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Abstract: Background: Systemic treatment options for metastatic renal cell carcinoma (RCC) have
significantly expanded in recent years. However, patients refractory to tyrosine kinase and immune
checkpoint inhibitors still have limited treatment options and patient-individualized approaches are
largely missing. Patients and Methods: In vitro drug screening of tumor-derived short-term cultures
obtained from seven patients with clear cell RCC was performed. For one patient, a patient-derived
xenograft (PDX) mouse model was established for in vivo validation experiments. Drug effects were
further investigated in established RCC cell lines. Results: The proteasome inhibitor carfilzomib
was among the top hits identified in three of four patients in which an in vitro drug screening could
be performed successfully. Carfilzomib also showed significant acute and long-term cytotoxicity
in established RCC cell lines. The in vivo antitumoral activity of carfilzomib was confirmed in a
same-patient PDX model. The cytotoxicity of carfilzomib was found to correlate with the level of
accumulation of ubiquitinated proteins. Conclusions: In this proof-of-concept study, we show that
patient-individualized in vitro drug screening and preclinical validation is feasible. However, the fact
that carfilzomib failed to deliver a clinical benefit in RCC patients in a recent phase II trial unrelated
to the present study underscores the complexities and limitations of this strategy.

Keywords: renal cell carcinoma; drug screening; proteasome inhibitor; carfilzomib

1. Introduction

Metastatic renal cell carcinoma (RCC) has a poor prognosis with 5-year survival rates
between 8% and 12% [1,2]. The therapeutic landscape in metastatic RCC has changed
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considerably over recent decades and immune checkpoint inhibitors, alone or in combina-
tion with VEGF targeting agents, are now accepted first-line therapies [3–5]. Despite the
introduction of novel drugs and drug combinations, individualized treatment approaches
for metastatic RCC are still largely missing, but urgently needed for patients who fail to
respond to VEGF targeting drugs and immune oncological agents.

Advanced RCC is characterized by a high degree of genomic and functional intratu-
moral heterogeneity [6,7]. Under selection pressure, such as systemic anti-cancer therapy,
tumor heterogeneity may promote clonal evolution and, ultimately, the outgrowth of
treatment-resistant tumor cell populations [8]. This would argue for repeated molecular
analyses over the course of systemic treatment and subsequent therapy adjustments accord-
ing to arising subclonal driver alterations. We and others have shown that such strategies
are feasible and can help to discover novel therapeutic vulnerabilities [9,10]. Some RCCs
have recently been reported to harbor multiple driver mutations [11]. Whether and how
these drivers interact to shape the drug sensitivity of a specific tumor is currently poorly un-
derstood. Patient-individualized tumor models and drug screening may help to overcome
these uncertainties. This strategy can include cell culture models directly derived from the
patient’s tumor tissue, such as short-term cultures or organoids, as well as patient-derived
xenograft (PDX) models [12]. A number of studies have shown the feasibility of these
approaches [13,14]. Whether these models reflect the genomic heterogeneity and the clonal
composition of a tumor is an open question; however, there is evidence to suggest that this
may be the case, at least to a certain degree [15,16]. While it is conceivable that the growth
conditions in vitro or in a PDX model may favor more aggressive tumor subclones [17],
these subclones may ultimately also determine the clinical course of disease.

In the present proof-of-concept study, we demonstrate the feasibility of simultaneous
patient-individualized in vitro drug screening and PDX development in metastatic RCC.
The potent proteasome inhibitor carfilzomib was identified as the most effective compound
in vitro and its antitumoral activity was confirmed in vivo. In light of a negative phase II
study of carfilzomib in patients with advanced RCC, published recently [18], complexities
and limitations of patient-individualized drug discovery approaches are discussed.

