed a larger clade with the BCL6A

sequences (Figure 1B), and so was named bcl6ab. The final gene

showed conserved synteny with human and mouse BCL6B and

their adjacent SLC16A13, ACADVL and DVL2 genes (Figure 1A),

with the encoded fish and mammalian proteins divergent from

the other BCL6 proteins (Figure 1B), and was designated bcl6b.

Collectively, this suggests zebrafish bcl6aa and bcl6b are functional

orthologues of mammalian BCL6A and BCL6B, respectively, while

bcl6ab represents a fish-specific duplicate of the BCL6A gene.

Alignment of the human BCL6A and zebrafish Bcl6aa

proteins confirmed the presence of conserved BTB/POZ, PEST

and zinc finger domains, which showed 77%, 35% and 96%

identity, respectively (Figure 1C). Notably, the latter domain

included a stretch of 126 identical amino acids that encompassed

the last four of the six C2H2-type zinc fingers. Comparison of
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the genomic andmRNA (Figure 1D) revealed a strongly conserved

splicing pattern between humanBCL6A and zebrafish bcl6aa genes

across the coding exons, with both also possessing a non-coding

exon(s) in the proximal promoter region.
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Expression of zebrafish bcl6aa

The embryonic expression pattern of zebrafish bcl6aa was

investigated by high resolution whole-mount hybridization
A

B

D

C

FIGURE 1

Conservation of BCL6A and related sequences. (A) Synteny analysis of BCL6-related genes. Arrangement of the gene neighborhood surrounding
BCL6-related gene loci from human (Homo sapiens, hs), mouse (Mus musculus, mm), zebrafish (Danio rerio, dr) and torafugu (Takifugu rubripes,
tr). The BCL6-related genes are in black, neighboring genes conserved between mammals and fish in green, between mammals in blue and
between fish in red, with all other genes in grey. (B) Phylogenetic analysis of BCL6-related proteins. The amino acid sequences of fruit-fly Ken
and Barbie (Ken) was aligned with the BCL6A and related sequences of human (hs), mouse (mm), zebrafish (dr) and torafugu (tr), and the MYNN-
related sequences from human, mouse and torafugu using Clustal W. This was used to construct a phylogenetic tree using the Neighbor-
Joining method with 1000 replicates, with bootstrapping values shown. (C) Conserved domains in BCL6A proteins. Human BCL6A and zebrafish
Bcl6aa were aligned using Clustal X software, with specific domains highlighted (BTB/POZ in pink, PEST in yellow, zinc fingers in green).
Conserved residues between the two sequences are indicated (identical *, highly similar: similar.). (D) Conserved BCL6A gene structure.
Schematic diagram of human BCL6A and zebrafish bcl6aa loci, with exons shown as boxes and introns as lines. Regions corresponding to the
promoter (grey) or those encoding the BTB/POZ (pink), PEST (yellow) and zinc finger (green and numbered) domains are indicated.
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(WISH) on staged wild-type embryos using an anti-sense bcl6aa

probe. Expression was observed from 10 hours post-fertilization

(hpf) in the anterior lateral mesoderm (ALM) and the posterior

lateral mesoderm (PLM), sites of early myeloid cell development

(Bertrand and Traver, 2009), which continued until 24 hpf

(Figures 2A, C–F). From 36 hpf, bcl6aa was expressed in the

retina, cerebellum and medulla (Figures 2G, H) that continued

until 7 dpf although declining after 4 dpf (Figures 2I–N). From 4

dpf bcl6aa expression was also detected in the developing

thymus (Figures 2J–N), which houses T cell development

(Gore et al., 2018). No staining was observed with a control

sense bcl6aa probe (Figure 2B and data not shown).
Generation and analysis of bcl6aa
knockout zebrafish

The zebrafish bcl6aa gene was mutated using genome editing

with CRISPR/Cas9 to target a region of exon 3 encoding the

BTB/POZ domain (Supplementary Figures 1A, B). Potential

founders were identified with high-resolution melt analysis of

PCR products spanning the targeted region, with these

outcrossed two times to wild-type fish to remove potential off-

target mutations before in-crossing. Sequence analysis identified

a bcl6aa allele (mdu21) that harbored a combined large deletion

and insertion, predicted to encode a protein that shared just the

first 70 amino acids with the wild-type protein, and then encodes

27 amino acids of unrelated sequence before a stop codon is

reached (Supplementary Figure 1C). Since this represents only

part of the BTB/POZ domain and none the PEST or zinc finger

domains, it is anticipated that the encoded mutant protein would

be non-functional.

