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Abstract
Background and objectives The extent and pattern of radiological features (e.g. fibrosis and ground glass)
can influence treatment approaches for systemic sclerosis-related interstitial lung disease (SSc-ILD).
However, the pathobiology underlying these radiological features is poorly understood and warrants further
investigation.
Methods 68 proteins were measured in bronchoalveolar lavage (BAL) fluid from 103 SSc-ILD
participants in Scleroderma Lung Study I. Quantitative image analysis calculated the extent of fibrosis
(QLF) and ground-glass opacity (QGG) from concurrent high-resolution computed tomography (HRCT)
scans. The relationship between BAL proteins and quantitative HRCT scores was assessed by univariate
and multivariate analyses.
Results QLF scores correlated weakly with the extent of QGG, suggesting two distinct processes. In a
univariate analysis, 25 proteins from several biological pathways correlated with QLF scores, including
profibrotic factors, tissue remodelling proteins, proteins involved in monocyte/macrophage migration and
activation, and proteins linked to inflammation and immune regulation. In contrast, QGG scores correlated
with only six proteins, of which four were unique and related to granulocyte activation, mobilisation of
bone marrow mesenchymal stem cells and activation of T-cells, B-cells, macrophages and eosinophils. In
the multivariate models, interleukin-4, CCL7, receptor activator of nuclear factor-κB and tumour necrosis
factor-α were independently associated with QLF, whereas interferon-γ was independently associated
with QGG.
Interpretation QLF and QGG represent distinct radiological features of SSc-ILD, a conclusion reinforced
by the presence of different biological pathways present within BAL fluid that associate with each. The
identified proteins and related biological pathways may represent important therapeutic targets.

Introduction
High-resolution computed tomography (HRCT) imaging of the chest is considered the gold standard for
diagnosing interstitial lung disease (ILD) in patients with systemic sclerosis (SSc) [1]. HRCT chest
imaging also serves as a key monitoring tool to identify ILD progression [2]. Previous studies have
demonstrated that the radiological extent of ILD predicts mortality in patients with SSc-ILD [3, 4].
Long-term follow-up of patients from the Scleroderma Lung Study (SLS) I and II also found that changes
in the quantitative radiological extent of ILD over 1–2 years predicts long-term survival [5].

The predominant radiological features of SSc-ILD are reticulation with architectural distortion (fibrosis)
and ground-glass opacity. While the presence of HRCT-defined fibrosis and ground-glass opacity are
known to correspond with histological findings characterised by predominant fibrosis or inflammation,
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respectively [6–8], the biological processes underlying these radiological features are largely unknown.
However, in clinical practice, the presence of specific radiological features of ILD often guide treatment
decisions with some practitioners favouring anti-inflammatory therapies when ground-glass opacity is the
predominant pattern versus antifibrotic therapies when fibrosis is the predominant pattern.

Few studies have endeavoured to uncover the pathobiology behind distinct radiological features of
SSc-ILD. Early research demonstrated that SSc-ILD patients with evidence of active alveolitis in
bronchoalveolar lavage (BAL) fluid had more extensive ILD on HRCT of the chest [9–11]. Among
patients enrolled in the multicentre SLS I [12], increased polymorphonuclear leukocytes and/or eosinophils
in BAL fluid was associated with increased ground-glass opacity and fibrosis scores based on
semi-quantitative analysis of concurrent HRCTs [10]. These findings are consistent with those of a single
centre study, which demonstrated that patients with a higher eosinophil count in BAL fluid had increased
extent of ground-glass opacity and fibrosis by semi-quantitative assessment [13]. Interestingly, this study
also found that the concentration of certain BAL proteins correlated with the extent of ground-glass opacity
(e.g. KL-6), whereas other BAL proteins correlated with the extent of fibrosis (e.g. CXCL8) [13]. The
latter observation suggests that unique biological pathways may mediate the development of pulmonary
interstitial inflammation versus fibrosis in SSc-ILD.

To further explore the biological pathways underlying distinct radiological features of SSc-ILD, the present
study examined the correlations between the quantitative extent of ground-glass opacity (QGG) and
fibrosis (QLF) and the concentration of 68 BAL proteins. We hypothesised that proteins known to mediate
autoimmune response and inflammation would correlate more with the extent of QGG, whereas proteins
involved in tissue remodelling and fibrosis would correlate more with the extent of QLF. The findings may
reveal new therapeutic targets and provide further insight into the underlying biology of structural changes
observed on HRCT in patients with SSc-ILD.

