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Abstract 

Colon adenocarcinoma (COAD) is the most common histologic subtype of colorectal cancer (CRC), and 
its prognosis is poor. Unlike traditional research in molecular biology, which is limited to analyzing the 
function of a single gene or protein in malignant tumors. The Weighted gene correlation network analysis 
(WGCNA) technique is used to describe the gene association model among different samples in order to 
identify highly collaborative genes. In this study, a computational strategy was used to conduct a 
systematic study of prognosis-related genes (PRGs) of COAD from the TCGA database. PRGs were 
subsequently used for WGCNA, which included 379 COAD patient expression profiles and 39 controls. 
As a consequence, nine gene modules were built. Among these, the brown module had not only a 
negative relationship with COAD, but also simultaneously in inverse relationship with the clinical stage, 
stage T, stage M and stage N. C4orf19, which was identified as one of the DEG and hub genes in the 
brown module by calculating modular connectivity, has a negative correlation with the clinical stage and 
TMN stage. In addition, the downward-regulated C4orf19 protein was detected in COAD clinical 
specimens. Finally, in vitro experiments have confirmed that regulated C4orf19 can promote COAD cell 
proliferation, invasion and migration, and the biological mechanism of C4orf19 perhaps by influencing the 
nitrogen metabolic pathway. 

Key words: Colorectal cancer (CRC), Colon adenocarcinoma (COAD), weighted gene co-expression network 
analysis (WGCNA), C4orf19, Prognosis 

Introduction 
Colorectal cancer (CRC) has become the third 

most commonly occurring cancer in the world after 
breast and lung cancer [1]. In recent years, the 
incidence of CRC and the number of deaths has been 
increasing, while the five-year survival rate is still low 
[2]. CRC comprises predominantly colon and rectal 
cancer, and adenocarcinoma of the colon (COAD) has 

the highest incidence. The pathogenesis of COAD is 
still not clear, while it is generally believed that the 
pathogenesis of COAD is related to a variety of 
factors, such as genetics and poor dietary habits [3]. 
The onset of COAD is insidious, and it is easy to be 
ignored by patients because there is only mild 
abdominal pain, diarrhea, and stool occult blood in 
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the early stage of the disease. With the development 
of COAD, tumor cells enter the blood and lymph 
leading to the emergence of metastases, making the 
treatment of colorectal cancer unsuccessful. As a 
result, the early diagnosis of colorectal cancer is very 
important to its treatment.  

In the development of microarray technology 
and gene chip technology, genomics, transcriptomics, 
proteomics, and metabonomics have been used to 
reveal the changes of genes, proteins and metabolism 
in malignant tumors [4, 5]. Different from the 
traditional molecular biology research, which is 
limited to the analysis of the function of a single gene 
or protein in malignant tumors, omics technology can 
systematically analyze the expression differences of a 
large number of genes or proteins, enabling scholars 
to conduct comprehensive research on tumors [6]. The 
Weighted Gene Correlation Network Analysis 
(WGCNA) technique is used to describe the gene 
association model between various samples to 
identify highly collaborative gene sets [7-9]. At the 
same time, the weighted method excludes false 
negative or false positive results, so that the module 
specificity after analysis is stronger, and the obtained 
hub genes have a higher correlation with tumors. In 
this study, we used a computational strategy to 
conduct a systematic study of prognostic genes 
(RPGs) from the COAD database. RPGs were 
subsequently used for the WGCNA, which included 
379 COAD expression profiles and 39 controls. The 
WGCNA results combined with DAVID (Database for 
Annotation, Visualization and Integrated Discovery) 
were used to identify the specific module associated 
with the COAD pathology parameters and the hub 
genes were detected by intramodular connectivity. 
Finally, the siRNA of the hub gene was used to 
validate the role of the hub gene in the physiological 
function of COAD cell lines.  