The progeny of bcl6aawt/mdu21 in-crosses were imaged by

light microscopy, with no evidence of overt developmental

perturbation during embryogenesis observed in mixed groups,

which should contain 25% bcl6aamdu21/mdu21 embryos

(Figures 3A–C), or in individually genotyped embryos

(Figure 3D and data not shown). However, this changed

dramatically during the juvenile phase, such that by 21 dpf

there were large and distinct differences in size that were in

roughly Mendelian ratios. Genotyping of individual fish

confirmed homozygote bcl6aamdu21/mdu21 mutants were the

smallest, with bcl6aawt/mdu21 heterozygotes intermediate in size

compared to the larger wild-type bcl6aawt/wt individuals

(Figure 3E, F). Additionally, the bcl6aamdu21/mdu21 mutants

showed a clearly under-developed dorsal fin, abdominal fin,

tail fin, swim bladder and eye, with the bcl6aawt/mdu21 mutants

again showing an intermediate phenotype.

It was also noted that the proportion of smaller fish

decreased over time, with none surviving to adulthood.

Genotyping of adult fish confirmed that no bcl6aamdu21/mdu21

fish were present (data not shown). Close analysis of the relative
Frontiers in Cellular and Infection Microbiology 05
proportion of bcl6aamdu21/mdu21
fish at by genotyping across

multiple timepoints revealed that while present at an expected

Mendelian ratio at 7 dpf, this steadily decreased, with none

observed at 60 dpf (Figure 3G). The proportion of bcl6aawt/wt

fish also increased to above the expected Mendelian ratio,

indicating that heterozygote fish also had a milder survival

defect, although a good proportion survived to adulthood and

showed robust fecundity.
Impact of bcl6aa ablation on
immune cells

The effect of bcl6aa ablation on immune cells was

investigated by WISH analysis with specific markers during

embryogenesis, before any growth or survival defects were

present. Homozygote bcl6aamdu21/mdu21 embryos showed a

significant decrease in expression of ikzf1, a marker of T cell

progenitors in the developing thymus (Willett et al., 2001),

compared to bcl6aawt/wt and bcl6aawt/mdu21 siblings at both 3.5

dpf (Figures 4A, B) and 5 dpf (Figures 4C, D). Expression of

rag1, a marker of mature T cells (Willett et al., 1997) was

significantly decreased in both bcl6aawt/mdu21 and bcl6aamdu21/

mdu21 embryos compared to bcl6aawt/wt siblings at both 3.5 dpf

(Figures 4E, F) and 5 dpf (Figures 4G, H), but to a much greater

extent in bcl6aamdu21/mdu21 embryos across both timepoints

(Figures 4E–H). In contrast, no significant difference was

observed in the number of cells expressing mpo, a marker of

neutrophils (Lieschke et al., 2001), in either bcl6aawt/mdu21 or

bcl6aamdu21/mdu21 compared to bcl6aawt/wt embryos at 5 dpf

(Figures 4I, J). However, the number of cells expressing lcp1, a

marker of leukocytes including macrophages (Bennett et al.,

2001), was significantly decreased in both bcl6aawt/mdu21 and

bcl6aamdu21/mdu21 compared to bcl6aawt/wt embryos, although

again the quantity in bcl6aamdu21/mdu21 embryos was also

significantly reduced compared to heterozygotes (Figures 4K,

L). To facilitate further analysis of macrophages the bcl6aamdu21

allele was crossed onto the Tg(mpeg1.1:GFP) background, in

which macrophages are marked with GFP (Wittamer et al.,

2011). Tg(mpeg1.1:GFP) bcl6aawt/mdu21
fish were in-crossed and

visualized by fluorescence microscopy that revealed a significant

decrease in GFP+ cells at 4 dpf in bcl6aamdu21/mdu21 compared to

the bcl6aawt/wt and bcl6aawt/mdu21 embryos (Figures 4M, N). To

confirm the effects of bcl6aa on macrophages, embryos were

injected with an anti-sense morpholino targeting the intron 2/

exon 3 splice site. This also resulted in a decrease of lcp1+ cells at

22 hpf in wild-type embryos (Figures 4O, P) and in GFP+ cells in

Tg(mpeg1.1:GFP) embryos at 3 dpf (Figures 4Q, S) in

comparison to those injected with a control morpholino.

