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Abstract

Background

Physical inactivity contributes substantively to disease burden, especially in highly car

dependent countries such as New Zealand (NZ). We aimed to quantify the future health

gain, health-sector cost-savings, and change in greenhouse gas emissions that could be

achieved by switching short vehicle trips to walking and cycling in New Zealand.

Methods

We used unit-level survey data to estimate changes in physical activity, distance travelled

by mode, and air pollution for: (a) switching car trips under 1km to walking and (b) switching

car trips under 5km to a mix of walking and cycling. We modelled uptake levels of 25%,

50%, and 100%, and assumed changes in transport behaviour were permanent. We then

used multi-state life table modelling to quantify health impacts as quality adjusted life years

(QALYs) gained and changes in health system costs over the rest of the life course of the

NZ population alive in 2011 (n = 4.4 million), with 3% discounting.

Findings

The modelled scenarios resulted in health gains between 1.61 (95% uncertainty interval (UI)

1.35 to 1.89) and 25.43 (UI 20.20 to 30.58) QALYs/1000 people, with total QALYs up to

112,020 (UI 88,969 to 134,725) over the remaining lifespan. Healthcare cost savings ranged

between NZ$127million (UI $101m to 157m) and NZ$2.1billion (UI $1.6b to 2.6b). Green-

house gas emissions were reduced by up to 194kgCO2e/year, though changes in emissions

were not significant under the walking scenario.

Conclusions

Substantial health gains and healthcare cost savings could be achieved by switching short

car trips to walking and cycling. Implementing infrastructural improvements and
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interventions to encourage walking and cycling is likely to be a cost-effective way to improve

population health, and may also reduce greenhouse gas emissions.

Introduction

Transport has a major impact on population health–it directly affects injury rates and air pol-

lution, and indirectly influences physical activity and health impacts arising from climate

change. Reducing car use and increasing active transport is expected to improve health at the

city-level, nationally, and internationally [1–7].

Setting and population-specific estimates of the impact of transport changes are required

to trade-off the positive and negative impacts of increased active transport. For example,

there are concerns that increased injury risk or increased air pollution exposure may out-

weigh the benefits of increased physical activity levels in selected population groups or set-

tings [5].

New Zealand (NZ) is highly car dependent: 79% of all self-reported trips are made by car

[8] and car ownership rates are among the highest in the world. Low physical activity is the 4th

leading behavioural risk factor in NZ [9], and only half of adults meet the national physical

activity recommendations [10]. In addition, 17.3% of gross greenhouse gas emissions in NZ

are related to road transport [11].

Internationally, estimates of the health impact of increases in active transport are

commonly conducted using comparative risk assessment (CRA) methods [1–4]. How-

ever, comparative risk assessment methods do not account for time lags between expo-

sure and disease and long-term changes in survival [12] and this suggests that many

studies modelling the health impact of increasing active transport overestimate the

benefits.

Previous NZ research based on comparative risk assessment methods strongly suggests that

increasing active transport is likely to have positive health impacts and reduce greenhouse gas

emissions [4, 7]. However, neither of the previous studies included time lags, estimated the

uncertainty around modelled health impacts, nor used a lifetime approach to assess the long-

term health impact. These methodological limitations mean it is unclear how the health impact

of increasing active transport might compare to addressing other population level risks (e.g.

smoking and unhealthy diets). This is particularly problematic from a policy perspective–if the

likely impacts of addressing different health risks cannot be compared due to differing meth-

odological approaches then it is difficult to prioritise resource spending appropriately across

competing health priorities.

We conducted this study to estimate the health impact, change in health system costs, and

greenhouse gas emissions associated with increasing active transport in New Zealand. We use

an established multi-state life table modelling approach that has been used to estimate the

impact of a wide range of other public health interventions internationally including dietary

change, alcohol reduction, and tobacco end game strategies [13–15]. Use of comparable meth-

ods facilitates comparison of increasing active transport with interventions addressing other

population level risks (e.g. smoking and unhealthy diet).

The aims of this study were: (i) to estimate health impact of switching short trips to walking

and cycling; (ii) to estimate change in health system costs associated with modelled changes in

transport patterns; (iii) to estimate change in greenhouse gas emissions associated with

changes in transport patterns in NZ.

