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Abstract

How a child’s brain develops specialization for print is poorly understood. One longstanding

account is selective neuronal tuning to regularity of visual-orthographic features, which pre-

dicts a monotonically increased neural activation for inputs with higher regularity during

development. However, we observed a robust interaction between a stimulus’ orthographic

regularity (bottom-up input) and children’s lexical classification ability (top-down prediction):

N1 response, which is the first negative component of the event-related potential (ERP)

occurring at posterior electrodes, was stronger to lower-regularity stimuli, but only in children

who were less efficient in lexically classifying these stimuli (high prediction error). In con-

trast, N1 responses were reduced to lower-regularity stimuli in children who showed high

efficiency of lexical classification (low prediction error). The modulation of children’s lexical

classification efficiency on their neural responses to orthographic stimuli supports the pre-

dictive coding account of neural processes of reading.

Introduction

Through extensive learning, humans gain the ability to quickly recognize visual patterns in the

environment, which is important for acquiring cultural skills such as reading. The ability to

efficiently recognize visual words relies on neural specialization for print [1]. One further fun-

damental issue is how a child’s brain develops specialized visual-orthographic processing. One

longstanding theoretical account, referred to as feature detection model, proposes that selec-

tive tuning to visual-orthographic features, as a result of detecting bottom-up stimulus features

that are repeatedly encountered in the course of children’s learning to read, serves as the main

mechanism (see Local Combination Detector model or Orthographic Tuning Hypothesis)

[2,3]. On the contrary, the predictive coding model claims that the specialization emerges and

develops through a predictive coding mechanism by which visual-orthographic features
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(bottom-up information) interact early on with lexical classification (top-down predictions),

which becomes more efficient as reading experience increases (see Interactive Account) [4].

Therefore, the 2 models, in principle, make distinct theoretical hypotheses about developmen-

tal profiles of the effect of visual-orthographic regularity on early neural activation. In the fea-

ture detection model, stimuli detected as having higher regularity would generate stronger

neural activation, and during development, such a monotonic dependence of neural response

on stimulus regularity would become more evident as children become more skilled in detect-

ing the orthographic regularity of stimuli. By contrast, the predictive coding model predicts

less neural activation to stimuli with higher regularity as they are predicted more efficiently

due to low prediction errors, and a non-monotonic neural response to stimuli with different

orthographic regularities during development: at the beginning of learning to read, the neural

activation is low as there is little basis for top-down prediction; during learning, the neural

activation would become stronger for lower-regularity stimuli because they are recognized as

word-like, thus engaging top-down prediction with a large prediction error; with more learn-

ing and more efficient lexical classification, stimuli not conforming to orthographic regularity

would be more efficiently rejected and less likely to engage the top-down prediction, leading to

decreased neural activation.

However, conclusive empirical evidence adjudicating between these rival models is lacking,

although there has been a considerable body of research on these two models. The non-mono-

tonic neural response is assumed in the predictive coding model, as stimuli with low ortho-

graphic regularity (e.g., symbol strings in [5,6]) may not engage word-related predictions [4],

leading to similar activation profiles during learning to read in both predictive coding and fea-

ture detection models. Therefore, distinct theoretical hypotheses can only be made for devel-

opmental profiles of neural responses to stimuli that look more word-like than symbol strings

and with different degrees of visual-orthographic regularity (e.g., words and pseudowords, or

pseudowords and irregular letter strings in alphabetic languages, or real characters and pseudo

characters, or pseudo characters and false characters in Chinese).

To test the two theoretical models and further explore the mechanism underlying the devel-

opment of the neural specialization for print, we characterized the developmental profile of

neural responses to stimuli with different degrees of visual-orthographic regularity in children

at different stages of learning to read. We found a non-monotonic pattern of the neural

responses over the course of development: at the beginning, no difference was found among

neural responses to stimuli with different degrees of visual-orthographic regularity; during

learning, neural response was stronger to stimuli with lower regularity when children were less

efficient in lexically classifying these stimuli; and with more learning, neural responses were

reduced to lower-regularity stimuli when children showed higher efficiency of lexical classifi-

cation, in agreement with predictive coding but not feature detection models.