Macrophage morphology was also altered in the bcl6aa

morpholino-injected embryos with a statistically significant

decrease in those with an amoeboid morphology (Figure 4R).
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FIGURE 2

Expression of bcl6aa during zebrafish embryogenesis. (A–L). Representative images of wild-type embryos subjected to WISH with anti-sense
(bcl6aa) and sense (sense control) bcl6aa probes as indicated at 10 hpf (A, B), 16 hpf (C, D), 24 hpf (E, F), 36 hpf (G, H), 2 dpf (I), 4 dpf (J), 5 dpf
(K, L) and 7 dpf (M, N), as viewed laterally or dorsally as labelled. ALM, anterior lateral mesoderm; C, cerebellum; M, medulla; PLM, posterior
lateral mesoderm; R, retina; T, thymus.
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Functional analysis of bcl6aa mutants

To further understand the effect of bcl6aa ablation on

macrophages, a wounding assay was performed on the

progeny of Tg(mpeg1.1:GFP) bcl6aawt/mdu21
fish as described

(Hall et al., 2007), with individual embryos subsequently

imaged at various times, after which they were genotyped.

This revealed that in bcl6aawt/wt embryos GFP+ cells peaked at

the wound at 4 hours post wounding (hpw) before decreasing at

later time points (Figures 5A, B). In both bcl6aawt/mdu21 and

bcl6aamdu21/mdu21 embryos, GFP+ cells peaked at 8 hpw,
Frontiers in Cellular and Infection Microbiology 07
however, the numbers observed in bcl6aawt/mdu21 embryos

were equivalent to or exceeded those of bcl6aawt/wt embryos,

whereas they were significantly reduced in bcl6aamdu21/mdu21

embryos. When normalized to total GFP+ cells, the number of

GFP+ cells remained reduced to a statistically significant level at

both 4 and 24 hpw (data not shown). The experiment was

repeated but examining embryos at 0.25 h intervals until the first

GFP+ cell reached the wound site, after which embryos were

genotyped. For almost all bcl6aawt/wt and bcl6aawt/mdu21 embryos

this occurred by 1 hpw, but for bcl6aamdu21/mdu21 embryos this

was around 3 hpw (Figure 5C).
FIGURE 3

Impact of bcl6aa ablation on global development. (A–E). Light microscopy of representative images of mixed progeny (Mixed) derived from
bcl6aawt/mdu21 in-crossing at 12 hpf (A), 24 hpf (B) and 3 dpf (C) or of individually genotyped bcl6aawt/wt (wt/wt), bcl6aawt/mdu21 (wt/mdu21) and
bcl6aamdu21/mdu21 (mdu21/mdu21) embryos at 7 dpf (D) and 21 dpf (E), with 0.5 mm scale bars indicated. (F). Body length of individually genotyped
bcl6aawt/wt (wt/wt), bcl6aawt/mdu21 (wt/mdu21) and bcl6aamdu21/mdu21 (mdu21/mdu21) individuals at the indicated time-points. Shown is the mean ±
SEM, with statistical significance relative to wt/wt (***p<0.001 and wt/mdu21 (##p<0.01), (n>25). (G). Relative survival of bcl6aawt/wt (wt/wt) and
bcl6aamdu21/mdu21 (mdu21/mdu21) individuals expressed as a ratio relative to bcl6aawt/mdu21 individuals from n>60 genotypes at each time point. The
dotted lines show the expected Mendelian ratio for both wt/wt and mdu21/mdu21 individuals if all genotypes showed equivalent survival (blue) or
for wt/wt individuals if they showed equivalent survival with wt/mdu21 in the absence of mdu21/mdu21 individuals (purple).
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FIGURE 4

Analysis of lymphoid and myeloid cells in bcl6aa mutant zebrafish. (A, C, E, G, I, K). Representative bcl6aawt/wt (wt/wt), bcl6aawt/mdu21 (wt/mdu21)
and bcl6aamdu21/mdu21 (mdu21/mdu21) embryos analyzed by WISH with ikzf1 at 3.5 dpf (A) and 5 dpf (C), rag1 at 3.5 dpf (E) and 5 dpf (G), mpo at 5
dpf (I) and lcp1 at 5 dpf (K). (M). Fluorescence imaging of representative bcl6aawt/wt (wt/wt), bcl6aawt/mdu21 (wt/mdu21) and bcl6aamdu21/mdu21

