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A B S T R A C T   

In this study the primary objective is to design prediction model for the free vibration analysis of 
thin circular cylindrical steel silos having various aspect ratios in empty and varying filled con-
ditions for different types of closures. A finite element method (FEM) is used to carry out the free 
vibration analysis of steel silos. It is found that the effect of different aspect ratios slender, in-
termediate slender and squat steel silos is very significant for dynamic response of silo. The silos 
are considered having open, flat and cone type of closures at its top end. The clamped-free 
(cantilever) boundary condition is taken for this approach as actual silos are fixed at flat-base. 
The structural mass of thin cylindrical shell steel silo is made constant for a particular height 
and diameter. The eigenvalues of the thin cylindrical shell steel silos are extracted by using block 
Lanczos method. The free vibrations of thin cylindrical shell steel silo with different aspect ratios, 
radius to thickness ratio are studied. From the present studies it is seen that as aspect ratio in-
creases the fundamental frequency is reduced in empty silo. It is more in the case of squat silo. It 
can be seen that the fundamental frequency is less in the case of flat closure in all the aspect ratios 
of the silo. The frequency values are more in the case of cone closure is observed. Also as the 
mode number increases the modal frequency value increases. Further, as the filling level is 
increased the modal frequency also increases. Finally, regression approach is adopted for pre-
dicting the mode frequency of empty and filled silos for wide range of aspect ratios.   

1. Introduction 

The cylindrical steel silos are constructed with most common circular shell structures. The silos are used for storing, handling and 
transportation huge quantity of solid materials like cement, grains, fly ash, carbon black, coal saw dust etc. in industrial sector. The 
storage capacity of tall structures, which are circular in shape and intended for storing huge quantity of material, is in axial direction 
[1,2]. The plane of rupture at silo start from bottom edge of bins intersects the surrounding wall of silo. The main challenge in 
analyzing silos is that the mass of silo is comparatively lower than the storage material mass and also the granular nature of storage 
material. A specific procedure has to be adopted in filling and emptying the silos otherwise it affects the overall stability and dynamic 
behavior of silo [3]. reviewed the various reasons for damage and failures of silos in the past. The challenge also lies in studying the 
dynamic interaction behavior between the storage materials and walls or base of silo. Although much progress has been made, some 
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aspects of free vibration examination of silo are still lacking, as it is the basic stage in its dynamic design, as it considers both the 
effective mass contributing to the dynamic response and the stiffness of the silo wall. 

The standard on actions on steel structure using EN 1991-4 classifies silos solely on the basis of their aspect ratio (height over 
diameter, H/D) [4]. The different types of silo on the basis of height to diameter aspect ratio are classified as slender silo (H/D > 2.0), 
intermediate slender silo (H/D = 1.0 to 2.0) and squat silo (H/D = 0.4 to 1.0), where, H = height of the cylindrical silo and D =
diameter of cylindrical silo. In practice, cylindrical steel silos are constructed with closure (covering at the top) to protect the stored 
materials from environment. The closures are attached to the top peripherial edge of the silo wall mainly having the shape of flat, 
hemispherical, torispherical, ellipsoidal, conical and toriconical. The mass of closures and bulking materials affects the dynamic 
characteristics of the silo. 