Modelling health impacts of active transport
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Methods

Overview

We modelled the differences in quality-adjusted life years (QALYs) and healthcare costs of

shifts in transport behaviours in NZ. We estimated changes in transport patterns and green-

house gas emissions using unit-level survey data and then multi-state life table (MSLT) model-

ling to determine long-term impacts on population health and change in health system costs.

The MSLT part of the model used the intervention impacts (change in physical activity, dis-

tance travelled, and air pollution) to estimate impact on QALYs and healthcare costs over the

remainder of the lifetime of the New Zealand population alive in 2011. Input parameters

included risk factor distributions (mode-specific distance travelled, physical activity, and air

pollution) and disease data (including incidence, prevalence, and mortality rates, trends, dis-

ability weights, and costs). Sources of model inputs are summarised in Table 1, a conceptual

framework of the model structure is outlined in Fig 1, and full model details including parame-

ter values are detailed in a Technical Report [16].

Table 1. Description of model inputs.

Input parameter(s) Detail Data source

Risk factor

Physical activity Minutes per week of moderate and vigorous physical activity

(MVPA-METmins/week), weighted by MET value associated with activity.

Heterogeneity by age, sex, and ethnicity.

New Zealand Health Survey 2011/12

Compendium of Physical Activities [17]

Distance travelled Mode-specific total annual distance travelled (for pedestrians, cyclists,

motorcyclists, and motor vehicles). Heterogeneity by age, sex, and ethnicity.

New Zealand Household Travel Survey 2003–2014

[18, 19]

Air pollution Population-weighted annual fine particulate matter exposure (<2.5μm

diameter). No heterogeneity.

Brauer et al [20]

Disease and injury parameters

Disease incidence, prevalence,

case-fatality, and mortality rates

Each parameter was first estimated from linked health data, then

simultaneously entered into DisMod II (an epidemiological calculator) to

ensure coherence. Heterogeneity by age, sex, and ethnicity.

As per Cleghorn et al [21], with model inputs

available at [22]

Injury incidence and mortality

rates

Derived using GBD data on mode-specific incidence and mortality rates by

age and sex, combined with Health Tracker data and NZBDS to estimate rates

by ethnicity.

GBD Results Tool [23], NZBDS [24] and Health

Tracker

Morbidity rates In the main lifetable that simulated the QALYs, morbidity for each sex by

ethnic by age group in BAU uses the years of life lived with disability (YLD)

due to all causes from NZBDS, divided by the number of people in this strata

to give a rate. This represents the average ‘background’ morbidity rate

experienced. Disease-specific morbidity (or ‘disability’) rates are derived

similarly, using disease specific YLDs from the NZBDS. Disease specific

morbidity rates reflect the average disability experienced by someone with that

specific disease.

For example, CHD morbidity rate for 55–64 year old non-Māori males was

calculated as follows. NZBDS pYLD estimate for 2006 (1,321) was scaled to

account for demographic change to estimate pYLD value for 2011 (1,533). The

scaled pYLD estimate was divided by the number of prevalent cases estimated

from DisModII (17,326), to give a morbidity rate of 0.088.

GBD [25], NZBDS [24], as per methods described in

detail in [21] and [26], with model inputs available at

[22]

Healthcare costs (2011 NZ$) The costs used represent excess annual health system costs for cases in first

year of diagnosis, last year of life if dying of that disease, and otherwise

prevalent years of diagnosis. Heterogeneity by age and sex, but not ethnicity.

As per Kvizhinadze et al [27], available in [16]

GBD: Global Burden of Disease Study

MET: Metabolic equivalent of task

MVPA: Moderate and vigorous physical activity

NZBDS: New Zealand Burden of Disease Study

YLD: Years lived with disability

See Technical Report [16] for further details on parameters, including uncertainty distributions.

https://doi.org/10.1371/journal.pone.0219316.t001
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Intervention scenarios

We modelled the following interventions: (a) switching car trips�1km to walking; (b) switch-

ing car trips�1km to walking and those 1-5km to cycling. In all cases, we switched “there-

Fig 1. Conceptual framework of the model.

https://doi.org/10.1371/journal.pone.0219316.g001
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and-back” trip pairs for individuals aged 15–79 years. We defined there-and-back trip pairs as

two consecutive trips, travelling from a start location to a destination and back, using the same

mode. Individuals aged 80+ years were excluded from trip switches due to small numbers par-

ticipating in active transport and high prevalence of co-morbid conditions that could limit par-

ticipation at older ages.