Material and methods
Study participants
Of the 158 participants who enrolled in SLS I [12] (NCT00004563), 148 underwent bronchoscopy with
BAL during study screening [10]. SLS I included adult patients with SSc with alveolitis defined by any
evidence of ground-glass opacity on HRCT and/or alveolitis on BAL fluid (defined as neutrophilia of
⩾3%, eosinophilia of ⩾2% or both [14]) with a duration of disease ⩽7 years from onset of the first
non-Raynaud phenomenon symptom of SSc [12]. Smoking within the previous 6 months was an exclusion
criterion. Patients taking prednisone at a dose of greater than 10 mg per day, those who had previously
been treated for more than 4 weeks with oral cyclophosphamide or who had received two or more
intravenous doses, and those who had recently received other potentially disease-modifying medications
were also excluded [10]. The Institutional Review Board of each site approved the studies, and only
participants who provided informed consent were included in the present analyses.

Study design
Baseline measurements included pulmonary function tests, modified Rodnan Skin Score (mRSS)
assessment, dyspnoea and health status evaluations and HRCT as previously described [12]. Quantitative
image analysis was performed to calculate the extent of QLF and QGG at baseline in the whole lung (WL)
and zone of maximum involvement (ZM) [15] (details are provided in supplementary material). In brief,
QLF represents areas with a fibrotic reticulation pattern associated with architectural distortion of the lung.
In contrast, QGG represents areas with pure ground-glass opacification with preserved underlying
architectural features. As such, each pixel making up the computed tomography image can only have one
label, representing the dominant feature assigned to that pixel. The scores for QLF and QGG are not
overlapping, and higher scores indicate greater involvement by each feature in either the WL or ZM.

BAL protein analysis
Bronchoscopy with BAL was carried out in the right middle lobe (RML) in all subjects as previously
described from 2000–2004 [10]. In previous studies, BAL performed in the RML was demonstrated as a
suitable single-site for detecting alveolitis in SSc-ILD [16, 17], and single lavage performed in the RML
determined the presence of alveolitis in 95% of patients with SSc-ILD [18]. Multiplex protein analyses
were carried out for 68 different cytokines, chemokines, proteases and growth factors between 2007–2009
(additional details are in supplementary methods and supplementary table S1). We pre-selected proteins
(based on available multiplex assays at that time) from different pathways implicated in SSc-ILD
pathogenesis, aiming to include proteins involved in epithelial injury, angiogenesis, inflammation,
autoimmunity and fibrosis.
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Statistical analysis
Baseline characteristics
Summary statistics were generated for baseline patient characteristics. A two-sample t-test or Wilcoxon
rank-sum test was used to compare continuous variables and a chi-squared test was used to compare
categorical variables.

The distribution of each BAL protein was evaluated and corrected for skewness through logarithmic
transformation where necessary. In the case where more than 80% of participants had unmeasurable values
for a specific BAL protein (i.e. below the lower limit of detection), then that BAL protein was
dichotomised as detectable versus undetectable.

Outcome measures
The primary outcome was the radiological extent of specific ILD features on HRCT (i.e. QGG-WL and
QLF-WL). Pearson correlations were first performed to determine whether QGG-WL and QLF-WL scores
were correlated with one another. Kendall’s Tau correlations were then performed to examine the
relationships between BAL protein levels and baseline QLF-WL and QGG-WL scores. Heatmaps were
subsequently created to explore the interrelationships among proteins correlating with QLF-WL and with
QGG-WL. Based on convention, any proteins correlating with QGG-WL/QLF-WL scores with p<0.1 were
included in the heatmap analysis for the corresponding radiological feature.

Secondary outcomes included physiological measures of SSc-ILD severity, including forced vital capacity
(FVC) % predicted, total lung capacity (TLC) % predicted and diffusion capacity for carbon monoxide
(DLCO) % predicted. Kendall’s Tau correlations were performed to examine the relationship between BAL
cell differentials (% eosinophils, neutrophils and lymphocytes) and QGG-WL and QLF-WL scores.