Materials and methods  
Dataset collection and human COAD tissue 
samples 

The COAD RNA-Seq gene expression profiles 
and clinical information were downloaded from the 
TCGA database (https://portal.gdc.cancer.gov/) to 
the COAD project [10]. The raw expression data were 
collected by the Perl programming language 
(5.32.0)[11, 12]. The transformation from the official 
gene symbol to the identification (ID) was performed 
using the programming language R and Perl. In 
addition, the R programming language was used to 
extract and consolidate clinical information, including 
survival time, survival status, age, gender, clinical 
stage and TNM stage. Consequently, 379 COAD 

patients with comprehensive survival information 
and 39 normal tissues were screened for further 
analysis. The differentially expressed genes (DEGs) 
were screened by use of the Linear Models for 
Microarray Data (LIMMA) package in Bioconductor, 
based on a cutoff criteria of adjusting P Value (FDR) < 
0.05 and |fold change (FC) | > 2, adjusted method 
used the Benjamini & Hochberg [13]. Forty COAD 
patients, together with adjacent normal tissue 
samples, were collected from Lianshui County 
People's Hospital. Inclusion criteria: (1). ESCC was 
diagnosed by the department of pathology; (2). The 
patients did not receive chemoradiotherapy before 
sampling. (3). The patients had no history of infection 
or hematologic disease in the past three months. 
Exclusion criteria: (1). The clinical data of patients 
were incomplete; (1). The follow-up of patients was 
missing; (3). The patients received blood transfusion, 
recently; (4). The patients with severe infections or 
autoimmune diseases. All patients had given their 
written consent, which was done in accordance with 
the Helsinki Declaration and approved by the 
Lianshui County People's Hospital Ethics Board. 

Functional enrichment analysis 
DAVID (Database for Annotation, Visualization 

and Integrated Discovery) (http://david.abcc 
.ncifcrf.gov/) [14] was used to analysis the functions 
or pathways of the DEGs or genes in special modules, 
which is a gene functional classification tool to 
integrate a set of functional annotation and analyze 
biological functions behind massive genes. KEGG 
(Kyoto Encyclopedia of Genes and Genomes, 
http://www.genome.jp/) provides a knowledge base 
for the systematic analysis of gene functions, linking 
genomic information to higher-order functional 
information [15]. The current study considers FDR < 
0.05 as a statistically significant difference. For DEG 
enrichment, the DEG was divided into an 
up-regulated group and a downregulated group, and 
the gene ontology (GO) analysis was performed 
respectively. The top 20 biological process (BP) was 
visualized using the R package ggplot2 [16].  

Overall survival rate analysis 
A total of 379 COAD patients with 

comprehensive prognosis data were used for 
prognosis analysis. Based on the median of the 
expression value, patients were divided into one low 
expression group and one high expression group. 
Kaplan-Meier analysis was used to generate the 
P-value of the logistics rank. As a result, 3170 genes 
with a P value below 0.05 were selected for 
construction of the co-expression network. The 
flowchart for obtaining the gene co-expression 



 Journal of Cancer 2022, Vol. 13 

 
https://www.jcancer.org 

1147 

network and experimental validation was drawn as 
shown in Supplementary Figure. S1. 

Construction of prognosis related-genes 
co-expression network 

To explore the between prognosis related genes 
of COAD and construct gene co-expression network 
construction, the “WGCNA” R package was used to 
convert co-expression measures into connections 
weight or topology overlap measure [17]. The 
co-expression method was commonly used to explore 
correlations in gene expression. Genes involved in the 
same pathway or functional compound tend to 
exhibit a similar expression pattern [18]. Thus, the 
development of a genetic co-expression network 
facilitates the identification of genes with similar 
biological functions [19]. In this study, 3170 genes 
whose log-rank P value was less than 0.05 and 379 
COAD samples containing clinical information and 39 
normal samples were entered to construct weighted 
co-expression modules. The Pearson correlation 
matrix was converted to the weighted adjacency 
matrix by use of the formula amn = |cmn|β(cmn 
represents the Pearson correlation between genes, 
amn represents the adjacency between genes, β 
parameter can amplify the correlation between 
genes). The soft threshold power β was determined 
based on the standard scale-free network [20]. 
Afterwards, we converted the adjacency relationship 
into a topological overlapping matrix (TOM) and 
hierarchical genes to identify modules containing 
similar genes. The settings have been configured as 
follows: TOMType = "unsigned", minModuleSize = 
30, reassignThreshold = 0, mergeCutHeight = 0.25, 
numericLabels = TRUE, pamRespectsDendro = 
FALSE. 