The NZ Household Travel Survey dataset was used as the baseline population to estimate

changes in travel behaviour under the interventions. An anonymised and de-identified dataset

was obtained under a confidentiality deed from the New Zealand Ministry of Transport. For

each model run, we sampled there-and-back trips within the dataset to switch from driving

(driver or passenger) to walking and/or cycling (random sampling based on scenario percent-

age uptake), and then calculated person-level changes in physical activity and population-level

changes in distance travelled by mode.

Intervention changes in physical activity were calculated by the change in moderate and

vigorous physical activity, expressed as a change in MET (metabolic equivalent of task) min-

utes per week of moderate and vigorous activity (MVPA-METmins/week). A MET is the ratio

of work metabolic rate to a standard resting metabolic rate, where one MET is equivalent to

sitting quietly [17].

For trips that switched to walking under the intervention scenarios, we assumed that the

distance travelled remained constant at a 4.4km/hr walking speed (SD 0.88) [19]. We calcu-

lated the duration of the walking trip and multiplied by 3 (SD 0.06, uncorrelated with walking

speed) (assigned MET value for walking [17]) to estimate the change in MVPA-METmins. For

example, a 0.6km car journey switched to walking would result in a MVPA-METmin increase

of 24.5 (0.6 /4.4 � 60 � 3). For trips that switched to cycling, we followed the same process but

assumed a speed of 10.5km/hr (average cycling speed of those who reported cycling trips at

baseline in the Household Travel Survey (calculated from reported trip distance and dura-

tion)) and a 3.5MET values corresponding to cycling at that speed derived from the Compen-

dium of Physical Activities [17]. Trip-level changes in physical activity and mode were

aggregated to estimate average population level changes in weekly physical activity and annual

mode-specific distance travelled, by age, sex, and ethnicity. Change in air pollution exposure,

for the whole population, was calculated from change in distance travelled by motor vehicle.

Intervention impact

The health impacts of modelled interventions were estimated using a proportional multi-state

life table model adapted from a model previously developed to evaluate health impacts of

changes in diet [21]. We simulated the health impact on the adult NZ population, alive in

2011, out until death (lifetime horizon). The business-as-usual (BAU) scenario reflects contin-

uation of current physical activity levels and transport behaviour, and best future annual per-

centage change estimates for future trends to 2026 (then held constant) in all-cause mortality

and non-communicable disease incidence and case fatality in New Zealand. Intervention sce-

nario changes are assumed to continue for the remainder of the modelled population’s life-

time. We applied a 3% discount rate to QALY gains and cost-offsets, in accordance with the

Burden of Disease Epidemiology, Equity, and Cost-Effectiveness Protocol and international

precedent (e.g. ACE-Prevention in Australia and the recommendations of a US panel of health

economists) [26]. Undiscounted results are presented in the Supporting Information.

Intervention effects were captured by combining the differences in risk factor exposure

between the BAU and intervention scenarios with relative risks for the association between the

risk factor and disease to generate population impact fractions–essentially a percentage change

in disease incidence rate. These changes in disease incidence rates flowed through the

Modelling health impacts of active transport
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proportional life tables to change disease prevalence and then changed disease mortality (as

disease case fatality was acting on a different prevalent pool of cases). Disease-specific changes

in mortality and morbidity rates were summed up across diseases in each annual cycle for each

sex by age by ethnicity (Māori and Non-Māori) cohort, and subtracted or added to the BAU

all-cause mortality and morbidity rates in the main lifetable to estimate QALYs gained over

the remainder of the cohort’s lifespan (or up to age 110 if still alive). Changes in health system

costs between BAU and intervention scenarios were also calculated by the changes in the pro-

portion of the population experiencing incidence, prevalence, and death.