Multivariable models
Multivariable linear regression models were created to identify the key BAL proteins associated with
QLF-WL and QGG-WL scores. Proteins that were found to correlate with QLF-WL and QGG-WL scores
(p<0.1) on the univariable analysis were entered into the multivariable model using a backward selection
process in combination with an examination of the Akaike information criterion (AIC) (see supplementary
methods for additional details). The bootstrap procedure was employed for internal validation. Given the
exploratory nature of this study, no corrections for multiple comparisons were performed. A threshold of
p<0.05 was used to determine statistical significance in the multivariable models.

All tests were two-sided. All analyses were conducted in SAS version 9.4 (The SAS Institute, Cary,
NC, USA).

Results
Participant characteristics
Among all SLS I participants, 103 participants had BAL specimens suitable for multiplex analysis.
Compared with the entire SLS I cohort, participants who participated in the BAL analysis were similar in
terms of demographic characteristics, as well as the severity of ILD (table 1).

Biomarkers correlating with radiological features of SSc-ILD
Relationship between QGG and QLF
The two principal HRCT features of SSc-ILD are fibrosis and ground glass. While we observed a
statistically significant correlation (p=0.028) between QGG-WL and QLF-WL scores, the strength of their
correlation was relatively weak (r=0.19) (figure 1).

Quantitative lung fibrosis
25 of the 68 measured proteins correlated (p<0.1) with QLF-WL or QLF-ZM scores in the univariable
analysis (supplementary table S2 and figure 2). Proteins involved in tissue remodelling, including matrix
metalloproteinases (MMP-1 (r=0.13), MMP-7 (r=0.17) and MMP-8 (r=0.19)) and hepatocyte growth factor
(HGF; r=0.29) were positively correlated with QLF-WL scores. Proteins deemed as profibrotic mediators
(e.g. transforming growth factor (TGF)-β; r=0.14 and platelet-derived growth factor (PDGF)-BB; r=0.18)
were also positively correlated with QLF-WL scores. In addition, proteins involved in monocyte–
macrophage migration and activation (chemokine (C-C motif ) ligand 2 (CCL2; also known as MCP-1;
r=0.25); CCL7 (also known as MCP-3; r=0.21); and macrophage colony-stimulating factor (M-CSF;
r=0.15)) were positively correlated with QLF-WL scores. Of all of the proteins positively correlated with
QLF scores, none overlapped with those that correlated with QGG scores. Figure 3 is a visualisation of the
relationship between select proteins and QLF-WL scores, for which the correlation coefficient was >0.2.
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There were also proteins negatively correlated with QLF-WL or QLF-ZM scores (higher protein levels
indicating less fibrosis). Interleukin (IL)-4 (r=−0.18), IL-12 (r=−0.18), IL-15 (r=−0.17), endoglin
(r=−0.16), vascular endothelial growth factor (VEGF; r=−0.21), macrophage migration inhibitory factor

–50 –25 0 25 50

QGG-WLQLF-WL

FIGURE 1 Relationship between QLF-WL scores (blue) and QGG-WL (green) scores for individual study
participants. Each horizontal bar represents the QLF-WL and QGG-WL scores for an individual study subject.
The Pearson correlation coefficient for QLF-WL and QGG-WL scores was 0.19, indicating a weak correlation
(p=0.028). QGG: quantitative extent of ground-glass opacity; QLF: quantitative extent of fibrosis; WL: whole
lung.

TABLE 1 Patient characteristics of the entire Scleroderma Lung Study (SLS) I cohort (n=158) and SLS I (n=103)
participants who participated in this bronchoalveolar lavage (BAL) analysis

All SLS I participants
(n=158)

SLS I participants in BAL analysis
(n=103)

Age, years 48.5±12.3 46.7±12.2
Female, % 70.3 73.8
Systemic sclerosis duration, years 2.7 (1.5–4.8) 2.9 (1.7–4.9)
Race, %
White 63.9 62.1
African American 16.5 16.5
Asian 7.6 9.7
Other 12.0 11.7

mRSS 14.8±10.9 13.6±10.3
FVC % predicted 68.1±12.1 68.6±12.0
TLC % predicted 69.6±13.1 69.7±14.1
DLCO % predicted 46.6±12.9 47.1±12.9
QGG % whole lung 23.4±9.5 23.4±9.7
QLF % whole lung 10.2±10.4 10.3±11.3
Alveolitis based on BAL parameters#, % 63.9 57