(mdu21/mdu21) embryos on the Tg(mpeg1.1:GFP) background at 4 dpf. (O). Representative wild-type embryos injected with control (Con) or bcl6aa
morpholino (Mo) as indicated analyzed by WISH with lcp1 at 22 hpf. (Q). Representative Tg(mpeg1.1:GFP) embryos injected with control (Con) or
bcl6aa morpholino (Mo) subjected to fluorescence microscopy at 3 dpf. Domains of expression are indicated with arrowheads, and scale bars
represent 200 mm. (B, D, F, H, J, L, N, P, R, S). Quantification of cell markers, either using expression area (B, D, F, H), number of discrete cells
(J, L, N, P, S) or the proportion with an amoeboid morphology (R), showing values for individual embryos, as well as mean ± SEM (*p<0.05;
**p<0.01; ***p<0.001; ns, not significant; n>30).
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The bcl6aa mutants were next investigated in a bacterial

infection assay (Basheer et al., 2020). The progeny of bcl6aawt/

mdu21 in-crosses were subjected to injection with GFP+ E. coli at

4 dpf. Surviving embryos were imaged by fluorescent

microscopy until 24 hour post infection (hpi) and

subsequently genotyped, with the fluorescence intensity used

as an indicator of bacterial load. The bcl6aawt/wt, bcl6aawt/mdu21

and bcl6aamdu21/mdu21 embryos showed no difference in

fluorescence at 0.5 hpi (Figures 6A, B). However, at 12 and 18

hpi the fluorescence intensity was increased in bcl6aamdu21/mdu21

compared to bcl6aawt/wt and bcl6aawt/mdu21 embryos. No

difference in mortality was observed in the injected embryos at

0.5 hpi, but from 12 hpi decreased survival of bcl6aamdu21/mdu21

embryos was observed, reaching zero survival at 24 hpi, while

bcl6aawt/wt and bcl6aawt/mdu21 showed similar high survival rate

(Figure 6C) and fluorescence intensity (Figure 6B and data not

shown). Analysis of a set of inflammatory genes indicated

increased basal expression of ccr2 in bcl6aamdu21/mdu21

compared to bcl6aawt/wt embryos (Figure 6D). Infection

resulted in increased expression of il1b and tnfb1b in both

bcl6aawt/wt and bcl6aamdu21/mdu21 embryos (data not shown),

but il1b was significantly enhanced in bcl6aamdu21/mdu21

compared to bcl6aawt/wt embryos (Figure 6D).
Discussion

Mammalian BCL6A, and the closely-related BCL6B, are

transcriptional repressors consisting of BTB/POZ, PEST and

zinc finger domains (Basso and Dalla-Favera, 2010). BCL6A

homologues are highly conserved, with murine BCL6A 95%

identical to its human BCL6A counterpart (Fukuda et al., 1995).

A zebrafish homologue (bcl6aa) was identified on the basis of

phylogenetic and syntenic analysis, with the encoded protein

displaying >60% identity with human BCL6A, with equivalent

BTB/POZ, PEST and zinc finger domains, the latter showing 96%

identity, consistent with a bcl6aa gene reported from another

teleost fish (Ohtani et al., 2006). This high conservation indicates a

likely conserved function across vertebrates and particular of

target DNA sequences. This study also identified an additional

fish-specific gene, bcl6ab, most likely a paralogue of bcl6aa, one of

many teleost genes duplicated as a result of a teleost-specific whole

genome duplication (WGD) event (Reams and Roth, 2015), as

well as a zebrafish orthologue to the mammalian BCL6B gene

(bcl6b). It will be of interest to investigate whether the bcl6ab

paralogue has evolved a unique function or shares functions with

bcl6aa and possibly bcl6b.

Mammalian BCL6A is strongly expressed in thymocytes from

human fetal samples at 21 weeks gestation (Hyjek et al., 2001), and

in the fetalmouse thymusat 17daysgestation (Bajalica-Lagercrantz

et al., 1998). Zebrafish bcl6aa was similarly expressed in the

developing thymus during embryogenesis, suggesting a conserved

role in early T lymphocyte development across vertebrates. The
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bcl6aa gene was also expressed even earlier in the zebrafish ALM

and PLM, which represent sites of primitive hematopoiesis in the

zebrafish (Bertrand and Traver, 2009). Expression of BCL6A has

also been identified in adult peripheral blood leukocytes and lymph

nodes in humans (Bajalica-Lagercrantz et al., 1997), and ofBcl6a in

the adult mouse thymus (Bajalica-Lagercrantz et al., 1998). The

pufferfish bcl6aa homologue has been previously found to be

expressed in adult thymus and kidney, the teleost bone marrow

equivalent (Ohtani et al., 2006), while analysis of published single

cell sequencing data (Tang et al., 2017) confirms bcl6aa is expressed

in adult zebrafish T and B cells (data not shown). Collectively, this

indicates potential conserved roles for BCL6A in the ongoing

development of blood and immune cells in the adult.