Physical activity. To estimate the baseline distribution of physical activity, we converted

responses to the New Zealand Physical Activity Questionnaire Short Form in the New Zealand

Health Survey to MVPA-METmins/week. Brisk walking was assigned a MET value of 3.0 [17],

and moderate and vigorous activities MET values of 4.5 and 6.5 respectively [28]. For example,

an individual who reported 30mins of brisk walking per week would have 90MVPA-METmi-

nutes/week of physical activity. Observed physical activity levels were smoothed to estimate

sub-population physical activity distributions by fitting a lognormal distribution separately by

sex, ethnicity (Māori and Non-Māori), and age group.

Road injuries. Changes in road injury under the intervention scenarios were calculated

proportionally from changes in distance travelled by pedestrians, cyclists, motorcyclists, and

motor vehicles. We then applied mode-specific safety-in-numbers coefficients to changes in

distances travelled, in line with established international methods [3, 29].

Air pollution. Intervention changes in air pollution were based on changes in distance

travelled by motor vehicles. We used data on the proportion of fine particulate matter attrib-

uted to domestic road transport in New Zealand (11%) [30] and assumed that this component

of total air pollution would change in proportion to the change in distance travelled. For exam-

ple, halving distance travelled by motor vehicles would halve the fine particulate matter con-

tributed by domestic road transport.

Healthcare costs

Disease-specific costs were derived according to an established protocol [21, 27]. These were

divided into incidence, prevalence, and mortality costs based on the timing of events (first

year, subsequent years, last six months of life). Pedestrians, cyclists, motorcyclists, and motor

vehicle occupant injuries were costed separately. Finally, costs were scaled to ensure consis-

tency with total healthcare costs in New Zealand, and to avoid double counting costs attributed

to individuals who may simultaneously reside in multiple disease states [27]. We present

change in health system costs as 2011 NZ$ and also in 2016 US$ (derived using Consumer

Price Index (CPI) and Purchasing Power Parity (PPP) adjustments) to aid international

comparisons.

Emissions

We multiplied distance travelled for each trip by emissions factors to estimate baseline and

intervention annual greenhouse gas emissions. Motor vehicles were assigned emissions factors

based on standardised values for New Zealand–with cars assigned an emissions factor of

0.209kgCO2e/km [31]. The emissions factor is based on the average emissions of the fuel

required to travel a kilometre and does not include embodied emissions (i.e. emissions associ-

ated with the manufacture of vehicles), nor differences in emissions based on speed or distance

travelled (e.g. higher emissions for ‘cold start’[32]). We divided the emissions value of car trips

by the number of people in the vehicle, assuming the number of people was one (i.e. respon-

dent only) and assigning the full emissions value where the number of people in the car was

Modelling health impacts of active transport
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not explicitly stated. Pedestrian and cycling trips were assigned emissions of 0.195kgCO2e/km

and 0.094kgCO2e/km respectively, again reflecting the fuel (in terms of food), required to

travel a kilometre. The emissions factors used for pedestrian and cycling trips assumed that

energy expenditure was fully compensated with increased energy intake (in line with our

assumption of interventions resulting in no change in BMI), and that the emissions profile of

the food eaten to compensate had the same emissions footprint as the average New Zealand

diet [16, 33].

We report changes in emissions separately for vehicular and dietary emissions to ease com-

parisons with previous studies that did not include the dietary emissions component. In addi-

tion, emissions changes under the intervention scenarios are given for the first year of the

intervention only, owing to the incredibly wide uncertainty around future emissions factors

given the pace of technological development.

Modelling and analysis

Each scenario was simulated 2,000 times drawing probabilistically from pre-specified uncer-

tainty distributions about each input parameter [16]. First, we ran 2,000 simulations of the

individual level trip switches in R. The aggregated results from each simulation for change in

physical activity and distance travelled were imported into the MSLT model, built in Excel. A

custom-built Visual Basic macro was written to estimate the health impacts and cost offsets of

each simulation within the Excel MSLT model, and we calculated the 2.5th and 97.5th percen-

tiles of QALY, emissions, and cost outputs to capture uncertainty.

