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Animal-attached devices have transformed our understanding of vertebrate
ecology. To minimize any associated harm, researchers have long advocated
that tag masses should not exceed 3% of carrier body mass. However, this
ignores tag forces resulting from animal movement. Using data from
collar-attached accelerometers on 10 diverse free-ranging terrestrial species
from koalas to cheetahs, we detail a tag-based acceleration method to clarify
acceptable tag mass limits. We quantify animal athleticism in terms of frac-
tions of animal movement time devoted to different collar-recorded
accelerations and convert those accelerations to forces (acceleration × tag
mass) to allow derivation of any defined force limits for specified fractions
of any animal’s active time. Specifying that tags should exert forces that
are less than 3% of the gravitational force exerted on the animal’s body for
95% of the time led to corrected tag masses that should constitute between
1.6% and 2.98% of carrier mass, depending on athleticism. Strikingly, in
four carnivore species encompassing two orders of magnitude in mass (ca
2–200 kg), forces exerted by ‘3%’ tags were equivalent to 4–19% of carrier
body mass during moving, with a maximum of 54% in a hunting cheetah.
This fundamentally changes how acceptable tag mass limits should be deter-
mined by ethics bodies, irrespective of the force and time limits specified.
1. Introduction
The use of animal-attached devices is transforming our understanding of wild
animal ecology and behaviour [1,2]. Indeed, tags containing multiple sensors
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and position-determining systems have been used across
scales of time and space to measure everything from the extra-
ordinary details of high performance hunts in cheetahs [3], to
vast cross-taxon comparisons of animal behaviour and space-
use over whole oceans (e.g. [1,4]). A critical proviso is, how-
ever, that such devices do affect survival or change the
behaviour of their carriers, for both animal welfare issues as
well as for scientific rigor [5]. Defining acceptable device
loads for animals is critical because even diminishingly
small tags can cause detriment. For example, Saraux et al. [6]
showed that the addition of flipper rings to penguins can
affect their populations, with adults having a survival rate
16% lower than untagged conspecifics and producing 39%
fewer chicks, presumed to be because of the tags increasing
the drag force in these fast-swimming birds. Performance is
relevant in this case because drag-dependent energy expendi-
ture to swim increases with the cube of the speed [7].

Although consideration of the physics of drag has been
shown to be a powerful framework with which to understand
tag detriment in aquatic animals (e.g. [8,9]), drag is negligible
in terrestrial (though not aerial) systems even though tag det-
riment in terrestrial animals has been widely reported and is
multi-facetted [10]. Reported issues range from minor behav-
ioural changes [11] through skin-, subcutaneous- and muscle
damage with ulceration [12,13] to reduced movement speed
[14] and dramatically increased mortality [15]. As with drag,
we advocate that a force-based framework is necessary to
help understand such detriment. Indeed, force is implicit in
ethics-based recommendations for acceptable tag loads
because, for example, a central tenet is that animal tag mass
should never exceed 3% or 5% of the animal-carrier body
mass [16], this being based on early observations that tags
weighing less than 5% of animal body masses apparently
caused no change in behaviour [17]. Importantly though,
there are now numerous studies that have reported highly
variable impacts of animals carrying tags of masses less than
the 3–5% limit [18–21] for reasons that are not always clear
[20–22]. Implicit in this limit is that consequences, most par-
ticularly the physical forces experienced by animals owing to
tags, are similarly limited. This cannot be true because
Newton showed that mass, force and acceleration are linked
via F =ma, so animal performance, specifically their accelera-
tion, will affect the tag forces applied to the carriers. Tag
forces on the animal carrier can therefore be assessed by
measuring acceleration experienced by the tag as the animal
moves. Specifically, reference to Newton’s force/mass accelera-
tion formulation shows that any time the tag acceleration
exceeds 1 g (corresponding to Earth’s gravity), the carrier
animal will be subject to correspondingly higher tag-derived
forces. We note here though, that this necessitates gathering
on-animal data because simple consideration of acceleration
from rigid-non-living bodies is inappropriate for living
systems composed of multiple interacting segments [23].