Results

Behavior

The behavioral experiment investigated the development of perceived orthographic regularity

and used it as a measure of efficiency of children’s lexical classification of characters and other

stimuli during learning to read. Four types of stimuli, which had different degrees of visual-

orthographic regularity for adult skilled Chinese readers, were used: real characters, pseudo

characters, false characters, and stroke combinations (see Fig 1A). A lexical decision task was

adopted, in which children were instructed to judge whether a stimulus was a real Chinese

character or not (Fig 1B, left panel). With the 4 types of stimuli and the lexical decision task,

we could estimate the extent to which a certain stimulus type was perceived as having regular
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orthography and the efficiency with which this stimulus type could be classified as a real char-

acter. When participants responded ‘character’ to a stimulus, this stimulus would be perceived

as a real character. The range of the percentage of ‘character’ response is 0% to 100%. In the

framework of these 2 models, the minimum (0%) means that all stimuli in this group were

rejected as real characters, suggesting that participants perceive that the orthography of these

stimuli is mostly irregular and there was no drive for word-related prediction (and have mini-

mum prediction error). The maximum (100%) means that all stimuli are recognized as real

Fig 1. Design in the behavioral and ERP experiments. (A) Examples of stimuli with decreasing visual-orthographic regularity for adult skilled readers in Chinese

script: real, pseudo, false characters, and stroke combination. These stimuli are valid at different levels of visual units (i.e., stroke, radical, and character). Stroke

combinations were constructed by combining strokes of characters that do not form valid radicals (invalid at radical level). False characters consisted of valid radicals,

but they were placed in illegal positions and did not form valid characters (invalid at character level). Pseudo characters consisted of radicals at orthographic legal

positions, but the resulting “characters” do not exist in the lexicon (frequency = 0). Real characters were valid at all levels of visual units. The two different colors in

the examples are for demonstration only to show the two radicals. (B) Schematic depiction of the lexical decision task in the behavioral experiment (left panel) and

one-back color matching task in the ERP experiment (right panel). In the lexical decision task, children were instructed to judge as accurately and as fast as possible

whether a stimulus was a real Chinese character or not. In the one-back color matching task, each stimulus was presented in one of 3 colors (red, green, or yellow).

Children were asked to press a button as accurately and as fast as possible whenever the same color occurred twice in a row. ERP, event-related potential.

https://doi.org/10.1371/journal.pbio.3000474.g001
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characters, suggesting that participants perceive the orthography of these stimuli as mostly reg-

ular and predict these stimuli efficiently (and have low prediction error). The chance level

(50%) response means that participants are mostly uncertain about whether the stimuli are

real characters or not, suggesting that participants are more uncertain about the stimuli’s

orthographic regularity and predict these stimuli more inefficiently (and have higher predic-

tion errors).

Participants’ responses (i.e., character versus non-character; see Fig 2) were analyzed using

a generalized linear mixed-effect model using the lme4 package [7] in R [8]. The model evalu-

ated categorical responses as predicted by the main effect of Stimulus Type (real, pseudo, false,

strokes), Age (7, 9, 11), and the interaction of the two, including random intercepts by Subjects

and Items and slopes of Stimulus Type by Subject (see S1 Table, S2 Table, S3 Table, S4 Table,

S5 Table, S6 Table and S1 Text for details). Results show that the main effect of Stimulus Type,

χ2(3) = 819.720 (p< 0.001), and the main effect of Age, χ2(2) = 11.605 (p< 0.01), were signifi-

cant. Importantly, the interaction between Stimulus Type and Age was significant, χ2(6) =

45.404 (p< 0.001). These results suggest that different response patterns of lexical classifica-

tion manifested in children at different ages. To further link the behavioral response to the

neurophysiological N1 amplitude under the framework of predictive coding, we further com-

pared subjects’ percentage of ‘character’ response to chance level, which is taken as a measure

of the orthographic uncertainty (in contrast to clear-cut representation) of the different types

of stimuli for each group of subjects. For this comparison, we conducted a binomial test (with

Bonferroni adjustments for multiple comparisons). The 2 theoretical models of reading make

different predictions regarding the comparisons of N1 responses to stimuli with different levels

of uncertainty as reflected in the proximity to chance-level lexical classification (see Fig 3). Spe-

cifically, if the percentage of character response was high above chance level (50%), partici-

pants perceived the stimulus type as having high orthographic regularity and were more

efficient in classifying them as real characters (associated with sounds and meanings, i.e.,

potential sources of prediction), presumably generating lower prediction error. Importantly, if

Fig 2. Development of orthographic regularity perception and lexical classification efficiency for 4 types of stimuli. (A) Percentage of character response. Hit for

real characters and false alarm for the other 3 stimulus types in the behavioral lexical decision task. The significance tests were two sided, and they were binominal tests

against chance level (50%). The percentages of character response to real and pseudo characters were high above chance level; the percentage of character response to

stroke combinations was well below chance level at 3 ages. Importantly, 7-year-olds showed a higher percentage of character response to false characters than chance

level. The percentage of character response to false characters was closest to chance in 9-year-olds. With more reading experience, the percentage of character response

to false characters was lower than chance level. (B) Reaction time data of character responses; 7- and 9-year-olds showed no reaction time differences between pseudo

and real characters, while 11-year-olds showed longer reaction times when classifying pseudo characters as real characters. Lines in the boxes denote means; ��p< 0.01,
�p< 0.05. See 10.6084/m9.figshare.8948912 for subject data.