2. Materials and Methods
2.1. Short-Term Tumor Cell Cultures

Short-term tumor cell cultures were established as previously described in [19]. Briefly,
fresh tumor tissue was obtained intra-operatively and transferred to the cell culture fa-
cility. Tissue specimens were mechanically minced and incubated in an enzyme cocktail
consisting of 40 U/mL collagenase (Sigma-Aldrich, St. Louis, MO, USA), 125 U/mL
DNAse (Sigma-Aldrich), and 100 U/mL hyaluronidase (Sigma-Aldrich) at 37 ◦C for 45 min.
Cells were passed through stainless steel sieves and suspended in RPMI 1640 cell culture
media supplemented with 5% fetal bovine serum, 100 U/mL of penicillin, 100 U/mL of
streptomycin, and 1% L-glutamine (all from Gibco, Carlsbad, CA, USA). All experimental
procedures were approved by the Ethics Committee of the University of Heidelberg School
of Medicine (S-453/2010). Written informed consent was obtained from all patients.

2.2. In Vitro Drug Screening, Inhibitor Treatment and Long-Term Tumor Cell Growth Assays

Short-term tumor cell cultures were subjected to a medium-throughput functional
drug screening procedure using the National Cancer Institute’s (NCI) Developmental
Therapeutics Program Approved Oncology Drugs Set IV. A full list of compounds can be
found under https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.htm
(accessed on 21 November 2013). The compounds of the library included chemotherapeutic
agents, small molecule inhibitors, and antihormonal substances. Briefly, tumor cells were
seeded into 96-well plates with 10,000 cells per well and allowed to adhere overnight.
Drugs were then added to the tumor cells at a final concentration of 1 and 10 µM, respec-
tively. The drug concentrations used for hit discovery, i.e., 1 and 10 µM, were based on
the published literature [20] and allow comparability between a relatively large variety

https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.htm
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of compounds with very distinct modes of action. The higher concentration (10 µM) was
included based on the known fact that drug resistance is widespread in RCC. No lower
concentrations were tested in the initial screening in order to not miss any potentially
active compounds. The plates were incubated at 37 ◦C for 72 h, and cell viability was
measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltratrazolium bromide (MTT) as-
says (Thermo Fisher Scientific, Waltham, MA, USA). All experiments were performed
in triplicate and the fold-changes over DMSO-treated tumor cells used as controls were
calculated. Sorafenib, sunitinib, axitinib and carfilzomib (all Selleck Chemicals, Houston,
TX, USA) were used at the concentrations and time intervals indicated. The colony growth
assays were performed as previously described in [21]. Established RCC cell lines 786-0,
ACHN, A-498, Caki-1, Caki-2 as well as non-cancerous HEK293 cells were obtained from
CLS Cell Lines Service (Eppelheim, Germany) and maintained as recommended by the
distributor. RCC4 cells were obtained from Sigma-Aldrich. Cell lines were chosen to reflect
the heterogeneity of the disease and the VHL status [22]. All cell lines were cultured in
media supplemented with 10% fetal bovine serum, 50 U/mL penicillin/streptomycin, and
0.5 µg/mL amphotericin B at 37 ◦C with 5% CO2.

2.3. PDX Models and In Vivo Drug Testing

Primary tumor cells were injected subcutaneously into the flanks of Naval Medical Re-
search Institute (NMRI)-nude mutant mice. The growth of palpable tumors was monitored
and followed by randomized treatment with the pharmacologic agents (vehicle control or
3 mg/kg/d carfilzomib i.v.). The treatment group consisted of five animals; the control
group consisted of four animals. To determine therapeutic efficacy, tumors were measured
twice weekly. The study was performed in accordance with the recommendations of the
Guide for the Care and Use of Laboratory Animals of the Society of Laboratory Animals
(GV SOLAS). All animal experiments were approved by the Committee on the Ethics of
Animal Experiments of the Freiburg regional council (Regierungspräsidium Freiburg, Abt.
Landwirtschaft, Ländlicher Raum, Veterinär- und Lebensmittelwesen—Ref. 35. Permit no.:
G-09/58) and performed at Charles River Laboratories, Freiburg, Germany.

2.4. Analysis of Ubiquitinated Proteins

The Proteome Profiler™ Array for human ubiquitinated proteins was used as recom-
mended by the manufacturer (R&D Systems, Minneapolis, MN, USA).