Gene Set Enrichment Analysis (GSEA) 
A total of 379 COAD samples in TCGA were 

divided into high and low expression groups based 
on the median expression levels of the mediated gene. 
To study the potential mechanisms of hub genes in 
COAD, GSEA between the two groups was 
performed using the Java GSEA implementation [21], 
where FDR < 0.05 was set as the cut-off criteria. 

Cell culture and siRNA interference 
HT-8, HT-29, SW480, Caco2 and HCT-116 

human cell lines were obtained from the American 
Type Culture Collection (ATCC) and cultured in the 
medium recommended by the ATCC with 10% fetal 
bovine serum (Beyotime Biotechnology, China). Both 
C4orf19 siRNA and Scramble siRNA control were 
acquired from Thermo Fisher Scientific Inc. Transfec-
tion was performed with Lipofectamine 2000 reagent 
(Thermo Fisher Scientific, USA), according to the 

manufacturer’s protocol. Forty-eight hours after 
transfection, the proteins were collected. All 
experiments were performed in triplicate. 

Protein analysis of the cell line 
Western blotting was used for analysis for 

proteins of C4orf19, Carbonic anhydrase II (CA2) and 
Carbonic anhydrase IV (CA4). In brief, the cells were 
assayed with RIPA buffer (Thermo Fisher Scientific, 
USA) respectively, and western blotting was 
performed using standard procedures. The primary 
antibodies used for the analysis were C4orf19 goat 
polyclonal antibody (Thermo Fisher Scientific, USA), 
CA2 and CA4 rabbit polyclonal antibody (Proteintech 
Group, China), and anti-rabbit horseradish 
peroxidase-conjugated (HRP) antibodies (Proteintech, 
China) were used as secondary antibodies. Immuno-
labelled proteins were detected with increased 
chemiluminescence (Beyotime Biotechnology, China).  

CCK8 assay  
Cell proliferation capability was reviewed by 

Cell Counting Kit-8 (CCK8, Beyotime). Following 
transfection, the cells were pressed into 96-well slabs 
and cultured for 24, 48, 72 and 96 hours. 10% CCK8 
was added to each well for 4 h at 37℃. The 
absorbance value was detected at a wavelength of 450 
nm by a microplate scanner.  

Wound healing assay 
NC siRNA and C4orf19 siRNA were transfected 

into Caco2 cells, respectively. Then, the transfected 
cells were seeded into 6-well plates at a density of 
3×105 cells/well. When cells attained confluent 
monolayers, a line, in the center of each well, was 
drawn using a 1ml pipette tip for producing wound 
area. Cells were washed three times with 
phosphate-buffered saline (PBS) to remove the 
non-adherent cells. The wound healing at 0h and 24h 
was recorded and the images were photographed at a 
magnification of ×100. 

Cell invasion assays 
NC siRNA and C4orf19 siRNA were transfected 

into Caco2 cells, respectively. Then, 100μl FBS-free 
DMEM medium containing 3×105 cells were added to 
the upper layer. 600μl FBS was added to the lower 
layer. After 24h, unmigrated cells were removed, and 
the polycarboester membrane was fixed with 
methanol. 10 min later of crystal violet staining, cell 
migration was recorded under the microscope. 

Statistical analysis 
Statistical Program for Social Sciences (SPSS) 20.0 

software (SPSS Inc., Chicago, IL, USA) and R 4.0.3 
software (https://www.r-project.org/) were used to 
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perform statistical analysis and to generate figures. 
Mann-Whitney U tests were performed between two 
group comparisons of mRNA expression; Kruskal 
Wallis test was used for grade data. P < 0.05 was 
considered statistically significant.  

Results 
Identification of DEGs in COAD Tissue 
Samples 

Our study concluded that 39 normal tissues and 
379 COAD patients and their mRNA expression 
patterns were present in the TCGA dataset. Based on 
criteria of adjusting P Value < 0.05 and |Fold Change 
(FC) | > 2, a total of 2119 DEGs (919 upregulated and 
1200 downregulated) was identified from the 
expression profile datasets. The map of volcanoes 

depicts differential genes (Figure 1A, Supplementary 
Table S1), whereas the heat map shows top 15 
up-regulated and top 15 down-regulated DEGs 
between normal versus cancer tissues (Figure 1B). 
Functional enrichment analysis showed that the 
up-regulated DEGs were significantly enriched in cell 
proliferation and cell cycle terms, including G1/S 
transition of mitotic cell cycle, cell division, cell 
proliferation, DNA replication, G2/M transition of 
mitotic cell cycle. The downregulated DEGs were 
associated with immune response terms, such as 
complement activation, immune response, and 
positive regulation of B cell activation, etc (Figure 1C), 
and full terms were displayed at Supplementary 
Table S2 and S3.  