Data are presented as mean±SD or median (interquartile range) unless otherwise stated. mRSS: modified
Rodnan Skin Score; FVC: forced vital capacity; TLC: total lung capacity; DLCO: diffusion capacity for carbon
monoxide; QGG: quantitative extent of ground-glass opacity; QLF: quantitative extent of fibrosis. #: Alveolitis
based on BAL parameters was defined as 3% or greater polymorphonuclear and/or 2% or greater eosinophilic
leukocytes on lavage.
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(MIF; r=−0.15), receptor for advanced glycation end products (RAGE; r=−0.14) and tumour necrosis
factor (TNF)-α (r=−0.16) were negatively correlated with QLF-WL scores. VEGF (r=−0.15), IL-15
(r=−0.17) and MIF (r=−0.15) levels were also negatively correlated with QGG-WL scores (supplementary
table S3). There was a high degree of concordance between proteins significantly correlated with QLF-WL
scores and those with QLF-ZM scores (supplementary table S2).

Among the proteins correlating with QLF scores, a number of these proteins also correlated with
pulmonary function test parameters, particularly DLCO % predicted (supplementary table S4). MMP-1,
MMP-7, MMP-8, CCL17 (also known as TARC), TGF-β1, PDGF-BB, IL-1Ra, chemokine (C-X-C motif )
ligand 8 (CXCL8; also known as IL-8), CCL2, CCL7 and M-CSF were each negatively correlated
with DLCO % predicted, whereas VEGF, IL-15, IL-4 and IL-12 were each positively correlated with DLCO

% predicted.

When BAL proteins were assessed for their correlation to BAL cell differentials, the percentages of
eosinophils (r=0.24), neutrophils (r=0.24) and macrophages (r=−0.20), but not lymphocytes, were
significantly correlated with QLF-WL scores (p<0.05).

Ground-glass opacity
Six BAL proteins correlated (p<0.1) with QGG-WL or QGG-ZM scores in the univariable analysis
(supplementary table S3 and figure 2). Interferon (IFN)-γ was positively correlated with QGG-WL (r=0.20)
and QGG-ZM (r=0.23) scores, whereas IL-5 (r=−0.15), IL-15 (r=−0.17), granulocyte colony-stimulating
factor (G-CSF; r=−0.17), MIF (r=−0.15) and VEGF (r=−0.15) were negatively correlated with QGG-WL.
Figure 4 is a visualisation of the relationship between select proteins and QGG-WL scores, for which the
correlation coefficient was ⩾0.15.

With respect to pulmonary function, only two of the six proteins were significantly correlated with FVC,
DLCO or TLC; IL-15 was positively associated with FVC % predicted (r=0.16), DLCO % predicted (r=0.16)

QGG score
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FIGURE 2 Bronchoalveolar lavage (BAL) proteins with positive (left side) and negative (right side) correlations
with QLF-WL score (top) and QGG-WL (bottom). Darker shading around individual BAL proteins indicates a
stronger correlation. Fewer BAL proteins were correlated with QGG-WL scores compared with QLF-WL scores.
Only 4 among 68 measured BAL proteins correlated with both QGG-WL and QLF-WL scores. QGG: quantitative
extent of ground-glass opacity; QLF: quantitative extent of fibrosis; WL: whole lung; TGF: transforming growth
factor; MMP: matrix metalloproteinase; HGF: hepatocyte growth factor; PDGF: platelet-derived growth factor;
IL: interleukin; RAGE: receptor for advanced glycation end products; G-CSF: granulocyte colony-stimulating
factor; VEGF: vascular endothelial growth factor.
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and TLC % predicted (r=0.18), whereas VEGF was positively associated with DLCO % predicted (r=0.19)
(supplementary table S4).

With respect to the BAL cell differential, the percentage of eosinophils was significantly correlated with
QGG-WL (r=0.19; p=0.0124), but significant relationships were not observed between QGG-WL and the
percentages of BAL neutrophils, lymphocytes or macrophages.

Heatmap analysis
A heatmap demonstrated intercorrelations among proteins that correlated with QLF-WL scores (figure 5a)
and QGG-WL scores (figure 5b). For example, the QLF-WL heatmap depicts several distinct clusters of
related mediators of fibrosis, including a cluster composed of M-CSF, MMP-8 and CXCL8; a large
intercorrelated cluster, including MMP-1, receptor activator of NF-κB (RANK), TGF-β1, CCL17, CCL2
and HGF; and several smaller clusters composed of 2–3 intercorrelated proteins. The QGG-WL heatmap
identifies a distinct cluster or intercorrelations formed by G-CSF, IL-15 and VEGF.