Brief reviews of past researchers carried out on silo and vibration of cylindrical shell are presented hereafter [5]: analyzed the effect 
of earthquake ground motion on the behavior of flat-bottom silo walls [6]. presented static and dynamic silo loads using finite element 
models. The parameters such as dilatancy angle and Poisson ratio which exert a great influence on lateral pressures exerted on silo 
walls were taken into account [4]. investigated the validity of the conservation of the design process for metal silos of different aspect 
ratios range 0.65 ≤ H/D ≤ 5.20 designed according to the EN 1993-1-6 and EN 1993-4-1. They also explored the behavior of five 
thin-walled cylindrical silos with stepwise-varying wall thickness using finite element method [7]. compared the results obtained by 
conducting experimental studies on cylindrical silo with those using a finite element model [8]. studied the influence of thickness of 
shell on the buckling behavior of a typical steel silo under earthquake loads [9]. estimated the fundamental period of vibration of 
flat-bottom circular silos and compared the results with the experimental fundamental frequencies of silo [10]. studied the effect of 
different boundary conditions on single-walled carbon nanotube vibrations for the armchair type using wave propagation method [2]. 
investigated the dynamic buckling behavior of steel silos having different slenderness ratio subjected to horizontal base excitations 
[11]. investigated the vibrations of functionally graded rotating single-walled carbon nanotubes (SWCNT) with ring supports attached 
in the radial direction. The impacts of revolving armchairs, zigzag SWCNTs with ring supports, and length- and height-to-radius ratios 
were thoroughly examined. It was found that for boundary conditions clamped-clamped (C–C) and clamped-free (C–F), increasing 
length- and thickness-to-radius ratios results in decreasing and rising frequency behaviors, respectively. 

[12] carried out a thorough survey of the most notable experimental and theoretical developments related to the dynamic and 
seismic behavior of flat-bottom cylindrical silos [13]. carried out the experimental studies to determine strain curve, axial 
load-displacement curve, critical buckling load and also buckling modes under localized axial compression load of steel cylindrical 
shells [14]. determined the frequencies of single-walled carbon nanotubes using Kelvin’s method. For these tubes, thorough in-
vestigations of the effects of frequencies on length-to-diameter ratios with varied power law indices were conducted. Also, Hussain and 
Naeem [15] studied the effect of mass density on vibration of zigzag and chiral SWCNT. It was observed that by increasing values of 
in-plane rigidity, resulting frequencies also increase and frequencies decrease on increasing mass density per unit lateral area. 
Moreover [16], adopted Sander’s thin shell theory to analyze the frequency analysis of zigzag FG-CNTs with ring-stiffeners. The 
frequency equation had been extracted using the Ritz approach. Further, Hussian and Naeem (2019b)[17] analyzed the vibration of 
zigzag and chiral rotating functionally graded carbon nanotubes using wave propagation method [18]. studied the structural behavior, 
vulnerability, and risk of industrial silos focused on the content and container interaction [19]. studied the vibration of rotating cy-
lindrical shell using polynomial, exponential and trigonometric volume fraction laws. The functionally graded materials steel and 
nickel along the shell radius direction were considered. These findings show that the shell frequency was split into two halves, and it 
was inferred that the backward frequency value was somewhat greater than the forward frequency. 

[20] determined the vibration of functionally graded (FG) rotating cylindrical shell with ring supports along the circumferential 
direction using Galerkin’s technique. The resultant backward and forward frequencies rise with rising ranged values of the 
height-to-radius ratio, whereas frequencies decrease with increasing length-to-radius ratio. For various ring support positions, 

Nomenclature 

3-D Three-dimensional 
ANFIS Adjustable Neurofuzzy Fuzzy 
ANN Artificial Neural Network 
C–C Clamped-Clamped 
C–F Clamped-Free 
CFST Concrete-Filled Steel Tubular 
DEM Discrete Element Modeling 
DM Donnell-Mushtari 
FE Finite Element 
FEM Finite Element Method 
FLH Flügge 
ML Machine Learning 
R2 Coefficient of determination 
RCGA Real Coded Genetic Algorithm 
RMS Root Mean Squared Error  
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bell-shaped type of frequencies was observed. Further, it was also observed that as the rotating speed increases, the backward fre-
quencies rises and forward frequencies falls [21]. estimated the vibration frequencies of laminated composite cylindrical shell using 
Love’s shell theory. 