 

 
Figure 1. Identification of DEGs in COAD Tissue Samples. (A) Volcano plot of DEGs with |fold change (FC)| > 2 and p-value of <0.05. Red nodes represent DEGs with FC > 2 
and p-value of < 0.05; green nodes represent DEGs with FC < 2 and p-value of < 0.05. (B) A heat map of top 15 upregulated and top 15 downregulated DEGs. Each column 
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represents a sample and each row represents one gene. The gradual color ranging from blue to red represents the gene expression changing from downregulation to 
upregulation. (C) The bubble plot shows the top 20 enriched biological processes (BP) of the upregulated genes and downregulated genes. 

 

 
Figure 2. Construction of the prognosis-associated genes co-expression network. (A) Clinical information from samples involved in constructing the gene co-expression 
network associated with the prognosis. (B) The left panel shows the scale-free fit index, signed Rˆ 2 (y-axis) and the soft threshold power (x-axis). β = 3 has been chosen for 
subsequent analysis. The right panel shows the mean connectivity (y-axis), which is a strictly decreasing function of the power β (x-axis). (C) Clustering dendrogram of genes. The 
color bands provide a simple visual comparison of module assignments based on the dynamic tree cutting method. (D) Clustering dendrogram (left) and heatmap of the 
correlation between module eigengenes (right). 

 

Construction of the prognosis-associated 
genes co-expression network 

First, overall survival and its significance were 

calculated by Kaplan-Meier survival analysis and log 
ranking test. The log-rank P value was subsequently 
calculated. Consequently, 3170 genes with a P-value 
below 0.05 were selected for WGCNA. A total of 3,170 
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genes and 418 samples, including 39 controls and 379 
tumor samples with partial clinical data, were used in 
the construction of the prognostic gene co-expression 
network. Interestingly, the analysis of hierarchical 
clusters of data revealed that genes associated with 
prognosis have the value of distinguishing most 
COAD samples from controls, as shown in the Figure 
2A, and none of the abnormal samples were found. 
Then an appropriate flexible threshold was calculated 
to complete the construction of a free-scale network. 
After testing powers from 1-20, a power value of 3 
was selected, as at this value the connectivity between 
genes in the network was consistent with a scale-free 
network distribution, where the curve first reached Rˆ
2 > 0.9 (Figure 2B). The co-expression modules were 
realized through hierarchical clustering and dynamic 
branch decoupling, leading to the generation of 9 
modules (Figure 2C). These modules were designated 
using different colors, with 749, 231, 228, 222, 210, 192, 
158, 116 and 48 genes in the turquoise, blue, brown, 
yellow, green, red, black, pink and magenta modules, 
respectively. In addition, 1016 genes that did not 
belong to any module were incorporated into the grey 
module and were not considered in downstream 
analyses (Figure 2C). To explore the similarity of 
co-expression of modules, the eigengenes were 
calculated and pooled on the basis of correlations 
(Figure 2D). Most modules were not in close 
proximity to other modules, which meant that the 
grouping was independent and precise [22].  

Identifier of the COAD modules and functional 
annotation. 