https://doi.org/10.1371/journal.pbio.3000474.g002
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the percentage of character response was close to chance level, participants were more uncer-

tain about these stimuli and were less efficient in lexical classification, presumably generating

higher prediction error (a larger difference between visual input and predictions, [4]). If the

percentage of character response was lower than chance level, participants were able to more

efficiently reject these stimuli as real characters and were less likely to engage the word-pro-

cessing mechanism, presumably generating lower prediction error. As shown in Fig 2A, we

found that across 3 age levels, participants consistently responded ‘character’ to real and

pseudo characters and ‘non-character’ to stroke combinations: the percentages of character

response to real and pseudo characters were high above chancel level (all p< 0.001), and the

percentage of character response to stroke combinations was well below chance level (all

p< 0.001). Interestingly, a developmental change was found in the percentage of character

response to false characters: high above chance level at 7 years (p< 0.001), close to chance

level at 9 years (p = 0.136), and then lower than chance level at 11 years (p = 0.012). Because

the percentage of character responses for real and pseudo characters are near ceiling, we fur-

ther analyzed participants’ reaction times in classifying whether a stimulus was a real character

(i.e., character response). Longer reaction time means that the participants were less efficient

in classifying it as a real character, with higher prediction error. For reaction time measures,

we focused on the high-frequency Chinese characters. Reaction times were calculated from tri-

als of the character response. Reaction times shorter than 200 ms (0.48% of all trials) were

Fig 3. Model specification. (A) Orthographic regularity perception and lexical classification efficiency in children across 3 stages of learning to read (also see Fig 2).

Hypothesized neural N1 responses in feature detection model (B) and predictive coding model (C). (D) Neural response of the system with age decrease due to general

brain maturation. (E) Hypothesized development of neural responses to stimuli with different orthographic regularities at 3 stages of learning to read based on the

feature-detection model. In the beginning readers (7 years old), neural response to real/pseudo/false characters with higher orthographic features would be stronger

than that to stroke combinations. In the middle stage (9 years old), the neural response to false characters would be reduced and weaker than that to real/pseudo

characters with higher orthographic features. With further reading training, in the later stage (11 years old), neural response to pseudo characters (less regular) would be

reduced and weaker than real characters. (F) Hypothesized development for the predictive coding model. In the beginning stage, the neural response to real/pseudo/

false characters would be stronger than that to stroke combinations (fewer predictions and prediction errors). In 9-year-olds, neural response to false characters (lower

efficiency of prediction due to higher prediction error) would be increased and stronger than that to real/pseudo characters. In 11-year-olds, neural response to pseudo

characters (lower efficiency of prediction due to higher prediction errors) would be stronger than that to real and false characters.

https://doi.org/10.1371/journal.pbio.3000474.g003
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discarded before further statistical analysis. One outlier participant reaction time was replaced

by the group mean plus 3 standard deviations. All data were analyzed using SPSS 22.0 (IBM

Corp, https://www.ibm.com/analytics/spss-statistics-software). Data were analyzed using the

General Linear Model (GLM) procedure for repeated measures to model 2 types of Stimulus

(real character and pseudo character), and 3 levels of Age (7, 9, and 11). As shown in Fig 2B,

the results revealed no significant Stimulus Type difference: F(1, 38) = 0.407 (p> 0.05). The

Age difference was marginally significant: F(2, 38) = 2.611 (p = 0.087). Importantly, the effect

of Stimulus Type by Age was marginally significant, F(2, 38) = 2.597 (p = 0.088, power =

0.582). And further, tests of simple effects and Bonferroni-adjusted post hoc comparisons were

made using estimated marginal means (EMMEANS) procedure within this model. Results

showed a longer reaction time for pseudo characters than real characters in 11-year-olds (p =
0.045, Hedges’s g = 0.811), but no significant difference was found in either 7- or 9-year-olds

(all p> 0.05).