Multivariable analysis
The final multivariable model for QLF-WL score consisted of the following covariates: IL-4 presence,
CCL7 level, RANK level, TNF-α level, HGF level, endoglin level and QGG-WL (table 2). Among these
covariates, IL-4, CCL7, RANK and TNF-α remained significantly associated with QLF-WL score.
QGG-WL was not significantly associated with QLF-WL scores in this final model. The adjusted R2 for
this model was 0.43 and the AIC was 472.99.
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FIGURE 3 Visualisation of the relationship between select bronchoalveolar lavage (BAL) proteins and QLF-WL scores, for which the correlation
coefficient was >0.2. For complete list of all BAL proteins significantly correlated with QLF-WL scores, please see supplementary table S2. QLF:
quantitative image analysis for extent of fibrosis; WL: whole lung; HGF: hepatocyte growth factor; IL: interleukin; CCL: chemokine (C-C motif ) ligand.
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A final multivariable correlation model for the QGG-WL included IL-5 presence, IL-15 level, IFN-γ
presence and QLF-WL (table 3). Among these covariates, only IFN-γ remained significantly associated
with QGG-WL score. QLF-WL was not significantly associated with QGG-WL scores in this final model.
The adjusted R2 for this model was considerably lower (0.16) and the AIC was 483.52.

Discussion
ILD affects the majority of patients with SSc and is a leading cause of death in patients with SSc [19, 20].
A deeper understanding of the underlying biology may lead to the discovery of new therapeutic targets and
the opportunity to improve treatment outcomes [21]. The present study examined the relationship between
the two main radiological features of SSc-ILD, fibrosis and ground-glass opacifications and then
investigated how these features relate to biologically active proteins recovered from their lungs. First, we
observed that QLF and QGG scores are only weakly correlated, suggesting that these features may arise
from different biological processes. Second, we observed that each radiological feature correlated with its
own distinct subset of proteins with limited overlap. Finally, this study identified interrelated networks of
BAL proteins that might reflect biological pathways of key importance in the pathogenesis of SSc-ILD.

The first striking finding was that across the spectrum of SLS I participants, the extent of QGG was only
weakly correlated with the extent of QLF. Moreover, in the multivariable models, no significant
associations were observed between QLF and QGG scores. In support of this finding, a different repertoire
of BAL proteins correlated with QLF scores than with QGG scores. Specifically, proteins involved in a
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FIGURE 5 Intercorrelations among bronchoalveolar lavage (BAL) proteins correlating with a) QLF-WL scores and b) QGG-WL scores. Stronger
intercorrelations are represented with darker shading. QGG: quantitative extent of ground-glass opacity; QLF: quantitative extent of fibrosis;
WL: whole lung; M-CSF: macrophage colony-stimulating factor; MMP: matrix metalloproteinase; RANK: receptor activator of NF-κB; TGF:
transforming growth factor; CCL: chemokine (C-C motif ) ligand; HGF: hepatocyte growth factor; PDGF: platelet-derived growth factor; IL: interleukin;
VEGF: vascular endothelial growth factor; MIF: macrophage migration inhibitory factor; RAGE: receptor for advanced glycation end products; TNF:
tumour necrosis factor; IFN: interferon; G-CSF: granulocyte colony-stimulating factor.

TABLE 2 Bronchoalveolar lavage (BAL) proteins associated with QLF-WL in a multivariable linear regression
model; the adjusted R2 for this model was 0.43 and the AIC was 472.99

BAL protein Estimate 95% CI p-value

IL-4 presence −4.86 −8.93–−0.79 0.020
CCL7 level 5.11 2.18–8.03 0.0008
RANK level 1.61 0.27–2.95 0.0192
TNF-α level −2.59 −4.24–−0.94 0.0025
HGF level 2.02 −0.24–4.27 0.0794
Endoglin level −0.01 −0.02–0.0 0.0896
QGG-WL 0.08 −0.13–0.28 0.460

AIC: Akaike information criterion; CI: confidence interval; IL: interleukin; CCL7: chemokine (C-C motif) ligand 7;
RANK: receptor activator of NF-κB; TNF: tumour necrosis factor; HGF: hepatocyte growth factor; QGG:
quantitative extent of ground-glass opacity; QLF: quantitative extent of fibrosis; WL: whole lung.