2.5. Statistical Analysis

Student’s two-tailed t-test for independent samples was used wherever applicable.
p values ≤ 0.05 were considered statistically significant.

3. Results
3.1. Carfilzomib Has Potent Antitumoral Activities in RCC Cells

Short-term tumor cell cultures from seven RCC patients were established and used for
functional drug screening with the NCI Approved Oncology Drugs Set IV (Table 1). For
patient RCC001, two tumor specimens (an abdominal wall metastasis and an intraabdomi-
nal metastasis, Figure 1a) were obtained and used for short term culture and drug testing
as well as establishment of a PDX model (from the intraabdominal metastasis) for later use
for in vivo validation experiments (Figure 1b,c).

A drug hit was defined as a ≥0.5-fold change in cell viability by a compound (i.e.,
IC50 was reached), and only drug screens with at least one compound producing such a
reduction of cell viability were considered successful in our analyses [23]. Following this
definition, successful drug screening results were obtained from four of seven patients
(Table 1).

The proteasome inhibitor carfilzomib was a hit in three of the four successful drug
screens, with reduction in tumor cell viability ranging from a 0.19-fold to a 0.28-fold
change (RCC001, RCC008, and RCC024; Table 1). Other hits were the related proteasome
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inhibitor bortezomib (0.25-fold change in RCC008), the transcriptional inhibitor dacti-
nomycin (0.24-fold change in RCC001), the DNA methyltransferase inhibitor decitabine
(0.16-fold change in RCC024), the BRAF inhibitor dabrafenib (0.24-fold change in RCC008),
the hormonal alkylating agent estramustine (0.24-fold change in RCC024) and a number of
tyrosine kinase inhibitors (erlotinib, nilotinib, ponatinib; Table 1). Throughout the drug
screens, the vast majority of drugs showed only minor effects on cell viability at both con-
centrations, 1 and 10 µM, which indicates resistance of the tumor cells to a wide spectrum
of antineoplastic substances.
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appear bigger than the cells in the right image. (D) Quantification of cell viability of short-term cultures obtained from 
patient RCC001 after treatment with increasing concentrations of carfilzomib for 72 h. Fold-changes after normalization 
to control (DMSO) from a single validation experiment are shown. For technical reasons, i.e., a drop in tumor cell prolif-
eration after passage three, we were not able to repeat the experiment. (E) Mean tumor volumes (±standard error) in a 
same-patient PDX model of patient RC001 after treatment with carfilzomib or vehicle control as indicated. 

Figure 1. Antitumoral activity of carfilzomib in vitro and in a corresponding PDX model. (A) Com-
puted tomography image of a local RCC recurrence (arrow) with examples of metastatic dissem-
ination (arrowheads; patient RCC001). (B) Workflow of in vitro drug screening and PDX devel-
opment. (C) Photomicrographs of short-term tumor cell cultures obtained from patient RCC001.
Scale bar = 250 µm. Note that tumor cells in the left image are heavily clustered, and thus appear
bigger than the cells in the right image. (D) Quantification of cell viability of short-term cultures
obtained from patient RCC001 after treatment with increasing concentrations of carfilzomib for 72 h.
Fold-changes after normalization to control (DMSO) from a single validation experiment are shown.
For technical reasons, i.e., a drop in tumor cell proliferation after passage three, we were not able to
repeat the experiment. (E) Mean tumor volumes (±standard error) in a same-patient PDX model of
patient RC001 after treatment with carfilzomib or vehicle control as indicated.
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We were able to further validate the result that carfilzomib is highly effective in RCC001
by testing short-term tumor cell cultures obtained from two distinct anatomic locations
(Figure 1c,d). Both short-term cultures showed a ≥50% reduction of cell viability after
carfilzomib treatment starting at drug concentrations of 0.005 and 0.05 µM, respectively
(Figure 1d). Furthermore, an in vivo validation of the antitumoral effects of carfilzomib was
performed using a PDX model from the same patient. While the in vitro results indicate
a cytotoxic effect, carfilzomib had mainly a cytostatic effect in vivo with suppression of
tumor growth when compared to vehicle control (Figure 1e). The carfilzomib experiment
was continued until day 50 after randomization. After day 30, the tumors of the treatment
group were invariably smaller than in the control group with a maximal difference at day
41 (mean absolute tumor volume 569.5 mm3 in the control group versus 374.6 mm3 in the
carfilzomib group).