Here, we examine the forces exerted by collar-mounted tags
onmovinganimals.We investigate four specieswithin theorder
Carnivora in detail; lions Panthera leo, European badgers Meles
meles, pinemartensMartesmartes andacheetahAcinonyx jubatus
(with body masses roughly spanning 2–200 kg) equipped with
accelerometers undertaking their normal activities in the wild
for 1–21 days. In particular, because gait is known to affect accel-
eration in body-mounted tags [24] we examined how walking,
trotting and bounding affected the forces imposed on the ani-
mals by the tags. We also equipped six other species of
mammal from diverse animal families (a cercopithecid, a phas-
colarctid, a phalagerid, a bovid, a cervid and a suid) with
different lifestyles with accelerometers in situ for periods
between 7 and 168 days to examine the general patterns of
forces they exhibited and compared them to the carnivores.

Because the act of travelling is known to produce particularly
high forces [25],we also carried out controlled trialswith 12dom-
estic dogs Canis familiaris (2–45 kg) equipped with the same tags
moving at defined speeds to investigate how movement speed,
body mass and tag mass interact to affect tag forces.

We document how the forces imposed by the collars chan-
ged with activity across all these species and conditions. Based
on this, we propose a method based on acceleration data that
allows researchers to define the breadth of forces exerted by
tags on animals and their relative frequency of occurrence.
We show how this information can then be used to derive
appropriately force-based acceptable limits for tag masses,
recognizing the effect of animal lifestyle and athleticism.
2. Material and methods
(a) Tag deployments on free-ranging species
We selected four species of free-living carnivores for detailed
analysis, exemplifying about two orders of magnitude of mass;
10 lions Panthera leo (mean mass ca 152 kg), one cheetah Acinonyx
jubatus (mass ca 41 kg), 10 badgers Meles meles (mean mass ca
9.1 kg) and five pine martens Martes martes (mean mass 1.9 kg),
and fitted them with collar-mounted tri-axial accelerometers
(‘Daily Diaries—Wildbyte Technologies (http://www.wildbyte-
technologies.com/); measurement range 0–16 g (resolution
0.49 mg), recording frequency 40 Hz), all of which constituted
less than 3% of the mass of the animal carriers (electronic
supplementary material, table S1). Owing to the weighting of
the loggers, and more particularly their associated batteries,
the units and sensors were positioned on the underside of the
collar although during movement the collars could rotate,
which could occasionally, temporarily bring the measuring
system off the ventral position. After being equipped, the ani-
mals roamed freely, behaving normally, for periods ranging
between 3 and 21 days before the devices were recovered.

In addition to these, we also deployed collar-mounted acceler-
ometers constituting less than 3% of the carrier mass (electronic
supplementary material, table S1) on six select free-ranging
animal species. We chose these species by capitalizing on
available data from animals equipped with high temporal resol-
ution acceleration tags on collars from different mammal families
with varying lifestyles for comparison with the carnivores. The
species and lifestyles were: a savannah-dwelling monkey—the
olive baboon Papio Anubis (mean mass 15 kg, n = 5); an arboreal
herbivorous marsupial—the koala Phascolarctos cinereus (mean
mass 10.3 kg, n = 5); a nocturnal, semi-arboreal, herbivorous mar-
supial—the mountain brushtail possum Trichosurus cunninghami
(mean mass 3.2 kg, n = 5); a grass-eating, desert-dwelling bovid—
the Arabian oryx Oryx leucoryx (mean mass 74 kg, n = 5); a grass-
eating, wood- and moor-dwelling cervid—the red deer Cervus ela-
phus (meanmass 135 kg, n = 5); and a forest-dwelling, omnivorous
pig—the wild boar Sus scrofa (mean mass 67 kg, n = 5). Extensive
details on species-specific tagging procedures are included in the
electronic supplementary material.
(b) Trials with domestic dogs
Twelve domestic dogs (Canis lupus domesticus) of seven different
breed combinations and three main body types (small, racers and
northern breeds), ranging 2–45 kg in body mass (electronic
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supplementary material, table S2), were volunteered by their
owners and the Royal Society for the Prevention of Cruelty to
Animals (RSPCA) Llys Nini Wildlife Centre (Penllergaer,
Wales) to take part in this study. Dog body masses were obtained
from the most recent measurements taken by a veterinarian, or
the RSPCA, and we measured body length, forelimb length
and hindlimb length to the nearest cm. Two leather dog collars
(short and long) of the same width were used to cover the
range in dog neck size. Combinations of pre-prepared lead
plates (up to 10 cm in length) and varying in mass (25, 35, 45,
50, 100, 150 and 175 g) were fashioned into collar loads equival-
ent to 1, 2 and 3% of each carrier dog’s body mass. The lead
plates were stacked, the longest of them (for the greatest
masses) being bent to replicate a 10 cm section of the collar cir-
cumference and attached securely to the ventral collar along
their full-length using Tesa® tape. A tri-axial accelerometer and
its supporting battery (3.2 V lithium ion) were taped securely
to the load. The tag and battery combined weighed 11.9 g and,
in the absence of any additional load, were considered negligible
in mass and used as a control (0% carrier body mass). All trials
were approved by the Swansea University Animal Welfare
Ethical Review Body (ethical approval number IP-1617-21D).