[22] determined the vibration coupled and uncoupled frequencies of fluid-filled (non-viscous) three-layered FG cylindrical shells. It 
was found that as the circumferential wave mode increases, the frequency values also increases. The changes in frequencies are higher 
under clamped-clamped situations than they were under other boundary conditions. The frequencies are noticeably reduced in case of 
cylindrical shell with fluid effect. Hussain and Selmi [23] carried out the vibration analyses of shell supported by ring around its 
circumferential using Rayleigh-Ritz formulation. From the results it was found that clamped-clamped, simply supported-simply 
supported frequency curves were higher than clamped-simply boundary condition [24]. presented the orthotropic vibration ana-
lyses of single-walled carbon nanotubes. It had been shown that raising the aspect ratio raises the frequencies while increasing the 
nonlocal parameter reduces them, making the clamped-free frequencies lower than those of the clamped-clamped calculation. 

The structural and seismic responses and the several uncertainties in the design and assessment processes were also examined. The 
free vibration analysis of empty and different filled levels of silo along with different closures is examined in the present work. This 
investigation will definitely results in the understanding the structural and dynamic response of steel silos, also the dynamic inter-
action behavior between the storage materials and the structural components of flat-bottom silo. 

1.1. Review of regression approaches 

Recently [25], covered gap in the literature by effectiveness ML (machine learning) algorithms to estimate the shear strength of 
short links. ML algorithms have been effectively applied in many structural engineering disciplines. They have used artificial neural 
network (ANN) based shear strength forecasting. A combined machine learning (ML) methodology by Le [26] was put forth to forecast 
axial load carrying capacity of ellipsoidal CFST columns. The Adjustable Neurofuzzy Fuzzy based (ANFIS) and Real Coded Genetic 
Algorithm (RCGA) were the suggested models, but these models required large database as inputs for features extraction [18]. pre-
sented the potential mechanisms of failure indicated either by materials stored and also the targeted structural configuration, as well as 
risk assessment and mitigation techniques [27]. described a process for creating and validating metamodels based on DEMs (discrete 
element modeling). Include a case study of a releasing hopper to show how metamodels and DEMs work together. For three various 
metamodels that were learned using DEM data and it was also demonstrated that use of polynomial regression for evaluation and 

Fig. 1. Different modes in circular cylindrical shell.  
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prediction of silos design parameters. This is a motivation to adopt regression technique in the present study. 

2. Contribution of work 

Accordingly the main objectives of the present work are to carry out the free vibration analysis of thin circular cylindrical steel silos 
having various aspect ratios, slender, intermediate slender and squat silos; in empty and varying bulking material filled conditions. The 
modal frequencies of empty and for 25 %, 50 %, 75 and 90 % filled silos are evaluated. Also, silos are considered having open, flat and 
cone type of closures at its top, in order to study the effect of closures on the natural frequencies of silos. The clamped-free (cantilever) 
boundary condition is taken for this approach as actual silos are fixed at flat-base. The eigenvalues of the thin cylindrical shell steel 
silos are extracted by using block Lanczos iteration method. This paper aimed to design mathematical learning based fundamental 
mode frequency prediction model for such silos. Regression approach is adopted for predicting the model for mode frequency of empty 
and 90 % filled silos which allow us to predict for any case of aspect ratio. Mode frequency of empty and 90 % filled silos determined 
from FEM analyses are used to train the generalized polynomial fitting based prediction model. 

However, there are some additional factors that can affect the modal frequency of cylindrical steel silos such as geometrical 
imperfection, varying wall thickness along the height of silo, stiffener arrangements, and also various properties of bulking materials. 
Furthermore, three steel silos are examined in the present work, taking into account a larger variety of heights and diameters, different 
filling levels and also type of closures can improve the accuracy of the assessments reached on the aspect ratios, filling levels and types 
of closures of the silos. 