Scenario analyses

We conducted scenario analyses with one risk factor switched on at a time to examine the pro-

portion of the health gain from different components of the modelled interventions–physical

activity only, road injuries only, and air pollution only. We also present results adjusted for

ethnic differences in background mortality rates (see [34] for further details).

Results

All scenarios increased the proportion of all trips made by active transport and reduced the

proportion of all trips made by motorised vehicles (see Table 2). At baseline, 82% of all trips

were made by motor vehicle; 12% of all car trips (as driver or passenger) were under 1km and

44% of car trips were between 1 and 5km. Switching all eligible trips under 1km to walking

under scenario (a) reduced the proportion of all trips made by motorized vehicle to 79%.

Under full uptake of scenario (b), only 64% of all trips were made by motorized vehicle, and

the proportion of all trips made by cycling increased from 1% to 16% of all trips.

Scenario (a) resulted in 23,900 QALYs (UI 20,000 to 28,300; discounted at 3%) gained over

the lifetime of the NZ population alive in 2011, and scenario (b) resulted in 112,000 QALYs (UI

Table 2. Percentage of all trips made by different modes under intervention scenarios.

Baseline (a) switching car trips�1km to

walking (100% uptake)

(b) switching car trips�1km to walking and those

1-5km to cycling (100% uptake)

Pedestrian 16 19 19

Cyclist 1 1 16

Motorbike 1 1 1

Motor

vehicle

82 79 64

https://doi.org/10.1371/journal.pone.0219316.t002
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89,000 to 134,700) gained under 100% uptake (see Fig 2). This equates to up to 5.42 QALYs per

thousand people for scenario (a) and up to 25.43 QALYs per thousand people for scenario (b).

S1 and S2 Tables display full details of the QALYs gained and change in health system costs

resulting from different levels of uptake of each intervention scenario, with and without dis-

counting. For scenario (a), 25% uptake of trip switched led to 30% of the total health gain that

could be achieved if all eligible trip pairs were switched (as the relationship between PA and dis-

ease incidence is one of diminishing marginal returns for increasing PA, the percentage of trips

switched and percentage of total health gain are not the same); 50% uptake accounted for 55% of

the total health gain. On a per capita basis, QALY gains were generally larger in males than

females, larger in Māori than Non-Māori, and largest in the 40–59 year old age group (see S3

Table). All scenarios led to reductions in health system costs (see Fig 3). These ranged from cost

savings of $127million (NZD in 2011, equivalent to $90million US$ in 2016) for 25% uptake of

scenario (a) to $2.1billion (NZD in 2011, $1.5billion in 2016 USD) for full uptake of scenario (b).

By modelling the health impact of each risk factor individually, we were able to determine that

the health impacts were primarily driven by increases in physical activity (see Fig 4). All interven-

tions led to an increase in road injuries that offset around 3% of the health gain in scenario (a)

and up to 10% of the health gain in scenario (b). Under all intervention scenarios, the contribu-

tion of reduced air pollution amounted to under one percent of the QALY gains observed.

Although the intervention took effect immediately, the peak health gains from the modelled

interventions were predicted to occur between 2031 and 2040 for the walking scenario and

between 2041 and 2050 for the walking and cycling scenario (see Fig 5, and S1 Fig for <100%

uptake). In the youngest age group (<40years), health gains were negative in the first ten years

of the walking and cycling scenario which reflects the low incidence of non-communicable dis-

eases relative to incidence of road injuries. Although we did not model trip switches in the 80+

Fig 2. Total QALY gains from modelled interventions.

https://doi.org/10.1371/journal.pone.0219316.g002
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Fig 3. Change in health system costs from modelled interventions.

https://doi.org/10.1371/journal.pone.0219316.g003

Fig 4. Contribution of risk factors to QALY gains under modelled interventions.

https://doi.org/10.1371/journal.pone.0219316.g004
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age group, there were small positive health impacts under both scenarios due to reduced inju-

ries due to the reduction in total distances travelled by motor vehicle.