TABLE 3 Bronchoalveolar lavage (BAL) proteins associated QGG-WL in a multivariable linear regression model;
the adjusted R2 for this model was 0.16 and the AIC was 483.52

BAL protein Estimate 95% CI p-value

IL-15 level −1.24 −2.83–0.35 0.126
IL-5 presence −4.53 −9.18–0.12 0.0559
IFN-γ presence 4.30 0.29–8.30 0.0357
QLF-WL 0.15 −0.02–0.33 0.0827

QGG: quantitative extent of ground-glass opacity; WL: whole lung; AIC: Akaike information criterion; CI:
confidence interval; IL: interleukin; IFN: interferon; QLF: quantitative extent of fibrosis.
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number of biological pathways theorised to be associated with the pathogenesis of SSc-ILD (e.g. fibrosis,
tissue remodelling, monocyte–macrophage migration and activation) correlated with QLF scores,
suggesting that radiological fibrosis itself represents a dynamic process with diverse biological
underpinnings. The finding that few proteins correlated with QGG scores was unexpected, but not entirely
surprising. Of those factors that were either positively or negatively correlated with QGG scores, the
majority were regulators of immunity, autoimmunity and inflammation. There is also evidence that QGG
may not necessarily reflect the increased infiltration by inflammatory cells due to underlying SSc-ILD. For
example, ground-glass opacification on HRCT may arise from architectural changes due to early fibrosis,
as well as external factors, such as poor ventilation of dependent lung areas, oedema, airspace and
interstitial pneumonia, and aspiration lung injury related to oesophageal dysmotility [22]. WELLS et al. [6]
found that amorphous parenchymal opacification on HRCT was a less-reliable indicator of histological
appearance than a reticular pattern. Another small study of patients with SSc-ILD found no relationship
between the extent of ground-glass opacity and IL-6 and IL-7 levels in the BAL fluid of patients with
SSc-ILD [23].

Known mediators of fibrosis, such as TGF-β and PDGF, were positively correlated with QLF scores,
supporting the known pathobiology of SSc-ILD [24]. Specific mediators of matrix remodelling, including
MMP-1, MMP-7, MMP-8 and MMP-9, were also positively correlated with QLF scores. These findings
are consistent with peripheral proteomic profiles of patients with ILD. For example, previous studies have
demonstrated increased genetic expression of MMP-7 [25] and increased levels of MMP-7 [26] in the
circulation of patients with SSc-ILD. Moreover, higher peripheral blood levels of both MMP-7 and
MMP-12 were observed in SSc patients with extensive ILD on HRCT [4] compared with limited ILD [26].
Collectively, these findings reaffirm the importance of matrix remodelling in SSc-ILD pathogenesis and
also suggest that peripheral blood measurement of these proteins may serve as a surrogate for direct
pulmonary measurement, although future studies are needed to test this hypothesis.

Of interest, the chemokines, CCL2 and CCL7 were also positively correlated with QLF-WL scores. Both
chemokines are considered pro-inflammatory and contribute to tissue fibrosis by activating the synthesis of
extracellular matrix proteins in fibroblasts. Observational studies have demonstrated that levels of
peripheral CCL2 are higher in SSc patients with ILD [27, 28] and that increased CCL2 is associated with
accelerated ILD progression [29]. Knockout animals missing the receptor for CCL2 are protected from
developing severe pulmonary fibrosis after instillation of bleomycin [30], further supporting the role of
CCL2 in ILD pathogenesis. While CCL7 is closely related to CCL2, CCL7 has chemotactic effects not
only for monocytes, but also for dendritic cells and granulocytes [31]. Serum levels of CCL7 were
elevated in SSc patients with ILD and associated with more severe restriction on pulmonary function
testing [32].