3. Mathematical formulation 

Many researchers in past [28–38] carried out the free vibration analysis of shell elements. A circular cylindrical shell is considered 
having constant thickness (h); diameter (D); and height (or length), (H) with material properties as density (ρ); Poisson’s ratio (ν) and 
modulus of elasticity (E). At mid surface of the shell, the co-ordinate system (x, θ, z) is considered and the corresponding axial 
displacement in x direction is denoted by u(x, θ, t), circumferential displacement in θ direction is v(x, θ, t) and radial displacement in z 
direction is w(x, θ, t) as shown in Fig. 1(a). The circular cylindrical shell vibrates in flexural deformations in axial mode (m) along x 
direction as shown in Fig. 1(b); in and out deformation in the form of cosine waves, cos(nθ) in circumferential mode (n) along θ di-
rection as shown in Fig. 1(c) and radial mode is ignored due to axi-symmetry condition of the shell. Accordingly, any combination of 
axial and circumferential (m, n) modes defines the vibrational modes and the related modal frequencies of the circular cylindrical shell. 

In case of free vibration of cylindrical shell, when the external forces are absent, the equations of motion are given as [39]. 
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= ρhü (1)  

Eh
1 − υ2

(
1 − υ

2
∂2v
∂x2 +

1
R2

∂2v
∂θ2 +

1
R2

∂w
∂θ

+
1 + υ

2R
∂2u

∂x∂θ

)

+
D
R2

(
1 − υ

2
∂2v
∂x2 +

1
R2

∂2v
∂θ2 −

1
R2

∂3w
∂θ3 −

∂3w
∂x2∂θ

)

= ρhv̈ (2)  

Eh
1 − υ2

(

−
1
R2

∂v
∂θ

−
w
R2 −

v
R

∂u
∂θ

)

+
D
R2

(

− R2∂4w
∂x4 +

∂3v
∂x2∂θ

− 2
∂4w

∂x2∂θ2 −
1
R2

∂4w
∂θ4 +

1
R2

∂3v
∂θ3

)
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where D = Eh3/12(1 − ν2) is bending stiffness/flexural rigidity 
The equations of motion in matrix form for the free vibration of a cylindrical shell as proposed by Refs. [40,41] is given as 

⎡

⎣
L11 L12 L13
L21 L22 L23
L31 L32 L33

⎤

⎦

⎧
⎨

⎩

u(x, θ,t)
v(x, θ,t)
w(x, θ,t)

⎫
⎬

⎭
=

⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
(4)  

where differential operators with respect to x, θ, and t is Lij (i, j = 1, 2, 3). The vibration behavior of circular cylindrical shells is 
modeled using several systems of equations [42]. A synchronous motion is assumed in the initial effort to solve the governing dif-
ferential Equation (1). 

u(x, θ,t) = U(x, θ)f (t)
v(x, θ,t) = V(x, θ)f (t)
w(x, θ,t) = W(x, θ)f (t)

(5)  

where scalar model coordinate corresponding to the mode shapes U(x, θ), V(x, θ), and W(x, θ) is f(t). 
The axial, tangential and radial displacements of the shell wall are evaluated using the separation of variables approach so as to 

distinguish the spatial dependency of the modal shape among axial and circumferential directions 

u(x, θ,t) = Aeλmx sin(nθ)cos(ωt)
v(x, θ,t) = Beλmx sin(nθ)cos(ωt)
w(x, θ,t) = Ceλmx sin(nθ)cos(ωt)

(6) 
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where ω represents angular frequency of free vibration; λm represents the axial wave number; n is the circumferential wave parameter; 
A, B and C represents the undetermined constants. By substituting Equation (6) into Equation (4), a set of homogeneous equations is 
created. The application of any of the shell theories presented in the aforementioned canonical literature, with the ensuing matrix 
form, 

⎡

⎣
X11 X12 X13
X21 X22 X23
X31 X32 X33

⎤

⎦

⎧
⎨

⎩

U
V
W

⎫
⎬

⎭
=

⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
(7)  

where, Xij (i, j = 1, 2, 3) are coefficients and are the functions of frequency parameter, Ω is given as Ω2 = (1 − ν2)⥄ρω2R2/E and λm, 
and n. 