The bcl6aa gene was also expressed in regions of the

developing brain and retina, the latter confirming a previous

study (Lee et al., 2013). This is consistent with expression of

fruit-fly ken at the onset of gastrulation in the cephalic furrow

and later in the larval eye-antenna (Arbouzova et al., 2006), with

Bcl6a expression also seen in the olfactory epithelium of prenatal

mice (Bajalica-Lagercrantz et al., 1998). BCL6A expression in

adult human spinal cord has been described (Bajalica-

Lagercrantz et al., 1997), with Bcl6a shown to be expressed in

the adult mouse cerebral cortex (Bajalica-Lagercrantz et al.,

1998) and bcl6aa in the adult pufferfish brain and nasal cavity

(Ohtani et al., 2006). Human BCL6A was also expressed in adult

skeletal muscle, thyroid, trachea, ovary and prostate (Bajalica-

Lagercrantz et al., 1997), with mouse Bcl6a expressed in skeletal

muscle (Albagli-Curiel et al., 1998) and pufferfish bcl6aa in

skeletal muscle, intestine and ovary (Ohtani et al., 2006).

Collectively, this may suggest a conserved broader role for

BCL6/ken genes in non-hematopoietic tissues.

BCL6A has been shown to be a key regulator of B and T cells

(Nurieva et al., 2009; Bassil et al., 2014), with specific lineages of

both B and T lymphocytes impacted in Bcl6a knockout mice

(Dent et al., 1997; Cattoretti et al., 2005; Nurieva et al., 2009;

Mondal et al., 2010; Huang et al., 2014; Choi and Crotty, 2021).

Zebrafish possess both T and B cells (Langenau and Zon, 2005;

Hansen and Zapata, 1998; Trede and Zon, 1998), with zebrafish

T cells precursors arising during the embryonic definitive wave

of hematopoiesis and, as in mammals, generating mature T cells

in the thymus (Haire et al., 2000; Bertrand et al., 2007; Seelye

et al., 2016). The bcl6aamdu21/mdu21 mutants displayed a

significant decrease in lymphocyte populations at this location

during embryogenesis including lymphoid precursors and early

T lymphocytes. This finding suggests an essential role of bcl6aa

in the differentiation and/or survival of early T cells or their

progenitors in zebrafish. It was more difficult to study B cells

since these arise three weeks post fertilization (Danilova et al.,

2000) when survival of bcl6aamdu21/mdu21
fish was already

compromised. Analysis of surviving juveniles at 28 dpf showed

multiple lymphocyte populations were reduced, including T, B

and NK cells (Supplementary Figure 2). However, the significant

developmental delay observed in bcl6aamdu21/mdu21 mutants and
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the reliance solely on qRT-PCR data means this result needs to

be interpreted cautiously. Recent enhancements in husbandry

practices have meant that bcl6aamdu21/mdu21 adults are now

available, the analysis of which will provide more definitive

understanding of the impacts on lymphocyte homeostasis.

BCL6A has been previously implicated in the development and

function of macrophages and dendritic cells (Yamochi et al., 1997;

Pantano et al., 2006; Zhang et al., 2014). A significant reduction in

macrophageswas observed in bcl6aamdu21/mdu21 embryos, whichwas

also thecase in juvenilefish (SupplementaryFigure2), andconfirmed
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using morpholino-mediated gene knockdown. Significantly

decreased macrophage motility was observed in response to

wounding, with macrophages appearing more amoeboid following

bcl6aa ablation. This is consistent with a study showing inactivation

of Bcl6a in bone-marrow derived macrophages resulted in reduced

macrophagemotility, polarization and spreading (Pixley et al., 2005).

