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To bolster coronavirus disease 2019 (COVID-19) pandemic mitigation efforts, the
U.S. Food and Drug Administration (FDA) issued an emergency use authorization

(EUA) for easy-to-use rapid antigen (Ag) tests for the diagnosis and surveillance of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (1, 2). Unlike
sensitive molecular tests that detect multiple SARS-CoV-2 genes, antigen tests target a
singular yet genetically conserved nucleocapsid viral protein (3–6). As the pandemic
continues, some hypothesized that the performance of available antigen tests may dif-
fer between SARS-CoV-2 variants. As of February 2022, the most recent SARS-CoV-2
strains declared variants of concern (VoC) by the U.S. Centers for Disease Control and
Prevention are Omicron (strain B.1.1.529) and Delta (strain B.1.617.2) (7). Beyond strik-
ing amino acid mutations in the spike protein, Omicron also harbors P13L, D31–33,
R203K, and G204R nucleocapsid mutations, while Delta strains carry D63G, R203M, and
D377Y nucleocapsid mutations (8, 9). However, the limits of detection (LoDs) of many
FDA EUA antigen tests were established with gamma-irradiated or heat-inactivated
preparations of the USA WA1/2020 (WA1) strain (10) lacking these nucleocapsid muta-
tions. This includes at-home lateral flow tests like the BinaxNOW COVID-19 Ag card
(Abbott Diagnostics Scarborough, Inc., Scarborough, ME), the CareStart COVID-19 anti-
gen home test (Access Bio, Inc., Somerset, NJ), and the GenBody Covid-19 Ag test
(GenBody, Inc., Chungcheongnam-do, Republic of Korea) and also the LumiraDx SARS-
CoV-2 Ag test (LumiraDx UK Ltd., Alloa, Great Britain), a microfluidic immunofluores-
cence assay for clinical laboratory testing (11–14). In the present study, we used cul-
tured plaque-titered live Omicron, Delta, and WA1 viruses to assess differences in the
LoDs with the BinaxNOW, CareStart, GenBody, and LumiraDx tests.

The titers of the Omicron lh01 (NCBI accession number OL719310), Delta (BEI Resources
catalog number NR-55671, isolate hCoV-19/USA/MD-HP05285/2021; Johns Hopkins
University), and WA1 (10) viruses were determined by a plaque assay (10) and further cali-
brated with the Abbott RealTime SARS-CoV-2 assay (Abbott Molecular, Inc., Des Plaines, IL)
(15). The genomes of the Omicron, Delta, and WA1 viral stocks used in our analysis were
also sequenced using the NEBNext ARTIC SARS-CoV-2 companion kit (New England
BioLabs, Ipswich, MA) and MinION (Oxford Nanopore Technologies, Oxford, UK) technology
(16–20), confirming the lack of mutation acquisition during propagation.

For LoD evaluation, 10-fold serial dilutions in phosphate-buffered saline (PBS) rang-
ing from 2.5 � 104 to 2.5 PFU/mL were applied to swabs in 50-mL volumes and tested
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in triplicate according to the manufacturers’ instructions (11–14). SteriPack sterile poly-
ester spun nasal swabs (catalog number 60566REVA; LumiraDx UK Ltd., Alloa, Great
Britain) and iClean foam swabs (catalog number CY-FS742; Supera, Houston, TX) were
used with the LumiraDx test. After identifying the lowest 10-fold dilution with three
replicate positive tests, we iteratively tested 3-fold dilutions around this concentration
until identifying the lowest dilution (the LoD) in which at least 19 of 20 replicates
($95%) were positive.

We found that Omicron had a 95% LoD threshold similar to or lower than that of
WA1 for all four tests (Fig. 1). In contrast, the LoDs were 40- to 140-fold higher for
Delta than for WA1 for every test examined except for CareStart (Fig. 1). The equal
detection of all three variants by CareStart and the only relatively modest increase in
the ratio of PFU to genome copies per milliliter for Delta (Fig. 2) suggest that this repre-
sents a true reduction in analytical sensitivity for Delta rather than an artifact of
enhanced plaquing efficiencies for Delta relative to antigen levels and associated levels
of genome copies. We previously found that the CareStart and LumiraDx antigen tests
were excellent in the detection of presumptively WA1-infected individuals (15). We
expect, however, that the observed magnitude of the loss in Delta sensitivity could
result in a.20% loss in the detection of potentially infectious individuals based on our
previous examination of the effect of LoD on clinical sensitivity (21). Nevertheless, the
most infectious individuals should still be detected.

Of note, our use of live virus, analyte volume, and swab type may explain the slight dis-
crepancy with the manufacturers’ determined LoDs. Our results for variant detection were
also not completely consistent with similar reports, but these studies either fell short of the
FDA’s EUA requirement of 20 LoD replicates, examined tests unavailable in the United
States, and/or tested gamma-irradiated or heat-killed virus, inactivation processes which
may artifactually affect test performance (22–24). In summary, we demonstrate that the
rapid antigen tests evaluated detect Omicron effectively. However, our unexpected find-
ings of decreased detection of Delta virus suggest that antigen test performance needs to

FIG 1 Limits of detection of antigen tests. Shown are the limits of detection (LoDs) in PFU per
milliliter determined in our analysis (bars). Vertical lines reference the manufacturer-reported LoDs in
the respective instructions for use (IFU) documents (11–14), converted from 50% tissue culture
infective doses (TCID50) per milliliter to PFU per milliliter by multiplying the TCID50 per milliliter by
0.7, a standard conversion based on the Poisson distribution, for BinaxNOW (dotted line) (1.4 � 102

TCID50/mL; 9.8 � 101 PFU/mL), CareStart (dashed and dotted line) (8.0 � 102 TCID50/mL; 5.6 � 102

PFU/mL), GenBody (dashed line) (1.1 � 102 TCID50/mL; 7.8 � 101 PFU/mL), and LumiraDx (solid line)
(3.2 � 101 TCID50/mL; 2.2 � 101 PFU/mL).
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be reevaluated for emerging variants to ensure that they still meet the intended public
health testing goals of the pandemic.
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