The coefficient matrix’s determinant must be zero so that in order to get a non-trivial solution, 

det
( [

Xij
])
= 0,⇌⇌i, j= 1,⇌2,⇌3 (8) 

By expanding Equation (7), the frequency equation is produced 

f (λm,ω)= 0 (9) 

For silos are cantilever i.e. clamped-free (C–F) boundary condition is considered, as actual silos are fixed at flat-base. The boundary 
conditions for the C–F shell are: 

at ⇌fixed⇌ end : x= 0 ⇒u = v = w= ∂w/∂x= 0⤢⤢
at⇌ free ⇌end : x = H⇒ ⇌Mx = Nx= 0⤢⤢ (10)  

where Mx and Nx are the axial moment and force in shell, respectively as it deforms. An undamped finite element (FE) model’s 
eigenvalue problem for the modal frequencies is stated as 

(
− ω2Mmn +Kmn)Φn= 0 (11)  

where Mmn and Kmn are the mass and stiffness matrices; m and n are the degrees-of-freedom; Φn is the eigenvector (or modes of 
vibration). 

4. Validation of the finite element models 

In the present study, finite element method (FEM) is used for the free vibration analysis of cylindrical silo for empty and varying 
bulking material filled conditions. The block Lanczos iteration methods is used for frequency extraction of the silos. This method is 
suitable for large symmetrical eigenvalue problems and uses sparse matrix solver [43,44]. This method performs efficiently for FE 
models consisting of shell element or combined shell and solid elements. The frequency extraction analysis is performed in the FE 
software ANSYS® [45] using modal analysis. The frequency extraction flowchart is shown in Fig. 2. During the modeling first silo 
model type is configured, then material properties are assigned to silo model as modulus of elasticity and Poisson’s ratio, element types 
and meshing to model is assigned, clamped-free boundary condition is assigned to silo. The block Lanczos iteration method is 

Fig. 2. Flowchart for frequency extraction.  
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performed until the degree of tolerance for extracting the first twenty modal frequencies. The eigenvalues and mode shapes of silo for 
different aspect ratio of empty and filled conditions and also for different types of closures are evaluated. 

The accuracy of the results obtained from the present FE models has been validated by comparing it with the experimental and 
analytical results obtained from the past literature results. The results obtained by the present FEM are compared with the experi-
mental results by Sewall and Naumann (1968) and also by published analytical results of Soedel (1980). The parameters for clamped- 
clamped and clamped-free shell made up of aluminum having parameters: R = 242 mm, H = 625 mm, h = 0.648 mm, ρ = 2.7 × 10− 9 N 
s2/mm4, E = 7 × 104 N/mm2 and ν = 0.33. Fig. 3 shows the modal frequencies (fmn) from the present results and that published in the 
literature for clamped-clamped (C–C) and clamped-free (C–F) boundary conditions. It is observed that the fmn results obtained from the 
present FEM are nearly same that obtained from experimental and analysis results. It is also noted that relatively lower values of the 
frequencies fmn are obtained for clamped-free case. The lower minimum frequency is achieved for the smaller values of the m = 1, and 
as the value of mode number m increases there is progressive shift in frequencies. 

The accuracy of the present FEM is also validated by comparing the results with Lee and Kwak (2015). The modal frequencies 
obtained were using FE approach in ANSYS® [45] and also compared with Flügge (FLH) and Donnell-Mushtari (DM) theories results. 
The shell consisting of aluminum having parameters: R = 150 mm, H = 600 mm, h = 1 mm, ρ = 2770 kg/m3, E = 71 GPa and υ = 0.33 is 
considered. Table 1 shows the modal frequencies (fmn) obtained in the present study for C–F boundary condition and the results 
obtained by Lee and Kwak (2015). It is observed that the modal frequencies results obtained from the present FEM are nearly same that 
obtained by Lee and Kwak (2015). Moreover, the present FEM is also compared with [22] for without fluid condition of isotropic 
cylindrical shell material having simply-supported boundary condition. Table 2 shows that present results are in good agreement with 
[22]. 