Taken together, functional drug screening of tumor-derived short-term cultures and
validation in a same-patient PDX model demonstrate antitumoral effects of the proteasome
inhibitor carfilzomib in advanced RCC.

Table 1. Patient characteristics and in vitro drug screening results.

Patient
Sex/Age at
Diagnosis

(Years)

RCC
Histology Tumor Stage Grade

Time to
Tumor

Progression
(Months)

Origin of Specimens
Used for Functional

Drug Screening

Top Drug Screen
Hits (Fold Change

in Cell Viability at a
1 µM Concentration

Normalized to
DMSO)

RCC001 F/58 clear cell pT2a, cN0, cM0 2 37.6

Abdominal wall
metasta-

sis/Intraabdominal
metastasis

Carfilzomib (0.19)
Dactinomycin (0.24)

RCC006 M/48 clear cell
pT3a, pN0 (0/6)

pM1 (gall
bladder)

3 n/a Tumor nephrectomy
Dactinomycin (0.67)

Erlotinib (0.68)
Carfilzomib (0.72)

RCC008 M/59 clear cell
pT3, cN1, cM1

(OSS, PUL, BRA,
pericardium)

3–4 n/a Tumor nephrectomy
Dabrafenib (0.24)
Bortezomib (0.25)
Carfilzomib (0.28)

RCC014 M/53

sarcomatoid
(major),
clear cell
(minor)

pT1a, cN0, cM0 4 7.7 Local recurrence
Imatinib (0.62)

Capecitabine (0.64)
Vorinostat (0.64)

RCC016 M/57 clear cell pT2, cN0, cM0 2 182.5
Local recur-

rence/Intraabdominal
metastases

Afatenib (0.94)

RCC024 M/67 clear cell pT3a, cN1, pM1
(OSS, PUL) 2 n/a Tumor nephrectomy

Decitabine (0.16)
Erlotinib (0.17)

Carfilzomib (0.23)
Estramustine (0.24)

RCC025 M/59 clear cell pT3c, cN0, cM0 unknown 14.3 Peritoneal recurrence Nilotinib (0.38)
Ponatinib (0.43)

Only drug screens with at least one hit, i.e., compound producing a ≥0.5-fold change in tumor cell viability compared to DMSO controls,
were considered (grey fields).

3.2. Antitumoral Activity of Carfilzomib in Established RCC Cell Lines

We next investigated whether carfilzomib has acute antitumoral activity in established
RCC cell lines as well as non-cancerous, kidney-derived HEK293 cells. First, we tested the
response to carfilzomib in these cell lines and found growth-inhibitory activities in all cell
lines, starting at a concentration of 0.01 µM (Figure 2).
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moderate cytotoxic activity but only at the highest drug concentration of 5 μM, suggesting 
off-target effects (Figure 3). 

Figure 2. Carfilzomib exerts antitumoral activity in established RCC cell lines and HEK293 cells.
Quantification of cell viability of established cell lines after treatment with carfilzomib for 72 h at the
concentrations indicated. Results from three independent experiments (mean ± standard error) are
shown after normalization to control (DMSO).

Next, we performed a more detailed analysis using Caki-1 cells (VHL wildtype) and
786-0 cells (VHL mutated), with HEK293 cells used as controls, and analyzed the response
to carfilzomib in comparison to sunitinib, sorafenib and axitinib, which are VEGF receptor
targeting receptor tyrosine kinase inhibitors (TKIs) approved for the treatment of metastatic
RCC (Figure 3). First, we confirmed the acute cytotoxicity of carfilzomib in Caki-1 and
786-0 cells, which was found to be less pronounced in HEK293 cells. In contrast, sunitinib
and axitinib did not induce cytotoxic effects in all three cell lines used, which is in line with
their mode of action to mainly target endothelial cells [24]. Sorafenib showed moderate
cytotoxic activity but only at the highest drug concentration of 5 µM, suggesting off-target
effects (Figure 3).