Each dog was encouraged to traverse along a 25 m stretch of
level, short-cut grass at slow (walk/amble), moderate (pace/trot)
and fast (canter/gallop) speeds (because gait affects acceleration
signatures substantially [24]) wearing collar-tags equivalent to 0,
1, 2 and 3% of their body mass (12 gait and tag mass combi-
nations) and trial order was randomized. Posts were spaced
every 5 m along the track. A stopwatch was used to record the
time taken (to the nearest s) for a dog to travel 20 m in order
to calculate an average speed of travel (m s−1).
(c) Data processing
In all cases of animals equipped with accelerometers, the three
channels of raw acceleration data were converted to a single
metric by calculating the vectorial sum of the acceleration follow-

ing Vect sum ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a2x þ a2y þ a2z )

q
, where a is the instantaneous

acceleration and the subscripts denote the different (orthogonally
placed) acceleration axes. We chose to use the Vect sum rather
than dynamic body acceleration (DBA) metrics [26] because
DBA values do not represent peak accelerations owing to the
gravity-based component being removed [27]. The specifics of
the surge, heave and sway accelerations were not considered sep-
arately owing to some collar roll. In the case of the free-living
carnivores, we examined how travel gait affected the Vect sum
by plotting the cumulative frequency distribution from each
species during periods of walking, trotting and bounding.

For the domestic dogs, we selected the maximum four peak
accelerations in the Vect sum from the gait waveforms using the
peak analysis tool in ORIGINLAB (2020) to examine them as a func-
tion of average speed, gait, body mass and tag mass as a
percentage of carrier body mass. We standardized the use of
four peaks because at the highest speeds some dogs only had
four full waveforms during the test stretch. The relative forces
(% body mass) exerted by the tags on their animal carriers were
calculated using F =ma, where m is the mass of the tag plus
collar as a percentage of carrier mass and a is the acceleration (g).
(d) Tag-based acceleration method
Finally, in a full cross-species comparison of the free-living
animals, we plotted the cumulative frequency distribution of
the Vect sum from each species during periods when they
were active (by excluding periods where the acceleration signals
were constant) to define the vector sum of the acceleration at
species-specific 95% and 99% limits.
(e) Statistical analyses
Linear mixed-effects models were conducted in R (v. 4.0.3, [28])
within the ‘lme4’ package (v. 1.1-26) in order to investigate how
the period between acceleration peaks, gait and body mass influ-
enced peak accelerations across four species of wild carnivores,
and separately in domestic dogs. Additionally, we investigated
how travel speed (covariate), body mass (covariate), collar mass
as a percentage of carrier body mass (fixed factor with four
levels) and gait (fixed factor with three levels for slow, moderate
and fast gaits) influenced peak accelerations and consequent
forces exerted by the tags. Dog identity was included as a
random factor in all models to account for repeated measures. All
potential interaction effects were first investigated and a step-wise
back-deletion of non-significant interaction terms was conducted.
Standard model diagnostics were conducted in order to ensure
that model assumptions were met (examining quantile-quantile
plots and plotting the residuals against fitted values) and data
transformations were conducted in order to meet assumptions
where appropriate. The F statistic and marginal and conditional
R2 were determined using the ‘car (3.0-5)’ and ‘MuMIn (1.46.6)’
packages, respectively. Coefficients for best-fit lines in the figures
were extracted from the final outputs of the models.
3. Results
(a) Changing acceleration according to activity in