Several BAL proteins were negatively correlated with QLF scores; among these proteins, VEGF was also
negatively correlated with QGG scores. A key regulator of angiogenesis, VEGF plays a central role in lung
development and maturation [33]. A previous analysis of BAL specimens from patients with SSc found
that VEGF levels were lower in patients with alveolitis [34]. This study also demonstrated that VEGF
levels were inversely correlated with QGG score on HRCT, consistent with the findings of the present
study. There are a number of plausible explanations for these findings. For example, preclinical studies
have demonstrated that VEGF-A protects against excessive pulmonary fibrosis resulting from lung injury
[35, 36]. In addition, VEGF levels measured in the epithelial lining fluid of patients with acute respiratory
distress syndrome (ARDS) were lower than in patients at risk for ARDS and inversely correlated with
Lung Injury Score [37]. Studies have also demonstrated lower BAL fluid VEGF levels in patients with
idiopathic pulmonary fibrosis [38]. However, treatments targeting VEGF (e.g. nintedanib) have been found
to ameliorate pulmonary fibrosis in animal models [39] and slow the decline of lung function in human
SSc-ILD studies [40]. Further research is needed to understand how VEGF and its unique isoforms
contribute to the SSc-ILD pathogenesis.

The heatmap analysis for QLF-WL protein correlates demonstrated several clusters of interrelated proteins.
For example, MMP-8, MMP-9, CXCL8 and G-CSF formed one cluster of related immune mediators of
fibrosis. Intriguingly, the individual proteins significantly associated with QLF-WL scores in the
multivariable analysis were each from different clusters on the heatmap. These findings suggest that
understanding the relationships among different proteins is likely just as important as understanding the
relationship between individual proteins and clinical outcomes. Had we solely presented the multivariable
model, and not the heatmap analysis, one might erroneously deduce, for example, that VEGF and G-CSF
are insignificant pathogenic mediators of radiological features of ILD.
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The heatmap analysis for QGG-WL protein correlates also illuminated networks of intercorrelated proteins
that may represent key pathogenic pathways. For instance, IL-15, G-CSF and VEGF (each individually
associated with decreased QGG-WL scores) formed one cluster. Interestingly, in the multivariable analysis,
IL-15 was significantly associated with QGG-WL score, whereas G-CSF and VEGF were not. This is
likely because these three proteins were highly correlated with one another; the two other proteins included
in the multivariable model were from other distinct clusters (IL-5 and IFN-γ). Future biomarker studies in
this disease state should consider presenting heatmap analyses as they demonstrate important information
about interrelated proteins that is not captured in multivariable modelling outputs.

The strengths of this study include our comprehensive evaluation of immune proteins from several biological
pathways, in contrast with previous studies, which focused on a few select proteins measured in BAL fluid.
Additional strengths include our use of a clinically well-characterised SSc-ILD cohort with a number of
objective measures of ILD severity performed at the same time as bronchoscopy (e.g. radiological imaging
and pulmonary function testing). Limitations include the fact that not all patients had suitable BAL
specimens for multiplex analysis; however, reassuringly, the baseline characteristics of the included patients
were similar to the entire study cohort. In addition, the current analysis was limited to measuring proteins
that were available in multiplex formats at the time (2007–2009). Another important limitation was that
corresponding blood specimens were not available to measure these proteins in the circulation, which may
have provided an important comparison of the peripheral and pulmonary compartments and the opportunity
to identify potential blood biomarkers. In addition, proteins in this study were all recovered from the RML
and therefore, may not be entirely representative of disease activity occurring in other parts of the lungs.
Given limitations in the HRCT protocol at the time, which captured axial slices at pre-defined anatomic
zones, we were not able to directly compare BAL findings with ground-glass opacity and fibrosis scores in
the RML. Moreover, without histopathological data, we cannot confirm the exact biological pathways
underlying each radiological feature. Also, some of the HRCTs in SLS I were not volumetric, but axial skip,
so sampling was not complete. Finally, as this study enrolled patients with early SSc-ILD with evidence of
alveolitis, BAL protein analyses may not be representative of all patients with a diagnosis of SSc-ILD and
further investigation may be needed in other SSc-ILD patient subgroups.

In summary, the present study demonstrated that specific immune pathways are associated with radiological
features of ILD in SSc. Notably, more proteins were associated with QLF scores, suggesting that areas of
reticulation and architectural distortion on HRCT represent a diverse array of biologically active processes. In
addition to serving as important treatment targets, these proteins may also serve as predictors of progression
of ILD and/or treatment response. Future studies are needed to determine whether measurements of these
proteins in the circulation also correlate with distinct radiological features of ILD in patients with SSc.
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