Furthermore, the validation of fundamental frequency of silo filled with bulking material is also verified for the accuracy [2]. 
determined the fundamental frequencies for slender, intermediate slender and squat silos filled with Camacho wheat as a bulking 
material. The mechanical properties of wheat are: Angle of internal friction (φ) = 22.2◦, apparent cohesion (c) = 0.006 MPa, Coulomb 
friction coefficient (μ) = 0.19 for steel and 0.42 for concrete, dilatancy angle (ψ) = 23.1◦, Young’s modulus (E) = 10 MPa, Poisson’s 
ratio (υ) = 0.37, density (ρ) = 852.2 kg/m3. The geometrical dimensions of silo are described in Table 3. The fundamental frequency 
obtained from the present study for slender silo is 2.8 Hz, intermediate slender is 3.65 Hz, squat is 3.88 Hz are in acceptable agreement 
with the frequency predicted by Ref. [2]. 

5. Numerical results and discussions 

In the present study, the free vibration analysis of cylindrical steel silo for empty and varying filled conditions of bulking material 
are evaluated. The eigenvalues are extracted using the block Lanczos iteration method. The cylindrical steel silos slender (S), inter-
mediate slender (I) and squat (Q), for open, flat closure and cone closure are considered as shown in Fig. 4. In order to compare the 
effect of different aspect ratios, different closure conditions on the free vibration analysis of steel silo. Table 4 presents the parameter of 
steel silos for different aspect ratios as height to diameter ratio (H/D), radius to thickness ratio (R/h), thickness to closure thickness 
ratio (h/hc) for the calculations of modal frequencies. Table also illustrates the storage capacity of each silo type under consideration. 

Fig. 3. Natural frequencies of clamped-clamped and clamped-free aluminium shell.  
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For the simplicity of the FE model in the present study the thickness of closure (hc) is considered same as the thickness of silo wall (h). 
The angle of cone closure is kept constant 15◦ with horizontal in all silos. The steel silos are modeled using 4-noded shell 181 element, 
having six degrees-of-freedom at each node, including rotations about the x, y and z axes as well as translations in the x, y and z 
directions (ANSYS®), with modulus of elasticity (E) = 200 GPa, Poisson’s ratio (υ) = 0.30, density (ρ) = 7850 kg/m3. As per EN 1991-4 
[46] the boundary condition of silo is a base ring around the circumference of the silo at the base and provides means of attachment of 
the silo to a foundation or other element. In the present work clamped-free boundary condition is adopted for all silo types. 

The slender, intermediate slender and squat silos filled with cement as a bulking material. The material properties of cement are: 
modulus of elasticity (E) = 25 GPa, Poisson’s ratio (υ) = 0.20, density (ρ) = 1440 kg/m3. The bulking material cement is modeled using 
three-dimensional (3-D) higher order 20-noded solid 186 elements that exhibit quadratic displacement behavior. The element is an 
isoperimetric brick element defined by 20 nodes with three degrees-of-freedom per node, i.e. translation displacement in nodal x, y and 
z directions (ANSYS®). In this work, the surface-to-surface contact mechanism is adopted which defines both the target surface as silo 
wall and the contact surface as bulking material surface. The interaction between the bulk material and the silo wall is modeled using 
the Coulomb friction theory. Thus, the coefficient of friction 0.41 is selected between the steel wall and cement. Fig. 5 summarizes the 
results of the mesh sensitivity analyses based on changing element sizes, based on which 10 mm size of mesh is adopted for the FE 
model of silos. 