We next sought to explore whether carfilzomib has long-term growth-suppressive
effects on RCC cells. Caki-1 and 786-0 cells as well as HEK293 cells were treated for
72 h with 0.1 µM carfilzomib or DMSO, followed by drug wash-out and monitoring of
colony growth for 12 days. As shown in Figure 4, there was a highly effective long-term
growth suppression by carfilzomib in 786-0 cells and to a lesser extent in Caki-1 cells, while
carfilzomib was significantly less effective in non-cancerous HEK293 cells.

Taken together, these results confirm the acute and long-term antineoplastic activity
of carfilzomib in RCC cells.
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Figure 3. Carfilzomib shows superior in vitro antitumoral activity compared to TKIs. Quantification of cell viability of
HEK293, Caki-1 and 786-0 cell lines after treatment with carfilzomib or TKIs at the concentrations indicated for 72 h. Results
from three independent experiments (mean ± standard error) are shown after normalization to control (DMSO).
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Figure 4. Long-term antitumoral effects of carfilzomib are cell type-dependent. Colony growth assay
comparing non-cancerous HEK293 cells to Caki-1 (VHL wildtype) and 786-0 (VHL-deficient) RCC
cell lines over 12 days. Note the absence of colonies in 786-0 cells.

3.3. The Level of Accumulation of Ubiquitinated Proteins Correlates with the Antineoplastic
Activity of Carfilzomib

We next investigated the difference in the antitumoral activity of carfilzomib in 786-0
and Caki-1 cells in greater detail. Given the function of carfilzomib as a proteasome
inhibitor, we hypothesized that the observed differences may be related to the extent of
accumulation of ubiquitinated proteins. Carfilzomib- or DMSO-treated cells were collected
and the increase in ubiquitinated proteins was measured using an array for ubiquitinated
proteins (Figure 5). Remarkably, carfilzomib induced almost invariably higher levels of
ubiquitinated proteins in 786-0 cells in comparison to Caki-1 cells. Ubiquitinated proteins
that accumulated over 50-fold in carfilzomib-treated 786-0 cells were ATF4, cyclin D1,
ErbB3, FLT4, SP70, IκB-ε, IKKγ, IRAK1, p53, PDGFRα, TfR, TRAF-6, and TrkA (Figure 5).
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ubiquitinated proteins in 786-0 cells. Results from a representative experiment are shown.
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Taken together, these results suggest that the antitumoral effects of carfilzomib corre-
late with the level of accumulation of ubiquitinated proteins, suggesting proteotoxic stress
as the underlying mechanism.

4. Discussion

In this proof-of-concept study, we show that patient-individualized in vitro drug
screening and subsequent in vivo validation is feasible and can lead to new candidate
drugs for the treatment of advanced RCC. The main hit in our drug screens was the protea-
some inhibitor carfilzomib. Carfilzomib showed antitumoral activity not only in short-term
tumor cell cultures but also in a same-patient PDX model. In long-term in vitro experi-
ments, carfilzomib was found to be more potent in a RCC cell line with VHL-deficiency
compared to a cell line harboring wildtype VHL. This cell-type-specific antitumoral activity
of carfilzomib was found to correlate with the level of accumulation of ubiquitinated
proteins, suggesting proteotoxic stress as the underlying mechanism.

Carfilzomib is a potent, second-generation, irreversible inhibitor of the chymotrypsin-
like activity of the proteasome [25]. Like the first-in-class proteasome inhibitor, bortezomib,
carfilzomib is approved for the treatment of multiple myeloma [26].