As shown schematically in Fig 3A, our first experiment suggests that children gradually

acquire knowledge about orthographic regularity of characters and develop in the perception

of the orthographic regularity and the efficiency of lexical classification during their reading

development: (1) young children with little reading experience perceived real, pseudo, and

false characters as having similar high regularity and showed high efficiency in responding

(low prediction error); (2) those children with 2 more years of reading training perceived false

characters as less regular but were less efficient for false characters than real and pseudo char-

acters in lexical classification (higher prediction error); and (3) those children who had more

reading experience more efficiently rejected false characters as real characters (lower predic-

tion error), but perceived pseudo characters as less regular and were less efficient for pseudo

characters than real characters in lexical classification (higher prediction error).

ERP

We next used the ERP method to directly test the 2 theories of reading acquisition described

above, addressing the core question: how a child’s brain develops specialization for print. We

focused on the N1 (N170) component, which is the first negative component of the ERP occur-

ring at posterior electrodes (and peaking at 170 ms in adults). We focused on this component

because existing studies comparing words to low-regularity control stimuli have shown that

the neural specialization for print is reliably distinguished as early as 130 to 170 ms over the

occipitotemporal cortex, peaking at the level of the N1 (N170) component [1,5,9]. We used a

content-irrelevant color-matching task with a short duration of stimulus presentation (Fig 1B)

to target nonstrategic automatic predictions, because long stimulus durations and explicit lan-

guage tasks may lead to confounding effects from task-related linguistic predictions on early

visual-orthographic processes [3,10,11]. S7 Table and S2 Text provided empirical evidence

that the top-down predictions were nonstrategic and generated automatically, thus precluding

task effects that could potentially occur during the N1 time range [10–12].

Based on the first experiment, the 2 models make different predictions regarding the pat-

tern of N1 responses mainly to the 3 types of stimuli that are likely to engage word processing

mechanisms but with different orthographic regularity (i.e., real, pseudo, and false characters)

(also see Fig 3). In other words, focusing on these 3 types of stimuli allowed for a more sensi-

tive test between the two models. Specifically, the feature detection model proposes that neural

N1 responses to print are primarily driven by the perception of orthographic features and

hypothesizes that lower orthographic regularity would lead to weaker N1 (Fig 3B). Neural

responses would monotonously decrease for stimuli with increasingly lower regularity (false

characters and pseudo characters) as children become more skilled in detecting the stimulus

Evidence for predictive coding in the development of neural specialization for print
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orthographic regularity (Fig 3E). To the contrary, the predictive coding model hypothesizes

that neural response would be stronger for stimuli with lower regularity when efficiency for

the stimuli in lexical classification was reduced (and thus higher prediction error) (Fig 3C, also

see [4] for more discussion). Neural N1 responses would show a non-monotonic pattern, with

strongest response to false characters at 9 years and pseudo characters at 11 years (Fig 3F). As

discussed before, children aged 9 were less efficient in lexically classifying false characters (i.e.,

more confused about false characters), indicating a higher tendency to engage the word pro-

cessing mechanism, resulting in high prediction error (due to mismatch between input false

characters and top-down prediction), whereas children aged 11 were more efficient in reject-

ing false characters as real characters thus reducing engagement of the word processing mech-

anism and allowing less opportunity for prediction error to manifest (also see Fig 2 and Fig

3A). Consequently, based on the predictive coding model that postulates stronger neural

response for stimuli with higher prediction error [4], we predicted that N1 response to false

characters would be decreased between 9 and 11 years.

Fig 4A illustrates topographic maps elicited by each stimulus type. We found a robust effect

of Stimulus Type by Lateralization by Age (F[3.87, 79.41] = 4.721; p = 0.002; power = 0.99,

with Greenhouse Geisser corrected) over the occipitotemporal electrodes. And further, simple

effects tests and Bonferroni adjustments for post hoc comparisons were made using

EMMEANS procedure within the GLM model. Results of this analysis showed that the N1

amplitudes elicited by the 3 types of orthographic stimuli (real, pseudo, and false characters)

are stronger than that for stroke combination (see S3 Text for detailed results).

The critical results regarding our hypothesis were shown in Fig 4C, which illustrates non-

monotonic pattern of N1 responses to the 3 types of orthographic stimuli over the left occipito-

temporal electrodes across 3 stages of learning (see S3 Text for detailed results). While 7-year-

old children showed similar N1 responses to real, pseudo, and false characters, 9-year-old chil-

dren showed stronger N1 to false characters than real and pseudo characters. In 11-year-old

children, N1 to pseudo characters was stronger than false and real characters. Over the right

side, no N1 difference was found among the 3 stimulus types and no developmental change in

the pattern of N1 responses to these types was shown among 3 age levels.