There were reductions in vehicular emissions under all intervention scenarios, as displayed

in Table 3. Changes in vehicular emissions ranged from -5.6ktCO2e/year (UI -7.8 to -3.4) for

25% uptake of scenario (a) to -436ktCO2e/year (UI -607.2 to– 267.6) for 100% uptake of sce-

nario (b); corresponding to up to 4% of emissions associated with road transport in New Zea-

land. Reductions in vehicular emissions were compensated by increases in dietary emissions

from increased energy expenditure (and therefore assumed increases in food intake) due to

increased walking and cycling; for scenario (a) this led to small but insignificant increases in

overall emissions. Scenario (b) resulted in significant reductions in emissions, even after allow-

ing for increased emissions from increased dietary intake.

Discussion

Increasing active transport by switching short trips to a combination of walking and cycling

resulted in positive health impacts, substantial savings in healthcare costs, and may also reduce

Fig 5. Timing of QALY gains, by age group, under 100% uptake of modelled interventions.

https://doi.org/10.1371/journal.pone.0219316.g005

Table 3. Change in vehicular, dietary, and total greenhouse gas emissions under modelled interventions.

Change in emissions (ktCO2e)

Scenarios Percentage uptake Vehicular Dietary Total

(a) switching car trips�1km to walking 100% -22.5 (-32.0 to -13.5) 24.8 (15.4 to 34.5) 2.4 (-11.1 to 15.3)

50% -11.3 (-15.8 to -6.9) 12.4 (7.6 to 17.5) 1.1 (-5.3 to 7.6)

25% -5.6 (-7.8 to -3.4) 6.1 (3.7 to 8.5) 0.5 (-2.7 to 3.8)

(b) switching car trips �1km to walking and those 1-5km to cycling 100% -436.4 (-607.2 to -267.6) 241.3 (156.6 to 330.2) -194.4 (-377.2 to -3.1)

50% -218.0 (-302.5 to -136.0) 121.3 (79.0 to 163.8) -97.5 (-192.5 to -2.7)

25% -108.1 (-153.3 to -65.7) 60.3 (39.6 to 81.8) -47.2 (-96.9 to -1.9)

https://doi.org/10.1371/journal.pone.0219316.t003
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greenhouse gas emissions. The majority of the health gains from modelled interventions were

due to increases in physical activity as opposed to air pollution. This is the first study that

simultaneously quantifies the health impact, health care cost savings, and changes in trans-

port-related greenhouse gas emissions associated with switching short trips to walking and

cycling at the national level.

Comparison with previous literature

Our results support the findings of previous literature that show health benefits from increas-

ing active transport. In line with previous research, we find that increases in physical activity

account for the majority of health gains for active transport interventions and more than com-

pensate for increases in road injuries [1–3].

Our overall results are similar to those of a recent Australian study estimating the health

impacts of increasing active travel in Brisbane using a MSLT modelling approach [6]. The

authors estimated per capita gains of around 28.8 health-adjusted life years per thousand (3%

discounted) for an intervention that reduced the proportion of trips made by car from 82% to

63%, a similar intervention and result to the full uptake of our combined walking and cycling

scenario.

The relative reduction in health gain from increased road injuries as a proportion of the

total health gain of interventions that increase physical activity is also similar to previous

research. Stevenson et al [35] found reductions in health gains from increased road injury to

be up to 7% of total health gains observed across a range of cities worldwide; road injury

increases also amount to between 2 and 20% of the total disability adjusted life years gained

from interventions to increase walking and cycling in California [1]. These studies demon-

strate the need for road safety improvements alongside strategies to increase active transport,

to ameliorate real and perceived road safety issues associated with active transport uptake, and

to maximise health gains. Strategies to improve road safety are particularly important to ensure

positive shorter-term health impacts of increased active transport in younger age groups who

experience low non-communicable disease prevalence but high risk of road injury.