The primary objective of WGCNA is to explore 
the relationship between gene modules and clinical 
information, and to identify the modules most 
relevant to clinical features, which are of significant 
biological importance. We then detected the 
correlation between the various modules and the 
clinical parameters by calculating the correlation 
coefficient of the eigengens of each module. As 
displayed in Figure 3A, several modules showed 
significantly associated with certain clinic parameters, 
for example: the blue (r = 0.19, P = 7.4×10-5) and pink 
(r = 0.16, P = 0.001) module, showed a very high 
positive correlation with COAD respectively; While 
significantly negative correlations were detected 
between the brown (r = -0.82, P = 2.4×10-102), yellow (r 
= -0.56, P = 4.0×10-36) module with COAD; 
Meanwhile, the yellow module was associated with 
clinical stage (r = 0.19, P = 9.8×10-5), T stage (r = 0.17, P 
= 0.0004), M stage (r = 0.12, P = 0.018), N stage (r = 
0.24, P = 5.3×10-7). Interestingly, we found that the 

blown module not only had a negative relation with 
COAD, but also simultaneously inversely related to 
clinical stage (r = -0.20, P = 4.7×10-5), T stage (r = -0.19, 
P = 0.0001), M stage (r = -0.17, P = 0.0003) and N stage 
(r = -0.20, P = 3.2×10-5); On the contrary, the pink 
module was positively significantly correlated with 
clinical stage (r = 0.16, P = 0.00073), T stage (r = 0.19, P 
= 0.00011) and N stage (r = 0.21, P = 1.4E-05). 
Complete module information and clinical parameter 
relationships have been provided in Supplementary 
Table S4. 

 Since brown and pink module were significantly 
associated with almost all clinical parameters, to 
further understand the biological functions and 
pathways of the genes in these two modules, 
enrichment analyses of GO and KEGG were 
subsequently performed. Figure 3B and C displayed 
significant BP terms and pathways for brown and 
pink module respectively. The brown module showed 
functional enrichment in O-glycan processing, 
one-carbon metabolic process, hepatocyte prolifera-
tion and regulation of transcription involved in cell 
fate commitment (Figure 3B). Pathway analysis was 
enriched in metabolic pathways, proximal tubule 
bicarbonate reclamation and Biosynthesis of amino 
acids (all FDR < 0.05). For pink module, genes in the 
module were significantly enriched in heart 
development, negative regulation of mitotic cell cycle, 
response to hypoxia and so on, and significant KEGG 
pathways enriched in pink module included a FoxO 
signaling pathway, Cell adhesion molecules (CAMs) 
(all FDR < 0.05) (Figure 3C). 

Analysis of hub genes. 
 It is widely acknowledged that highly connected 

hub nodes are at the heart of the network architecture 
[23] and some more centralised genes in the network 
are more likely to be the primary drivers of 
appropriate cellular function than peripheral genes. 
[24]. For this reason, more important nodes can be 
identified through identifying hub nodes. In this 
study, the top 10% of nodes with the highest 
intra-modular connectivity were defined as hub genes 
within each module. [25]. Figure 3D and Figure 3E 
were the weighted co-expression networks of genes in 
brown and pink module, which only displayed 
connections with weight (w) above a threshold of 0.01 
for brown and 0.05 for pink for the best view. It can be 
seen that the trend in relative expression for most 
concentrator genes was consistent and may have high 
connectivity to neighbouring genes whose functions 
were consistent with GO and KEGG analytical results 
(Figure 3B and E, diamond nodes). 
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Figure 3. Weighted gene correlation network analysis (WGCNA) identifies critical modules correlating with pathological parameters. (A) Correlation between modules and 
traits. The upper number in each cell refers to the correlation efficient of each module in the trait, and the lower number is the corresponding P value. Gene Ontology (GO) 
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biological process (BP) terms in the enrichment analysis of genes in the turquoise (B) and brown module (C). (D) The hub genes of brown module with weights (w) above a 
threshold of 0.01. (E) The hub genes of pink module with weights (w) above a threshold of 0.05. 

 
Figure 4. Univariate Cox analyses and Kaplan-Meier curves of the candidate genes. (A) Univariate Cox analyses of hub genes in brown and pink modules. (B) Kaplan-Meier 
curves of the effect of the gene expression level of the risk genes (TEX11, C4orf19, CLCA4, CLCA1, CA2, NOTCH3) on the prognosis of COAD cancer patients. 