Taken together, we observed a stronger N1 response to stimuli with lower orthographic

regularity (less character-like) but only when efficiency in lexical classifying for these stimuli

was reduced (high prediction error) at a certain age, as indicated by stronger N1 responses to

false characters in the 9-year-olds and to pseudo characters in the 11-year-olds, respectively.

These results unequivocally support a predictive coding account of the development of the

neural specialization for print (comparing Fig 4C to Fig 3F) but are incompatible with hypoth-

esized responses based on feature detection models (comparing Fig 4C to Fig 3E). As discussed

before, focusing on these 3 types of stimuli allowed for a more sensitive test between the 2

models. That said, results from GLM procedure including all the experimental levels (real,

pseudo, false, stroke combination) showed the same overall pattern of results as that of the

more constrained GLM procedure, in particular regarding the significant difference between

false and pseudo characters at 9 and 11 years (see S3 Text for detailed results).

Discussion

The goal of this study was to address the question “How do children develop the neural spe-

cialization for print through the predictive coding mechanism?” The behavioral data from the

lexical decision task with stimuli differing in the degree of orthographic regularity suggest that

orthographic regularity is learned over the course of several years of reading acquisition (see

[13] for discussion) and that the efficiency at which a certain stimulus type can be classified as

Evidence for predictive coding in the development of neural specialization for print
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real characters changes over time, showing a non-monotonic developmental profile (see Fig 2

and Fig 3A). At the neural level, these learning effects are indicated by changes in N1 ampli-

tude reflecting prediction error: at the beginning of learning to read, children became sensitive

to orthographic regularities of how strokes construct radicals but were not sensitive to how

radicals are positioned to construct characters. Therefore, the top-down predictions based on

classification (lexical decision) do not differentiate between real characters, pseudo characters,

and false characters, leading to similar prediction errors indicated by similar N1 responses

across these 3 types of stimuli. With further reading training, children start to pick up some

orthographic regularities of higher-ordered visual units [13], such as how radicals construct

characters (e.g., the position of radicals) in Chinese characters. Before these regularities are

well learned, the predictions for these stimulus types were less efficient, reflected in larger pre-

diction errors indicated by larger N1 responses (e.g., false characters at 9 years in our study).

Fig 4. Development of N1 responses to stimuli with different orthographic properties at 3 stages of learning to read. (A) Topographic maps at N1 peaks of 4 types

of stimuli on P7 electrode across 3 age groups (see S8 Table and S4 Text for detailed results of N1 peak latency). (B) Grand ERP waveforms of 4 types of stimuli at

occipitotemporal electrodes in each group (left panel: O1/P7/TP9 electrodes on the left hemisphere; right panel: O2/P8/TP10 electrodes on the right hemisphere). Error

bands are 95% nonparametric CIs (2,000 bootstraps) (C) Box plots of mean N1 amplitudes for the 4 stimulus types at left occipitotemporal electrodes in each group. At

the beginning of learning to read (7 years), no N1 difference was observed among the 3 types of stimuli (real, pseudo, and false characters) that were perceived as

character-like. After about 2 years of reading training (9 years), N1 responses were observed to be greater for lower orthographic-regularity false characters that were

not predicted efficiently (high prediction error) than for real and pseudo characters, whereas no difference was found between the latter two types of stimuli. With

further reading training (11 years), pseudo characters with lower efficiency of prediction (higher prediction error) evoked a stronger N1 than false and real characters.

Lines in the boxes denote means; ��p< 0.01, �p< 0.05, †p< 0.1. See 10.6084/m9.figshare.8948912 for subject data. ERP, event-related potential.

https://doi.org/10.1371/journal.pbio.3000474.g004
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With more learning, children became more familiar with the orthographic regularities of how

radicals construct characters and were able to more efficiently reject the stimulus types not

conformed to the regularity of radical position of Chinese characters (i.e., false characters);

they were also less likely to engage top-down prediction, resulting in low prediction errors

indicated by lower N1 responses (e.g., false characters at 11 years in our study). They have also

acquired more higher-order regularities (i.e., character level such as the combination of the

radicals in Chinese, similar to n-gram frequencies in alphabetic words). However, these

higher-order orthographic regularities are not well learned yet, leading to inefficient prediction

and larger prediction errors and stronger N1 amplitudes (e.g., pseudo characters at 11 years in

our study). Taken together, our findings indicate that the neural specialization for print devel-

ops from the interaction of stimuli’s orthographic regularity and efficiency of lexical classifica-

tion that are optimized by reading experience across 3 stages of learning. Yet this explanation

still requires more evidence for verification in future studies. By using a larger set of tests that

more directly measure the prediction and prediction error and examining their contribution

to the development of neural specialization for print in children during learning to read, fur-

ther results may provide more evidence for clarifying the predictive coding mechanism under-

lying how the brain learns to read.