carnivores
Accelerometer data for periods when our carnivores tra-
velled, displayed clear peaks in the waveforms with
measurable frequency and, summarized as a frequency distri-
bution of the vectorial sum of the three orthogonal axes,
showed tri-modal distributions except for the pine martens
which were mono-modal. Following [29] and examination
of videos of the study animals engaged in travelling using
different gaits with measurable step frequency, we could
ascertain that these corresponded to walking, trotting and
bounding (e.g. figure 1, which also tallied with our direct
and filmed observations of the domestic dogs below); these
were further exemplified by variation in the amplitude in
this acceleration metric (figure 2). Cumulative frequencies
of all acceleration values showed increasing acceleration
from walking through trotting to bounding and typically
had a roughly logarithmic-type curve for all gaits and ani-
mals (figure 1). The percentage time during which the tags
carried by the carnivores had acceleration exceeding 1 g
during specified activity, varied between a mean minimum
of 31% for walking badgers to 88% for bounding cheetahs
(electronic supplementary material, table S3). Furthermore,
while differences in species acceleration distributions were
not readily apparent for their walking gaits, the percentage
time during which acceleration was in excess of 1 gwas great-
est during bounding, with cheetahs showing the highest
values in this category (green line with circles in figure 1).
Mean peak accelerations per stride across species varied
between 1.37 g (s.d. 0.05) and 6.25 g (s.d. 0.79) for walking
and bounding cheetahs, respectively (electronic supplemen-
tary material, table S4). The maximum recorded value was
18.1 g in a cheetah assumed to be chasing prey.

Across the four species, gait was the main factor dictating
peak acceleration (figure 2) and there were no significant
effects of body mass, nor period between peaks (linear
mixed-effects model: log period: F1,210 = 0.01, p = 0.908; gait:
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F2,208 = 1083.07, p < 0.0001; body mass: F1,19 = 3.00; p = 0.100;
electronic supplementary material, table S5). The period
between acceleration peaks was greater for larger species
during slower gaits, but not for bounding (a linear mixed-
effects model demonstrated a significant interaction effect
between body mass and gait: F2,209 = 3.00, p < 0.0001;
electronic supplementary material, table S5).

There was also appreciable variation in the vectorial sum
of the acceleration within gaits and between sexes, as
exemplified by prey chases by lions. Here, mean peak accel-
eration per stride across females and males increased from
about 3 g at the outset to a maximum of about 3.8 g before
decreasing again (figure 3). However, female peak accelera-
tion was approximately 1 g higher than males for the
duration of the chase (figure 3). Given that females and
males were wearing tags that amounted to 0.72% and
1.02% of their mean body masses, respectively (electronic
supplementary material, table S1), this translates to tag-
dependent forces corresponding to greater than 2% and
greater than 4% of the gravitational force exerted on the ani-
mal’s body masses, respectively (figure 3). In the case of the
cheetah, which showed the highest peak vectorial accelera-
tion sum of our study animals, a 3% tag would impose
forces equivalent to 54% of the gravitational force exerted
on the animal’s body at this time.
In dogs, stride peak accelerations increased linearly with
travel speed (electronic supplementary material, figure S2),
but at greater rates with increasing relative tag mass (there
was a significant interaction effect between travel speed and
tag per cent body mass: F3,500.77 = 4.34, p = 0.004; electronic
supplementary material, table S6). There was also a signifi-
cant interaction effect between gait and tag per cent body
mass on stride peak accelerations (F6,498.57 = 4.34, p = 0.0002;
electronic supplementary material, table S6). Peak tag accel-
erations ranged from 4 to 18 g during fast category (canter/
gallop) trials in dogs wearing collar tags equivalent to 3%
of their body mass (electronic supplementary material,
figure S3). In this scenario, movement of the tag relative to
the body (flapping/swinging) was exacerbated and, as a con-
sequence, the force exerted by the tags ranged from 20–50%
of the gravitational force exerted on the carrier animal’s
body mass (electronic supplementary material, figure S4).