The overall greenhouse gas emissions reductions we observe for 100% uptake of the walking

and cycling scenario are equivalent to up to 64,000 people flying return between London and

Auckland, or up to 1.4% of total emissions from road transport in NZ. The reductions mod-

elled here are smaller than previous estimates as we attribute greenhouse gas emissions factors

to walking and cycling (as the current study included estimates of GHG emissions associated

with increased food intake), as well as to motorised vehicles. Our emissions factors for walking

and cycling are based on the assumption that individuals completely compensate for the

increased energy expenditure resulting from walking and cycling, and that the emissions of

foods that are compensated is comparable to that of current diets in New Zealand [33]. Meta-

analysis of the impact of active transport on BMI shows minimal impact [36], hence we

assumed that walkers and cyclers increase food intake directly proportion to changes in energy

requirements. However, if energy expenditure was not fully compensated, then the emissions

associated with walking and cycling would be lower and there would be additional (likely sub-

stantial) health impacts from reduced obesity. In an Australian modelling study which

assumed that increased active transport would result in reduced obesity, the change in obesity

alone resulted in 80% of the health gains of all risk factor components combined (i.e. obesity,

road injury, physical activity, and air pollution combined)[37].

Regarding the GHG emissions, the dietary component of greenhouse gas emissions is ame-

nable to change–dietary greenhouse gas emissions can be reduced by 70–80% by adopting

more sustainable diets (e.g. by reducing meat and dairy intake) [38]. This emphasises the need
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for changes towards sustainable diets regardless of, or in parallel to, increasing transport-

related physical activity.

The modelling framework used in this study is comparable to previous work in NZ and this

allows us to compare changes in transport interventions against other public health interven-

tions. Fig 6 plots the results of this study against previously modelled interventions for reduc-

ing tobacco [15, 39] and reducing salt in New Zealand [40]. The 25% uptake of scenario (a)

had similar modelled health gains to reducing tobacco outlets by 95%, and the 100% uptake of

scenario (b) had greater health impacts to the modelled health impact of a tobacco-free genera-

tion or a UK-style salt reduction campaign. That is, these are substantial health gains.

Strengths and limitations

Our study shows the health impacts associated with switching there-and-back trips to a combi-

nation of walking and cycling, which is more plausible than just switching any short trips are

made by car due to the need for the car for subsequent trips. We recognise that switching all

possible trip pairs (i.e. 100% uptake) is not plausible as some will represent trips made to trans-

port heavy goods (e.g. moving furniture) or trips made by (or with) individuals with limited

mobility. However, there may be other trip combinations that are amenable to switching that

were not considered as part of this analysis (e.g. A! B! C! A).

We present results for differing levels of intervention uptake and show that there are dis-

proportionate health gains at even low levels of intervention uptake; 25% uptake of trip

switches delivers around a third of the total health gain possible from switching all eligible

trips. This is due to dose-response relationships between physical activity and cardiovascular

diseases demonstrating decreasing marginal returns as physical activity increases [28].

Fig 6. Comparison of active transport scenarios with previously modelled interventions.

https://doi.org/10.1371/journal.pone.0219316.g006
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However, this pattern would change if trip switching was clustered within individuals. For

example, if trip switches were clustered within individuals with low levels of physical activity

then the health gains would be larger.

We were not able to account for patterns of clustering of trips within households. This

means that two survey respondents, in the same household, making the same sequence of trips

were treated independently in our analysis. This was necessary as we were not able to identify

the same trip (in the same vehicle) across multiple survey respondents, and not all people mak-

ing a trip were captured in the dataset (i.e. not all individuals making a particular trip were sur-

vey respondents). This is unlikely to be problematic in the context of the hypothetical

scenarios examined in this study, but may be an important consideration for future work

examining more targeted behaviour change strategies. For example, for analysis of a family-

targeted active transport intervention it would be important to ensure that all family members

“switched” at the same time to accurately capture the health impact of the intervention.

The MSLT modelling approach adopted in this study allows us to examine the timing of

health gains and account for time lags between changes in transport behaviours and reductions

in disease incidence. Traditional CRA approaches overestimate the benefits of physical activity

relative to MSLT modelling approaches [12], and therefore it was unclear whether the benefits

of increased physical activity would continue to override the negative impacts of increases in

injuries. Our study shows that it does–though injury impacts may predominate in the short

term in younger age groups.