5.1. Empty silos 

Fig. 6 shows the modal frequencies for slender, intermediate slender and squat empty silos, for open, flat closure and cone closure 
with respect to the mode numbers. The first twenty modal frequencies are extracted from the FE models. For the better understanding 
of the free vibration of silos, two aspect ratios are considered in case of slender, intermediate slender and squat silos. It can be observed 
from Fig. 6 (a) and (b) for higher aspect ratios of slender and intermediate slender silos the modal frequencies in cone closure is having 
higher values. But in case of squat silo in Fig. 6 (c) for lower aspect ratio 0.5 the modal frequencies in cone closure is more. Also it can 
be seen that as the mode number increases the modal frequency value increases. 

Table 5 gives the modal frequencies (in Hz) in empty slender silos. It can be seen that for aspect ratio 2.5 for flat closure the 
fundamental frequency has reduced by about 50 %, while in cone closure it has increased by around 222 % compared to open silo. As 
discussed in Fig. 1 description the vibrational modes of circular cylindrical shell are defined by the combination of axial and 
circumferential (m, n) modes. It can be thus seen that in case of slender silo for both aspect ratios for open, flat and cone closures the 
axial mode in the first three frequencies is the first axial mode while the circumferential modes are categorized by series of cosine 
waves. But in case of cone closure for frequency mode from fourth mode are having the second axial mode along with the higher order 
circumferential modes. 

Table 1 
Modal frequencies fmn (Hz) for the present FEM results compared with Lee and Kwak (2015).  

Boundary condition Mode (m, n) Present results ANSYS (Lee and Kwak, 2015) FLH (Lee and Kwak, 2015) DM (Lee and Kwak, 2015) 

Clamped-Free (C–F) (1,3) 146 146 146 153 
(1,4) 175 174 175 185 
(1,2) 242 243 242 243 
(1,5) 263 261 263 274 
(1,6) 382 378 381 391 
(2,5) 381 380 381 389  

Table 2 
Frequencies fmn (Hz) for the present FEM results compared with [22].  

Circumferential wave no. (n) Present results [22] for without fluid condition 

1 13.611 13.548 
2 4.723 4.592 
3 4.368 4.263 
4 7.356 7.225 
5 11.681 11.542  

Table 3 
Geometrical dimensions of silos by Ref. [2].  

Types of silo Height (H) Height of silo bulk solids (hb) Diameter (D) Aspect ratio (hb/D) Thickness (t) 

(m) (m) (m)  (mm) 

Slender 25 22.5 10 2.25 10 
Intermediate slender 18 16.2 12 1.35 8 
Squat 12 10.8 15 0.72 6  
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Similarly, Tables 6 and 7 describe the modal frequencies (in Hz) in empty intermediate slender and squat silos, respectively. While 
the same increment of 216 % is observed for cone closure with the aspect ratio of 2.0. From Table 6 it can be seen that for flat and cone 
closures for intermediate slender silos the axial mode has increased from 1 to 2 corresponding to aspect ratio of slender silo. It can be 
observed that in case of intermediate silo for flat and cone closures the frequency modes is a combination of second axial mode along 
with the series of circumferential modes. And similarly it is also observed in Table 7 in case of cone closure for squat silo the axial mode 
(m) has increased from 1 to 2 due to lesser height of the silo. 

As depicted in Table 8 the fundamental frequency in case of slender silo for H/D = 2.5 is 2.03 Hz, 1.01 Hz and 4.51 Hz for open, flat 
and cone closures, respectively. And for H/D = 2.0 is 1.85 Hz, 0.50 Hz and 4.01 Hz for open, flat and cone closures, respectively. The 
fundamental frequency in case of intermediate slender silo for H/D = 1.5 is 2.46 Hz, 0.55 Hz and 5.15 Hz for open, flat and cone 