The bcl6aamdu21/mdu21 mutants were also found to be less able to

control bacterial infection, had elevated il1b and reduced survival, in

agreement with data from Bcl6a knockout mice that showed

increased inflammatory gene expression following LPS injection,
A

B C

FIGURE 5

Analysis of macrophagemigration in response to injury in bcl6aamutant zebrafish. (A)Wounding assay on 4 dpf embryos subjected to injury via tail fin
transection, showing fluorescence images of representative bcl6aawt/wt (wt/wt), bcl6aawt/mdu21 (wt/mdu21) and bcl6aamdu21/mdu21 (mdu21/mdu21) embryos
on the Tg(mpeg1.1:GFP) background, as determined by retrospective genotyping, at the times indicated, with the dotted line showing the wounding site.
Scale bars represent 200 mm. (B)Quantitation of the total number of GFP+macrophagemigrated at the indicated timepoint showingmean ± SEM.
(***p<0.001; n>20mixed progeny). (C)Cumulative proportion of embryos with at least 1 GFP+ cell migrated assessed at 0.25 h intervals (n>20).
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including Il1b (Barish et al., 2010). These effects are likely a

consequence of the reduced macrophage number and

functionality, since T cells remain in the thymus at this stage of

development, and neutrophil numbers are unchanged – although

potential functional defects were not examined. Of note, fruit-fly

hemocytes, which represent innate immune cells, were also found to

be sensitive to the effects of Ken (Arbouzova et al., 2006). This

suggests an evolutionarily conserved role for BCL6A/Ken in

innate immunity.
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Bcl6a knockout mice displayed severe growth retardation

(Albagli-Curiel et al., 1998; Yoshida et al., 1999), which was also

observed in bcl6aamdu21/mdu21
fish from 14 dpf indicating this

represents another common phenotype across vertebrates. This

may be mediated via a direct role on growth, since strong Bcl6a

expression has been observed during skeletalmuscle differentiation

in mice (Bajalica-Lagercrantz et al., 1998). However, the

bcl6aamdu21/mdu21 also displayed a thinner body, consistent with

the reduced adipose mass seen in Bcl6a knockout mice (LaPensee
A

B

D E

C

FIGURE 6

Analysis of bacterial infection in bcl6aa mutant zebrafish. (A) Infection of 4 dpf embryos with GFP+ E coli showing representative bcl6aawt/wt

(wt/wt), bcl6aawt/mdu21 (wt/mdu21) and bcl6aamdu21/mdu21 (mdu21/mdu21) embryos at the indicated timepoints. Scale bars represent 200 mm.
(B) Bacterial load intensity was assessed on a 5 point scale (0-4) for bcl6aawt/wt (wt/wt), bcl6aawt/mdu21 (wt/mdu21) and bcl6aamdu21/mdu21

(mdu21/mdu21) embryos at each timepoint relative to 0.5 hpf being 1, showing mean ± SEM (***p<0.001; ns: not significant; n≥50 total at each
timepoint). (C) Relative survival of bcl6aawt/wt (wt/wt), bcl6aawt/mdu21 (wt/mdu21) and bcl6aamdu21/mdu21 (mdu21/mdu21) embryos at the indicated
timepoints (n=100 total at each timepoint). (D, E) Analysis of the indicated inflammatory gene markers in homozygous bcl6aawt/wt (wt/wt) and
bcl6aamdu21/mdu21 (mdu21/mdu21) individuals at 0 hpi (D) and 6 hpi (E) using qRT2-PCR with data normalized relative to actb and represented as
relative fold change compared to wild-type, with mean and SD shown and statistical significance indicated (*p<0.05, **p<0.01, n=4).
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et al., 2014). Thismight be due to a direct effect on adipose tissue, as

murineBcl6aknockouts havebeenshowntopossessdisrupted lipid

metabolism (LaPensee et al., 2014). The bcl6aamdu21/mdu21
fish also

displayed reduced survival. A similar phenotype was observed in

Bcl6a knockoutmice, which has been demonstrated to be the result

of excessive inflammatory responses leading to profound

myocarditis and vasculitis (Dent et al., 1997; Fukuda et al., 1997;

Ye et al., 1997; Huang et al., 2014). This severe inflammation could

also impact on growth and development indirectly.

Fruit-fly Ken has been found to contribute to the

differentiation of photoreceptor (neuronal) cells and cone

(non-neuronal) cells during eye development (Wen et al.,

2000). Moreover, a previous study showed that bcl6aa

knockdown in zebrafish embryos resulted in malformation of

the optic cup during embryogenesis (Lee et al., 2013). We

observed expression of bcl6aa in the developing zebrafish eye

but no overt eye defects in bcl6aamdu21/mdu21 mutants, with none

reported in Bcl6a mutant mice either. More work is required to

understand the discrepancies, especially between the zebrafish

studies, as well to investigate other aspects of development that

are perturbed in Bcl6a knockout mice and ken mutant flies.
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