As a general principle, predictive coding presumably occurs at multiple levels in the brain

and under many circumstances. In the context of reading, specifically based on the Interactive

Account advocated by Price and Devlin (2011) [4] to explain how a developing brain acquires

specialized visual-orthographic processing, 2 types of top-down predictions are suggested: the

task-dependent strategic predictions and the relatively task-independent automatic predictions.

Previous studies have shown that neural activation changes with task (task-dependent), consis-

tent with the operations of strategic (or task-dependent) predictions [4,14,15]. Our focus in this

study is that the 2 models of reading make different predictions regarding the effect of auto-

matic predictions. Therefore, to minimize the contribution from strategic predictions, we used

the content-irrelevant color-matching task in the present study. To distinguish between the the-

oretical hypotheses of the 2 models, we constructed 4 types of stimuli that varied in ortho-

graphic regularity at different levels of representations (see Fig 1A). As shown in Fig 2, the

orthographic regularity at different levels is gradually learned over the course of several years of

reading acquisition. The Interactive Account suggests that children automatically make predic-

tions about the input word-related stimulus based on their experience with similar stimuli [4].

In addition to experience, top-down prediction can also come from the context (e.g., sen-

tence context, picture context, etc.) in linguistic tasks, which would be in the category of strate-

gic and task-dependent prediction (see the review paper [15]). For example, when the brain

expects to see a noun in a specific context (e.g., a sentence), the visual cortical response to a

word that is phonologically similar to a noun is weaker [14]. Using single words and a con-

tent-irrelevant color-matching task, results in the present study suggest that without a specific

context such as a sentence, visual expectations about orthographic regularity can be generated

automatically and unconsciously from an individual’s previous experience with similar stimuli.

Although it is beyond the scope of the current study, it would be interesting to further investi-

gate the interaction between strategic and automatic predictions, to examine whether the same

pattern could be seen under different types of tasks, ideally with a larger sample size.

A critical question further arises about where the predictions come from. In agreement

with Price and Devlin (2011) [4], we propose that the predictions are generated by higher-level

linguistic mechanisms representing semantic and phonological information: when children

learn visual-orthographic regularities through exposure to characters and words during read-

ing, the visual word form is mapped onto linguistic properties. Through repeated co-activa-

tions of the visual system and the linguistic network, higher-level language regions learn to
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predict the visual input during reading acquisition. In addition to the possibility that higher-

level brain areas such as linguistic areas generate predictions and feed back to modulate the N1

response, it is possible that the predictions are locally generated in occipitotemporal areas, and

stimuli with extremely low orthographic regularity may simply not activate the occipitotem-

poral areas. While outside the scope of the present study, it is certainly important for future

studies to delineate the sources of top-down predictions, including linguistic areas, occipito-

temporal areas, and higher-level visual or visuospatial areas [16].

The interactive account based on the predictive coding framework, supported by the pres-

ent study, also offers elegant explanations for other aspects of reading, such as linking ortho-

graphic and higher-level language information. Some cognitive models of reading include an

orthographic input lexicon as a specific functional model to represent the abstract visual word

form ([15–16], recent findings from [17–18]), while others claim that the abstract representa-

tion arises from interactions between visual input and semantic and phonological processing

without explicit word form representations [17,18]. At the neural level, one longstanding view

is that the brain primarily represents perceptual information of visual words (the perceptual

hypothesis [19]; the orthographic coding hypothesis [3]), while the other view is that the sys-

tem mainly serves as an interface between the visual form and the high-level phonological and

semantic representations (the interface hypothesis [20]; the distributed circuit view [21]; the

graded hemispheric specialization view [22]). The predictive coding account supported by the

present results is in agreement with the latter models and suggests that the link of orthographic

features with phonology and semantics is very straightforward because inherently phonologi-

cal and semantic predictions are an essential part of orthographic processing. These results

also have consequences about our understanding of orthographic deficits underlying dyslexia.

Some of the most robust processing impairments in dyslexia are hypoactivity in the left infe-

rior occipitotemporal brain region [16]. Our results suggest that these deficits may be

explained by a lack of predictions from phonological language areas, which is also agreement

with the phonological core deficit of dyslexia [23,24], thereby providing a sparse explanation

of neural deficits in dyslexia.

Previous studies have repeatedly shown that predictive coding may underlie object recogni-

tion [25], low-level visual processing [26], action planning [27], or psychiatric disorders [28].

The present study supports the presence of the predictive coding mechanisms in visual word

recognition (also see [29]) and adds converging evidence that predictive coding may be a gen-

eral mechanism of information processing in the brain [30,31].