 
 In order to further screen for suitable 

biomarkers, univariate Cox analyses were performed 
in the brown and pink module hub genes. Results 
have been presented on Figure 4A. On the one hand, a 
total of 13 prognosis-related genes with both PCox < 
0.05 were identified, including 8 protective (Hazard 
ratio < 1) and 5 hazardous (Hazard ratio > 1) genes. 
On the other hand, among them, 6 protein-coding 
genes were defined as DEGs through the above 
analysis (Figure 1, Supplementary Figure S2): TEX11, 
C4orf19, CLCA4, CLCA1, CA2, NOTCH3 (Figure 4A
★). Based on this analysis, the six candidate genes 

were selected for more in-depth analysis. Using the 
median as the threshold, their Kaplan-Meier curves 
were plotted as in the Figure 4B, expression patterns 
of 6 biomarker genes were significantly associated 
with overall survival of COAD patients on the TCGA 
dataset.  

Relationship between candidate gene 
expression and clinical outcomes of COAD 
patients. 

To better detect the relation of COAD to these 6 
candidate genes in patients. We examined the 
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correlation between the expression of 6 candidate 
genes and the clinico-pathologic characteristics of 
COAD patients in the TCGA cohort. Typically, the 
expression level of C4orf19 (P = 0.024) and CA2 (P = 
0.024) was significantly correlated with the clinical 
stage of COAD patients (Figure 5). Similarly, the 
expression level of C4orf19 and CLCA1 was 
significantly correlated with Stage T in COAD 
patients (Figure 6A). The tendency to express these 
candidate genes corresponds to each ME involved in 
different modules. In addition, expression levels for 
TEX11, C4orf19, CLCA1 and CA2 were low-regulated 
in COAD patients with lymph node metastases, while 
NOTCH 3 was up-regulated in these patients (Figure 
6B). In addition, both TEX11 and C4orf19 expression 
levels were low-regulated in COAD patients with 
distant metastases (Figure 6C). All results suggested 
that C4orf19 expression levels can be used not only as 
a biomarker for colorectal cancer occurrence, but also 
for COAD progression. 

C4ORF19 potentially affects COAD by 
nitrogen metabolic pathway. 

To identify the signaling pathways that potential 
C4orf19 biological functions have activated in the 
COAD, the GSEA analysis was conducted on high 
and low C4orf16 expression datasets, and the most 

enriched signaling pathways were selected based on 
the normalized enrichment score (NES). According to 
the cut-off criteria, 18 signaling pathways were 
identified enriched in COAD samples with strongly 
expressed C4orf16, as shown in Supplementary 
Table S5 and Supplementary Figure. S3. The priority 
pathway for these was the nitrogen metabolic 
pathway with the highest NES (Figure 7A). It should 
be noted that there has been considerable research on 
the role of the nitrogen metabolic pathway in COAD 
[26, 27], and has received growing attention over the 
last few years. It is interesting to note that the 10 genes 
were identified as core enrichment genes with the 
highest metric score in the nitrogen metabolic 
pathway in this analysis (Supplementary Figure S4), 
and among them CA2 and CA4 as well as C4orf19 
was nominated for the brown module in WGCNA. 
Positive correlations were identified between the 
expression of the mRNA of C4orf19 and CA2 (Figure 
7B) or CA4 (Figure 7C), and the expression of CA4 
also has value in judging the prognosis of COAD 
patients (Figure 7D). All these results indicated that 
the loss of expression of C4orf19 may cause the 
progression of COAD by influencing the nitrogen 
metabolic pathway. 

 

 
Figure 5. The relationship between hub genes and clinical stage. * P < 0.05. 
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Figure 6. The relationship between hub genes and clinical information of patients with COAD. (A) The relationship between hub genes and T stage; (B) The relationship 
between hub genes and N stage; (C) The relationship between hub genes and M stage. * P < 0.05; ** P < 0.01. 
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Figure 7. Gene set enrichment analysis of C4orf19 in COAD datasets. (A) GSEA analysis high C4orf16 expression datasets enriched in nitrogen metabolism pathway. (B) The 
relationship between mRNA expression of C4orf19 and CA2; (C) Relationship between mRNA expression of C4orf19 and CA4; (D) Kaplan-Meier curves of the effect of the 
gene expression level of the risk genes CA4 on the prognosis of COAD cancer patients. 