Stride peak accelerations were largely invariant with
body mass (F1,10.12 = 3.51, p = 0.090; electronic supplementary
material, table S6) across dog breeds for any given gait (elec-
tronic supplementary material, figure S3). Consequently, the
peak forces exerted by the tags were directly proportional
to tag mass and body mass. Accordingly, relative tag forces
(percentage of the gravitational force exerted on the carrier
animal’s body mass) were independent of carrier body
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mass (electronic supplementary material, table S6 and
figure S4).
(b) Using accelerometry to derive an over-arching
tag-force rule

Although travelling is a major component across species,
animal activity across all behaviours contributes to the accel-
eration, and therefore the tag force profiles, that animals
experience. We produced cumulative frequency curves of
the vectorial sum of the acceleration (cf. figure 1) for all 10
study species for periods when animals were considered
active and these all showed a characteristic sigmoid pattern
(figure 4a). These relationships were displaced further to
the right as higher acceleration activities accounted for an
increasing proportion of any animal’s time (figure 4a). In
order to have a scientifically robust acceptable threshold to
limit the forces produced by a tag on an animal carrier, we
suggest a tag-based acceleration method; that researchers
should derive a similar cumulative acceleration profile for
their study species and use a minimum of the 95% limits
on the plot (although higher limits may be more appropri-
ate). Assuming, in the case of our study animals, that these
limits were intended to cater for a tag that should exert
forces that are less than 3% of the gravitational force exerted
on the animal’s body, this limit would lead to corrected tag
masses constituting between 1.6% and 2.98% of our study
animals’ masses (figure 4b). We note, however, that even
these corrected tag masses would effectively exceed the 3%
rule conditions for one-twentieth of the animals’ active
periods: the difference between the 95% and 99% thresholds
for our study species indicates the extent of the force develop-
ment for this period with some, such as the koalas, showing
virtually no difference, whereas badgers, baboons and mar-
tens exhibited substantial differences (figure 4b).
Importantly though, this method would allow researchers
to define any tag force thresholds, not just 3%, and the
times these were exceeded by the animal, not just 95%.
4. Discussion
The subject of detriment caused by tags on animals is com-
plex because the general term ‘detriment’ has many facets
[20], not least because the tag itself may cause the animal
to move in an atypical manner, which may change how a
device would affect an animal that did not respond to the
device. One direct aspect that exemplifies this is, for example,
measurable physical harm to the animal, such as pressure
sores [12], the severity of which might be expected to
depend on movement patterns. However, physical harm
can also effectively occur if tagged animals or their offspring
cannot balance energy budgets owing to compromised fora-
ging stemming from tag interference [6,30,31]. Often, this is
simply a result of higher movement costs or reduced per-
formance in tagged animals as they travel [18]. This also
means though, that precise limb kinematics may be different
in travelling tagged animals, and this will affect acceleration
signals recorded by animal-attached tags, which is relevant
to a study such as ours. So, measurement affects performance
[32] and we must bear this caveat in mind when we advocate
that our tag data represent the norm of untagged animals.
Against this, however, we can and should use proper phys-
ical frameworks to assess tag detriment because this is
precisely what our tagged animals experience, whether
their movement is ‘normal’ or not, because we have specifi-
cally equipped them with the source of detriment. Indeed,
this is the fundamental premise behind our work although
the issue of what untagged animals may experience remains
problematic [5].