Conclusion

We observed a robust interaction between a stimulus’ orthographic regularity (bottom-up input)

and children’s lexical classification ability (top-down prediction): electroencephalogram (EEG)

N1 responses were stronger to lower-regularity stimuli, but only in children who were less effi-

cient in lexically classifying these stimuli (high prediction error). In contrast, N1 responses were

reduced to lower-regularity stimuli in children who showed high efficiency of lexical classification

(low prediction error). The present findings resolve the controversy in understanding the mecha-

nisms of reading skill acquisition and offer very strong support for predictive coding as the under-

lying mechanism during the development of neural specialization for print.

Materials and methods

Ethics statement

For all children who participated in the present study, written informed consent in accordance

with the guidelines and approval of the ethical committee of the Hangzhou Normal University
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(IRB #20130301h) was obtained from their parents or other legal guardian. The protocols

adhered to the Declaration of Helsinki.

Participants

Forty-six primary school children participated in our study, assigned to one of 3 age groups.

Participants all had normal or corrected-to-normal vision and were right-handed. As our goal

was to characterize normal development, dyslexic children were excluded. As in previous stud-

ies of Chinese developmental dyslexia [32–34], a child was considered dyslexic if the score in a

Chinese character recognition test was 1 standard deviation below the average of the same

grade. Two participants thus were excluded in the present study. Data of 3 participants (one

child in each group) were missing because they quit after the ERP experiment. The demo-

graphic characteristics of the 44 participants and their performance on a Chinese character

recognition test are listed in Table 1.

Children’s reading was assessed in a Chinese character recognition test [35], which has

been widely used for measuring Mandarin-speaking Chinese children for reading ability [36–

38]. In this test, children were instructed to read a list of 150 Chinese characters arranged in

increasing difficulty (see [35] for a detailed description of this test).

Material

Four types of stimuli were used: real Chinese characters, pseudo characters, false characters,

and stroke combinations. Each type of stimuli consisted of 36 items. They were matched

regarding structural complexity (all stimuli were formed by 2 horizontally arranged radicals)

and average number of strokes (ranging from 5 to 10 strokes). Half of real characters were at

low (1–5 per million) frequency of occurrence, and half of those were at high frequency of

occurrence (400–4,500 per million) [39]. Children aged 7 to 11 performed similarly near ceil-

ing in the lexical decision task. We did not measure each subject’s semantic/phonological

knowledge of these characters; however, based on general survey data, children in these age

groups can read slightly more than half of these characters. The typical position is the only

legal position for each radical (see Fig 1A). Pseudo and false characters were built with the

same set of radicals, except that both radicals appeared at their legal positions for pseudo char-

acters but at illegal positions for false characters. Between the 2 types of stimuli, the radicals

were matched at the individual stimulus level by exchanging the relative positions of the two

radicals, which resulted in radicals being at legal or illegal positions. And each stroke combina-

tion was composed of 2 horizontally arranged nonexisting radicals (each radical was con-

structed by recombining the strokes of the radical in false characters).

Procedure

Behavior. Children were tested in a lexical decision task with the same stimulus duration

(300 ms) as the EEG experiment. Of a total of 36 non-character items, 12 items were stroke

combinations, 12 items were false characters, and 12 items were pseudo characters. There were

12 items in each of the 3 types of non-character stimuli (pseudo character, false character,

Table 1. Participants information and their reading performance.

Group N (male) Age, mean (SD) Reading score, mean (SD)

7-year-old 16 (8) 7.15 (0.47) 25.06 (27.21)

9-year-old 14 (7) 9.05 (0.38) 114.57 (12.04)

11-year-old 14 (6) 10.98 (0.33) 130.64 (4.41)

https://doi.org/10.1371/journal.pbio.3000474.t001
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stroke combination). To balance the prior probability of characters and non-characters, we

included 36 real characters as fillers. This is a common practice in lexical decision tasks in

which more than one type of non-characters is included [40–42]. All the stimuli were the same

as those in the EEG experiment. Children were asked to decide whether a stimulus was a real

Chinese character or not. They pressed one button for a real character and one button for a

non-character. The assignment to give the answer with the left or right index finger was bal-

anced across subjects.