We lacked data relating transport-related physical activity behaviours to current physical

activity levels. We assumed that increases in physical activity under the intervention scenarios

were independent of baseline physical activity levels. This may underestimate the health

impacts of the modelled interventions if those who make more of their short trips by car have

lower physical activity levels, again, due to decreasing marginal returns at high levels of physi-

cal activity. We also assumed that increases in transport related physical activity did not dis-

place other physical activity (e.g. recreational physical activity). As current physical activity

levels are low, it is unlikely that increases active transport would displace other physical activity

but further evidence is needed to establish the extent of substitution under specific policies.

Our estimate of the health impacts related to air pollution are based on vehicle distance

travelled. This captures the overall improvement in air quality due to reduced vehicle distance.

We do not capture the change in trip-level air pollution exposure for an individual who

switches from a car trip (at a rest breathing rate) to an active trip involving a higher breathing

rate. The impact of this could be positive (if outdoor air quality is good) or negative (if active

trip involves longer exposure to areas with poor air quality due to slower speed). There was

insufficient data to determine air pollution exposure at the individual level within the dataset;

whilst breathing rates are higher for active modes, the quality of air breathed during the trip

could be better or worse. Whilst negative impacts of increased air pollution exposure associ-

ated with breathing are unlikely to negate benefits from physical activity [41], examining real-

world changes in air pollution exposure from changes in travel mode is needed.

We assumed that switching short trips to active modes would not impact on BMI, in line

with findings of a recent review that argued that there were minimal changes in BMI from

increases in active transport [36]. Previous modelling studies have assumed BMI reductions

based on zero compensation of energy intake [1, 2], and therefore likely overestimate the

health impacts of modelled interventions. However, there is emerging evidence from observa-

tional studies suggesting that individuals who transition from walking to cycling may have a

decrease in BMI [42, 43]. Further research is needed to establish the extent to which additional

energy expenditure from increased walking and cycling is compensated by increased food

intake. Different interventions may have different BMI impacts (e.g. mass media campaign
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encouraging walking for weight loss compared to infrastructure improvements). Further

research is also needed to determine the BMI impacts of specific active transport interventions

to allow more comprehensive estimates of health and greenhouse gas emission impacts. Inter-

ventions that lead to BMI reductions in addition to physical activity level increases could have

much larger health gains (and greater reductions in greenhouse gas emissions) than those pre-

sented here.

Our emissions assumptions for car journeys do not reflect systematic variation in car emis-

sions such as higher emissions for ‘cold starts’ nor differences based on engine size. Emissions

for short car trips tend to be higher on a per kilometre basis than those of longer trips due to

the fuel required to warm the engine, but the magnitude of this impact is likely to be small

[32]. There may also be systematic differences in the car types used for shorter trips, but there

was insufficient detail on car type at the trip level to include this in our analysis. If the average

engine size of cars used for short trips is larger than average then our scenarios may result in

even greater reductions in vehicular emissions.

Finally, this study examines the healthcare cost implications associated with increases in

active transport. Whilst we do not model intervention costs for our hypothetical intervention

scenarios, the healthcare cost savings provide an indication of the cost-effectiveness threshold

for interventions to improve walking and cycling. From a health system perspective, an inter-

vention (e.g. a mass media campaign or infrastructure improvements) that results in switching

25% of trips to walking would be cost saving up to an intervention cost of NZ$127million (US

$90million) and cost effective (at the $45,000 per QALY threshold) up to around NZ$445mil-

lion (US$317million). Our estimate of the cost-effectiveness threshold for walking and cycling

is considerably higher than the total amount spent on walking and cycling investment by the

New Zealand Transport Agency between 2008 and 2017 (~NZ$120million [44]).

This study adds to the growing body of research around the impact of increasing active

travel. Increases in active travel could provide a meaningful increase in physical activity at the

population level, but may not be enough to address low physical activity levels alone. Interven-

tions to encourage active transport need to address issues around road safety, but recognise

that the long-term benefits of increased physical activity far outweigh road injury risks.

Conclusions

Switching short trips to walking and cycling would have positive health impacts, reduce health-

care costs, and may also reduce greenhouse gas emissions. Further research is needed to iden-

tify viable strategies to increase uptake of walking and cycling for short trips in highly car

dependent societies such as New Zealand.
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