 

C4orf19 expression and role in COAD. 
First of all, we confirmed that C4orf19 protein 

expression decreased in COAD tissues by 
immunohistochemistry (Figure 8A). Therefore, in 
vitro experiments continued to validate the function of 
C4orf19 in modulating the proliferation, migration 
and invasion of COAD cells. First, multiple COAD 
cell lines have been used to detect C4orf19 protein 
expression. The result indicated that in Figure 8B, the 
protein expression of C4orf19 in Caco2 cells was 
higher than in other cells. Next, in order to explore the 
effect of low-regulation C4orf19, we modified the 
expression of C4orf19 in COAD Caco2 cell lines using 
a small interfering RNA (siRNA) (Figure 8C). We then 
observed that the descending expression of C4orf19 
favored the rate of caco2 cell growth in comparison 
with the negative control (Figure 8D) compared with 
the negative control by both CCK8. In the meantime, 
the transfection of C4orf19 siRNA significantly 
contributed to the migration (16.21±1.71 vs. 8.30±1.63, 

P < 0.05) and invasion (148±4.55 vs. 86.67±4.64, P < 
0.001) of the caco2 cell (Figure 8E and F). Beyond this, 
protein expression levels of CA2 and CA4 were 
observed dramatically low-regulated in caco-2 cells 
after transfection with C4orf19 siRNA for 48 hours by 
western blot (Figure 8G). These results suggested that 
C4orf19 plays an important role in CRC to partially 
control the nitrogen metabolic pathway.  

Discussion 
As a global health issue, CRC is a highly invasive 

malignancy with early lymphatic and haematogenic 
metastases [28]. Approximately half of CRC patients 
die of a recurrent metastatic disease or complications. 
In this study, we conducted an extensive study to 
explore CRC's potential mechanism for development 
and advancement, in order to provide a novel 
biomarker to predict the prognosis of colon cancer 
and enhance understanding of CRC's molecular 
mechanisms. 
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Figure 8. Expression and role of C4orf19 in colorectal adenocarcinoma (COAD). (A) Representative images of positive staining of C4orf19 (marked by red arrows) in normal 
tissues (upper) and negative staining of C4orf19 in cancer tissues (lower). (B) The expression of C4orf19 in colorectal cancer cells tested by western blot. (C) The expression 
of C4orf19 protein after transfecting with siRNA for 48h; (D) Effects of C4orf19 siRNA on cell proliferation, *P < 0.05, * P < 0.001. (E, F) Effects of C4orf19 siRNA on cell 
migration (E) and invasion (F). (G) Western blot analysis was performed for CA2 and CA4 expression in caco2 cells after transfection with C4orf19 siRNA or negative control. 

First, a total of 379 COAD samples and 39 
controls were used to detect COAD DEGss. 
Consequently, 2119 GSE were obtained, of these, 919 
were primarily enriched in cell proliferation and cell 

cycle, and 1200 were primarily related to immune 
response. In-depth studies have critically considered 
the role of the cell cycle in the development and 
development of colorectal cancer [29]. At the same 
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time, the immune response plays a crucial role in 
controlling the temporal progression of colorectal 
cancer. A close relationship between tumor 
infiltration rate of lymphocytes and prognosis was 
found [30]. Then, in order to explore the relationship 
between prognostic genes, WGCNA was used to 
analyse gene expression data after the Kaplan-Meier 
estimate. In consequence, 9 modules of prognostic 
gene co-expression were obtained (Figure 3). Among 
these nine modules, the brown and pink modules 
attracted our attention, that have been significantly 
correlated negatively and positively with all clinical 
endpoints, including clinical stage, stage T, stage M 
and stage N, respectively. In addition, the GO and 
KEGG enrichment analysis showed that the brown 
module is mainly related to o-glycan processing, 
carbon metabolism, etc. Several studies have shown 
that aberrant glycosylation is associated with the 
development and progression of cancer [31]. And 
some of these glycan changes such as CA 19-9 
carbohydrate antigen or those found on 
carcinoembryonic antigen (CEA) are already used as 
clinical biomarkers to monitor CRC. In the meantime, 
the role of carbon metabolism (1CM), in particular 
folate, in the development of CRC has been 
extensively studied [32]. At the same time, enrichment 
analysis showed that the pink module genes are 
primarily associated with vasculogenesis, hypoxia 
response, etc. Angiogenesis is crucial for the growth, 
proliferation and metastasization of colorectal cancer 
[33], whereas studies have shown that hypoxia cancer 
cells have increased metastatic capability within CRC 
[34]. All of the above analyses imply that the gene 
from these two modules can play a significant role in 
carcinogenesis, and gene dysregulation is closely 
associated with the progression of CRC. 