ERP. The ERP experiment consisted of 4 blocks. Each block consisted of 108 trials. The 4

types of stimuli were presented randomly, but an additional rule prohibited 2 successive stimuli

to be of the same type. Each stimulus was presented in one of the 3 colors (green, red, or yellow)

on a gray background in the center of the screen. Each color appeared the same number of

times across stimulus types. The horizontal visual angles of stimuli were 1.97˚. Each specific

trial was constructed as follows: fixed stimulus duration of 300 ms and an interstimulus interval

(ISI), uniformly distributed among 1,450 ms, 1,525 ms, 1,600 ms, 1,675 ms, and 1,750 ms and

randomized across trials. Participants were instructed to press a button whenever the color of a

stimulus occurred 2 times in a row (i.e., one-back color repetition detection). The assignment to

give the answer with the left or right index finger was balanced across subjects. There were 36

items per condition, including a subset of 30 stimuli as non-target and the other 6 stimuli as tar-

gets (16.67% of all stimuli). To get enough trials for ERP averaging, all stimuli were presented 3

times. A similar practice was used in previous studies [9,43–51]. Therefore, there were 108 trials

(90 non-target trials and 18 target trials) for each stimulus condition. The potential effect of

stimulus repetition was thus an important potential question. Importantly, the word N170 repe-

tition effects have been found in studies with consecutive presentation of the same stimulus,

and under short ISIs (e.g., 200 ms) [52–54], but not in studies using long ISIs (such as 1,000 ms

in [55] and jittered between 1,250 and 1,750 ms in [56]). In the current study, the ISI was long

(jittered between 1,450 and 1,750 ms). Moreover, the 4 types of stimuli were presented ran-

domly with a rule prohibiting 2 successive stimuli to be of the same type. Therefore, we believe

that our main results are likely not affected by this nonconsecutive repetition with long ISI. Nev-

ertheless, the effect of stimulus repetition is indeed an important question.

EEG data acquisition and analysis. EEG signal was recorded from 30 Ag/AgCl electrodes

secured in an elastic cap according to the extended international 10–20 system. The EEG data

were recorded by using a DC-amplifier system (BrainAmp ExG, Brain Products GmbH, Gilch-

ing, Germany). The software used for EEG data recording was BrainVision Recoder (Brain

Products GmbH Germany). The electrode at AFz served as ground and one electrode between

Cz and CPz electrodes served as an online reference, and the data were offline re-referenced to

a common average reference over all electrodes except for electrooculogram (EOG) electrodes.

Both vertical and horizontal EOGs were also recorded for eye-blink correction. All electrode

impedances were kept below 5 kO. EEG and EOG were recorded continuously and were

amplified with a band pass from AC 0.1 to 100 Hz at a sampling rate of 1,000 Hz.

Offline data processing involved band-pass filtering (low-pass filtering at 30 Hz and high-

pass filtering at 0.1 Hz). Before averaging, each recording epoch was manually scanned for arti-

facts. Trials were corrected for eye movement artifacts offline using an ICA procedure. Trials

were epoched and baseline corrected offline with a 100 ms prestimulus period. The duration

of the poststimulus period was 800 ms. For all 4 stimulus types, only non-target trials for

which no false positive (target) responses occurred entered the further analyses. Before averag-

ing, artifacts exceeding ±100 μV were automatically rejected. In our study as in many other

studies, N170 (N1) was used to index the processing of visual objects, in this case, written

words and control stimuli. It is well established that the occipitotemporal electrodes are most

representative electrodes for measuring the N1/N170 response [1,6,45–48,51,57–59]. Indeed,
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as shown in Fig 4A, for each of the 4 types of stimuli (i.e., real character, pseudo character,

false character, and stroke combination), the topographic maxima corresponding to N1/N170

was located in the occipitotemporal electrodes. Three pairs of occipitotemporal channels (P7/

P8, O1/O2, and TP9/TP10) were thus selected based on this topographic map as well as con-

vention for measuring N1/N170. In addition, the 6 electrodes allowed us to test for the laterali-

zation effect. We used a global field power method to determine the time window of the N1

component in each children’s group (7-year-olds: 192–271 ms; 9-year-olds: 188–252 ms; and

11-year-olds: 181–233 ms; respectively). The peak values of N1 at the 6 occipitotemporal elec-

trodes were detected. In the statistical analysis, the N1 amplitudes of these electrodes were

averaged for each hemisphere, respectively (i.e., left hemisphere: P7/O1/TP9 electrodes; right

hemisphere: P8/O2/TP10 electrodes). And in the lateralization analysis, the peak values of N1

at these electrodes were averaged for each hemisphere (the left hemisphere: P7/O1/TP9; the

right hemisphere: P8/O2/TP10). Peak latencies of N1 were obtained at the most typical P7/P8

channels. Effect sizes of the main comparisons were reported [60–62]. The power of the main

results in each experiment was estimated based on the current sample size using the GPower

program [63].
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