A rigid vehicle accelerating in a straight-line only experi-
ences acceleration in the longitudinal axis. By contrast, the
multiple limb-propelled motion of an animal with a flexible
body produces complex three-dimensional trunk accelera-
tions owing to the changing limb accelerations [23] caused
by multiple muscle groups that ultimately transfer mechan-
ical energy and affect shock absorption [33], and the
mechanical work conducted within each stride [34]. Ulti-
mately, the magnitude of trunk accelerations depends on
the combined acceleration of the limbs, and the masses of
those limbs (cf. [23]). Thus, animals engaging in high per-
formance activities are expected to produce high body
accelerations, and have physiological and anatomical adap-
tations to enhance performance, such as fast twitch muscles
[35], and tendons designed for greater storage and release
[36], which will increase this. Through all these complexities,
tags mounted on the trunk of an animal result in greater
forces being imposed that scale linearly with the acceleration
of the tag and its mass. Consideration of animal lifestyle then,
can already inform prospective tag users of the likely scale-up
of the tag forces beyond the 1 g normally considered for tag
detriment because force =mass × acceleration, the repercus-
sions of which are discussed below in terms of potential
detriment. Consequently, the 3–5% mass limits for slow-
moving animals, such as sloths (Bradipodidae) or koalas
(Phascolarctidae) (figure 4), seem most appropriate, though
this does not mean that tags will not affect the animals.
Against this, the 3–5% mass limits may be less appropriate
for pursuit predators, such as wild dogs (Lycaon pictus), reg-
ularly jumping animals like kangaroos (Macropodidae) or
martens (Mustelidae) (figure 4) and rutting ungulates (Ungu-
lata). Beyond that, in our small sample of carnivores at least,
which nonetheless covers about two orders of magnitude in
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Figure 3. Hunting lions experience maximum tag forces mid-chase and show substantial inter-sex differences. Box and whisker plots (bold horizontal bars show
means, boxes inter-quartile ranges (IQR) and whiskers 1.5 × IQR) of the: (a) vectorial sum of the acceleration peaks per bound (cf. figure 1), and (b) the tag-based
forces exerted as a percentage of the gravitational force exerted on the animal’s body (because our tag constituted 1.02% and 0.72% of the female and male body
weights, respectively, see the electronic supplementary material, table S1) for lions chasing prey as a function of the percentage progression into the chase (con-
sidered to have started when bounding began). Red (upper) and blue (lower) lines show grand means for five females and five males, respectively. The maximum
acceleration was 15.1 g, which would equate to a 3% tag exerting a force equivalent to 45.3% of the gravitational force exerted on the animal’s body. (Online
version in colour.)
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mass, it seems that peak acceleration associated with gait
varies little with mass, although larger animals have longer
stride periods (figure 2, cf. [37]). If these animals were to
carry tags constituting 3% of their normal body mass, mean
peak forces imposed by the tags would constitute ca 4.5%,
6% and 12% of the gravitational forces exerted on the ani-
mals’ bodies for walking, trotting and bounding gaits at
frequencies of between 1.6 and 4 times per second (for walk-
ing lions and trotting badgers, respectively; figure 2;
electronic supplementary material, table S4). We also note
how minor differences in sex-dependent tag masses coupled
with differences in performance affect the forces imposed by
the tags, as exemplified by the lions (figure 3) and how,
were the tags in this study to constitute 3% of the animals’
masses, the tag-based forces would scale up accordingly.
Against all this, we recognize two important trends: (i) that
as animals get larger, deployed tags on them are likely to
be a smaller fraction of their mass anyway; but that
(ii) despite miniaturization advances in tag technology,
researchers continue to deploy systems that are around the
3–5% mass limit on smaller animals [21].

Importantly, tag attachment is relevant in translating the
acceleration experienced by the animal’s trunk into tag-
dependent forces acting on the animal, with collars predicted
to be particularly problematic. A tag that couples tightly with
its carrier’s trunk, such as one attached with tape to a bird
[38] or glue to a marine mammal [39], experiences accelera-
tion that closely matches that of its substrate, so it exerts
forces at a site where most of the animal’s mass lies. By con-
trast, a device on a looser-fitting collar of a moving tetrapod
not only exerts forces on the (less massive) head and neck
areas, rather than the animal’s trunk, but the tag also oscil-
lates between essentially two states: one is analogous to
‘freefall’, which occurs between pulses of animal trunk
acceleration in the stride cycle which project the collar in a
particular direction owing to its inertia and lack of a tight
couple with the neck. The collar is therefore subject to
peaks in acceleration when it interacts with the animal’s
neck, causing greater collar acceleration than would be the
case if it were tightly attached to the animal’s body (cf.
peaks in figure 1). This explains why Dickinson et al. [40]
reported that acceleration signatures from collar-mounted
tags deployed on (speed-controlled) goats Capra aegagrus
became increasingly variable with increasing collar looseness,
and is analogous to the concerns related to injuries sustained
by people in vehicles depending on seatbelt tightness [41].
Partial answers to minimizing such problems may involve
having padded collars that should reduce acceleration
peaks, making sure that the tags themselves project mini-
mally beyond the outer surface of the collar and having
wider collars to reduce the pressure.

Having identified how animal movement changes the 3%
tag rule, it is more problematic to understand how the
identified forces translate into detriment. Within a general
tag detriment framework, heavier tags require that animals
perform more work (J) during movement because work
done = force × distance, which helps clarify why the
additional forces from a tag, on top of the animal weight,
should relate to energy expenditure (cf. [42]). However,
with respect to load carrying, how various tri-axial accelera-
tion metrics such as DBA [26] relate to force and energy
needs further research [43]. A prime effect of vectorially
summed acceleration is that higher associated forces (because
mass is constant) and smaller contact areas will lead to higher
pressure at the tag-animal interface because pressure = force/
area. This can affect anything from fur/feather wear [44] to
changing the underlying tissue [45] and, as would be pre-
dicted, is notably prominent in species wearing thin collars
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(e.g. howler monkeys Alouatta palliatai, where 31% of animals
wearing ball-chain radio-collars constituting just 1.2% of their
mass sustained severe damage extending into the subcu-
taneous neck tissue and muscle [12]). However, pressure-
dependent detriment will also depend on the proportion
and length of time to which an animal is exposed to excessive
forces, with animals that spend large proportions of their
time travelling, such as wild dogs, being particularly
susceptible [46].