Unfortunately, in a recent phase II study of nine patients with treatment-refractory
metastatic clear cell RCC, there was an absence of antineoplastic activity of carfilzomib [18].
All nine RCC patients progressed with a median time interval of 1.8 months, and the
objective response rate was 0%. The rationale for this small clinical trial was the observation
that certain VHL mutations lead to a destabilized pVHL with at least partially retained
functionality [27]. The VHL tumor suppressor gene is inactivated in the majority of clear cell
RCCs. pVHL is part of an E3 ubiquitin ligase complex that mediates the ubiquitination of
the a subunit of the heterodimeric transcription factor hypoxia-inducible factor (HIF) under
normoxic conditions. In case of hypoxia, and when VHL is inactivated, HIFs accumulate
and activate signaling pathways that lead, among others, to enhanced angiogenesis via the
VEGF/VEGF receptor (VEGFR) axis. This pathway is the basis for established and novel
therapeutic interventions in RCC that target VEGF, VEGFR or HIF2α [28].

In a situation, however, where destabilized pVHL with at least partially retained
functionality is expressed, pVHL activity could potentially be rescued by inhibition of
the proteasome with a subsequent re-activation of HIF degradation [27]. Given that the
proteasome inhibitor bortezomib had shown more promising results in patients with
advanced RCC [29–31], the absence of antineoplastic activity of carfilzomib in the study
by Hasanov et al. [18] is perplexing. There are a number of possible explanations for
the discrepancy between our preclinical results and the clinical results by Hasanov and
colleagues [18].

First, it is conceivable that short-term cultures and established cell lines do not ade-
quately reflect the complex microenvironment in a patient tumor [32].

Second, proteasome inhibition has been reported to attenuate immune cell func-
tions [33]. RCC is a tumor entity in which immune surveillance has long been implicated
in the control of malignant growth and progression. The therapeutic efficacy of immune
checkpoint inhibitors in metastatic RCC underscores this notion [3]. Despite findings
suggesting that tumor-infiltrating cytotoxic T cells are frequently exhausted in RCC [34]
further suppression of the immune system could conceivably promote tumor progression
in patients with advanced RCC.

There are a number of additional points that need to be taken into account when
patient-individualized drug screening and validation are considered. The screening set-
up may have favored finding drugs like carfilzomib, since it is known for relatively fast
apoptosis induction, while, for example, TKIs are more dependent on cell growth and
inhibition of signal transduction pathways. In addition, the target structure of TKIs may
not be expressed by the cells analyzed. As such, for drugs with different types of kinetics
and mechanisms of action, different assays may be appropriate [35].
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It may be also possible to exploit the drug screening results for potential combina-
tion therapies. For example, in patient RCC006, carfilzomib and the EGFR-targeting TKI
erlotinib were both found as hits (Table 1). A previous study has shown that the combi-
nation of carfilzomib and erlotinib has synergistic antitumoral effects both in vivo and
in vitro [36]. Carfilzomib exerts cytotoxic effects in the 1 to 0.1 nM range when used as a
single agent [36,37]. Through the combination with erlotinib, a carfilzomib concentration
that was approximately one order of magnitude lower than when used as a single agent
was able to lead to significant cytotoxicity [36]. Hence, combination treatment may trigger
synergistic antitumoral effects, thus allowing the use of lower drug concentrations.

The off-label use that almost inevitably follows drug screening efforts has legal ram-
ifications that can prolong or prevent drug procurement. In addition, low engraftment
rates and slow tumor growth can delay the generation of PDX models. Moreover, serial
passaging has been shown to alter drug sensitivities and evolutionary trajectories away
from the primary tumor [17,38,39]. In our study, patient RCC001 did not receive carfilzomib
due to rapidly declining performance status.

Further limitations of our proof-of concept study are the small sample size and the
lack of genetic information of the tumors. Unfortunately, VHL mutation testing has not
been performed. However, since the vast majority of patients with clear cell RCC harbor
inactivated VHL, it is highly likely that this is also the case in our patients. We found
a more pronounced accumulation of ubiquitinated proteins in a VHL-deficient RCC cell
line pointing to a more general role of pVHL in the elimination of abnormal proteins, as
previously suggested [40].

Taken together, our results show that patient-individualized drug screening and
parallel in vivo validation is feasible but at the same time underscore the complexity of
this approach. Further studies are warranted to understand the apparent disconnection
between preclinical and clinical findings and to optimize tools for drug discovery in
advanced RCC.
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