In order to further narrow the field and detect 
suitable biomarkers, univariate Cox analyses were 
conducted to detect the core genes of the brown and 
pink modules. As a result, a total of six protein coding 
DEGs were obtained, including TEX11, C4orf19, 
CLCA4, CLCA1, CA2 and NOTCH3. Some of these 
have been identified as associated with CRC or many 
other types of cancer. For instance, the expression of 
TEX11 and NOTCH3 showed a strong correlation 
with COAD in our work, whereas Luo et al. has 
shown that TEX11, CDC42, QKI, CAV1 and FN1 were 
the core genes of early CRC and have potential as 
biomarkers [35]. It was also discovered that NOTCH3, 
one of the proto-oncogenes, was over-expressed in the 
CRC. Varga et al. confirmed that the overexpression 
of NOTCH3 enhanced tumor invasion and metastasis, 
and positively correlated with tumor grading, lymph 
node metastasis and distant metastasis, suggesting 
that NOTCH3 was a therapeutic target for CRC [36]. 

However, very little is known about the 
relationship between C4orf19 and cancer. Only Lang 
and colleagues showed that the expression of C4orf19 
was significantly underregulated and could be used 
as a marker for multifocal and multi-centre breast 
cancer (MMBC) [37]. In this work, we demonstrated 
that the clinical stage and stage TNM of COAD 
patients were highly correlated with the expression 
level of C4orf19. In addition, expression levels of 
C4orf19 were significantly low-regulated in COAD 
patients with metastatic lymph nodes or distant 
metastases. All of these findings suggested that the 
expression level of C4orf19 could be used as a 
biomarker not only for the onset of colorectal cancers, 
but also for the development of the COAD.  

In order to further study the potential biological 
effect of C4orf19 in the COAD, a GSEA analysis was 
conducted. As can be seen in Figure 7, a strong 
expression of C4orf19 was involved in the nitrogen 
metabolic pathway. Previous reports have shown that 
the nitrogen metabolic pathway is closely related to 
cellular survival, and studies have reported that 
nitrogen metabolism is extensively involved in 
malignant tumour progression [38, 39]. At the same 
time, nitric oxide is one of the important mechanisms 
involved in the initiation, invasion and progression of 
tumor cells, and epidemiological data suggest that 
NO has a potential role in cancer development [40]. 
Kodama et al. indicates that carbon and nitrogen 
metabolism is impaired through the development of 
malignant tumors. Among these, glutamine nitrogen 
plays an important role, suggesting that regulating 
nitrogen metabolism is a potential treatment method 
for malignant tumors. [26]. As in this study, Yu et al. 
obtained 405 common DEG from GSE9348, GSE22598 
and GSE113513 from the GEO database, and through 
KEGG analysis revealed that ECGs were concentrated 
in the pathway of nitrogen metabolism, mineral 
absorption and so forth in colorectal cancer [41].  

To explore the role of C4orf19 in CRC and to 
initially demonstrate the relationship between the 
expression of C4orf19 and the nitrogen metabolic 
pathway, in vitro studies have been conducted. After 
C4orf19 silencing, the expressions of CA2 and CA4 
were significantly down-regulated, and the invasion 
ability of caco2 cells was significantly increased, 
suggesting that C4orf19 played a role in tumor 
inhibition through regulating the expression of CA2 
and CA4 in COAD (Figure 8). Mori et al. found that 
the expression of Carbonic anhydrase in colorectal 
cancer was significantly higher than that in adjacent 
normal tissues, and it was positively correlated with 
the prognosis of colorectal cancer [42]. Similarly, 
Zhang et al. confirmed that CA2 inhibited colorectal 
cancer proliferation and blockages its cell cycle by 
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inhibiting the Wnt signaling pathway [43].  
In conclusion, our work has demonstrated that 

C4orf19 plays a role in the emergence and 
development of COAD by regulating nitrogen 
metabolism. This study provides a potential new 
marker for the clinical diagnostic of COAD and 
provides a potential target for the treatment of COAD. 
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