Perhaps more esoteric, is the extent to which the inertia of
a variable force-exerting tag ‘distracts’ its wearer, aside from
the physical issues of load-bearing by animals, and in this
context, peak forces per stride are liable to be critical. The
tag mass as a percentage of carrier mass did not affect the
gait-specific speeds selected by the domestic dogs in this
study. However, it remains to be seen the extent to which a
typical 30 kg cheetah wearing a collar that is 3% of its body
mass, and therefore experiencing an additional force equival-
ent to up to 16 kg during every bound of a prey pursuit,
might have its hunting capacity compromised. We note that
the survival of such animals is believed to be especially sen-
sitive to the proportion of successful hunts (cf. [47]), which
calls for critical evaluation of performance between tag-
wearing and unequipped animals, or animals equipped
with tags of different masses (cf. [32]).

In the meantime, our suggested approach of setting tag
mass limits based on the overall (corrected) forces being
less than 3% of the gravitational force exerted on the animal’s
body for 95% of the active time should go some way to get-
ting a more realistic assessment of the potential for detriment.
Where researchers adopting this approach do not have
appropriate acceleration data for their study animal, they
could use a surrogate species, perhaps from an online data-
base. Such a resource should define the length of time that
study animals were equipped to derive the acceleration fre-
quency distribution because animal activities (and therefore
the acceleration signals associated with them) occur variously
over time. For this, longer periods are obviously better, but a
pragmatic approach might be to plot cumulative frequencies
of the vectorial sum of the acceleration as a function of
recording time to see how they change or tend towards a
stable value as the monitoring period increases. In this, we
note that seasonal variation in animal behaviours, such as
occurs in rutting ungulates, have potential to affect the distri-
bution substantially, emphasizing the importance of
considering the context under which the data were gathered.

Importantly, we do not advocate the 3% rule as such, but
recognize that it has been widely adopted and could serve
as a useful starting point with which to consider tag detriment
if calculated as we have suggested here. In this, cognizance
should also be given to the extent of tag forces for periods
above the 95% threshold because, where these are excessive,
it may be appropriate to use a 99% threshold or higher to
derive appropriate tag masses. Notably though, even 99%
limits do not highlight the high tag forces developed during
prey pursuits exhibited by the cheetah. We suggest that the
solution to this lies in more detailed consideration of the ani-
mal’s lifestyle; in particular, identifying survival-critical
behaviours with exceptionally high accelerations. Such periods
may persuade ethics bodies to raise their thresholds still
further. Underpinning this will be ongoing miniaturization,
where tags benefit from the sensor revolution in human wear-
ables, which will undoubtedly percolate through to animal
applications: advanced smart phones have greater than 10 sen-
sors, along with significant memory and data transmission
capabilities, and typically weigh 150–200 g or about 0.2% of
average human body mass, although human wearables benefit
from regular contact with charging systems while many wild-
life tag applications are projected for long-term deployments
(e.g. [48]) that either necessitate correspondingly large batteries
or autonomous charging systems, both of which increase the
mass of tags [49].
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Finally, consideration of the acceleration-based forces gen-
erated by animal-attached tags does not cover all forms of
detriment because other forces are at play, such as greater
drag in swimming- and flying species (cf. [6]), and more eso-
teric elements, such as device colour, that affect animal
behaviour [50]. However, our framework should take the cur-
rent ‘one-size-fits-all’ basic 3% rule into an arena where
quantitative assessment of acceleration can be compared to
the myriad of tag-influenced behaviours recognized by the
community to link animal lifestyle to putative detriment.
Most importantly, these considerations should give ethics
bodies a more useful rule of thumb than is currently the
case and enable us to develop systems that minimize force-
based tag effects, to the benefit of both animals and the
science that their studies underpin.
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