Fig. 4. Cylindrical steel silos.  
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closures, respectively. And for H/D = 1.25 is 2.33 Hz, 0.35 Hz and 5.04 Hz for open, flat and cone closures, respectively. Further, the 
fundamental frequency in case of squat silo for H/D = 0.8 is 2.90 Hz, 0 Hz and 6.15 Hz for open, flat and cone closures, respectively. 
And for H/D = 0.5 is 4.29 Hz, 0.22 Hz and 6.88 Hz for open, flat and cone closures, respectively. It can be observed that as the aspect 
ratio increases the fundamental frequency is reduced in empty silo. It is more in the case of squat silo. As frequency is inversely 
proportional to mass of silo, thus in case of slender silo as the dimensions of silo are increased, the mass of silo increases, owing to 
decreased frequency values. The effects of flat and cone closures on the frequency of silo is also investigated in the present study. It can 
be seen that the fundamental frequency is less in the case of flat closure in all the aspect ratios of the silo. The frequency values are more 
in the case of cone closure silo. From the geometry of open, flat closure and cone closure the height and the mass is more in case of cone 
closure, thus increases the mass of empty silo and lessen the frequency values. 

5.2. Different filling levels of silos 

The effect of varying cement filled condition in silo on the modal frequencies is also investigated. Fig. 7 shows the modal fre-
quencies for different levels of filling materials 25 %, 50 %, 75 % and 90 % in open, flat closure and cone closure silos. The first 20 
modal frequencies are extracted as shown in figure. It can be seen that as the filling level is increased the frequency also increases. The 
less value of frequency is in open slender silo. 

Fig. 8 shows the modal frequencies in open silo for filling materials 90 % for different aspect ratios. Thus, in case of squat silo having 

Table 4 
Parameters of thin cylindrical steel silo.  

Type of 
closure 

Type of silo Height 
(H) 

Diameter 
(D) 

Aspect ratio 
(H/D) 

Thickness 
(h) 

Radius to thickness 
ratio (R/h) 

Thickness of 
closure (hc) 

Storage 
capacity 

(m) (m)  (mm)  (mm) (cum) 

Open Slender (S) 25 10 2.5 10 500 – 1963.495 
20 10 2 5 1000 – 1570.796 

Intermediate 
slender (I) 

18 12 1.5 8 750 – 2035.752 
15 12 1.25 5 1200 – 1696.46 

Squat (Q) 12 15 0.8 6 1250 – 2120.575 
7.5 15 0.5 5 1500 – 1325.359 

Flat Slender (S) 25 10 2.5 10 500 10 1963.495 
20 10 2 5 1000 5 1570.796 

Intermediate 
slender (I) 

18 12 1.5 8 750 8 2035.752 
15 12 1.25 5 1200 5 1696.46 

Squat (Q) 12 15 0.8 6 1250 6 2120.575 
7.5 15 0.5 5 1500 5 1325.359 

Cone Slender (S) 25 10 2.5 10 500 10 1963.495 
20 10 2 5 1000 5 1570.796 

Intermediate 
slender (I) 

18 12 1.5 8 750 8 2035.752 
15 12 1.25 5 1200 5 1696.46 

Squat (Q) 12 15 0.8 6 1250 6 2120.575 
7.5 15 0.5 5 1500 5 1325.359  

Fig. 5. Mesh sensitivity analyses for finite element silo model.  
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Fig. 6. Modal frequencies in empty slender, intermediate slender and squat silos.  
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aspect ratio 0.5 the fundamental frequency is 259.26 Hz maximum. For slender 2.5, 2.0 and intermediate slender 1.5, 1.25 open silos 
the variation in modal frequency are in close proximity, thus corresponds to the better performance of the open silos for 90 % filling. 
Table 9 explores the fundamental frequencies in cone silo for different levels of filling materials. With increase in the aspect ratio in 

Table 5 
Modal frequencies (in Hz) in empty slender silos (S).  

Type of closure H = 25 m, D = 10 m, h = 10 mm, hc = 10 mm, H/D = 2.5, R/h = 500 H = 20 m, D = 10 m, h = 5 mm, hc = 10 mm, H/D = 2, R/h = 1000 

Modes (m, n) Frequency Modes (m, n) Frequency 

Open (1,1) 2.030 (1,1) 1.855 
(1,2) 2.501 (1,2) 2.044 
(1,3) 2.574 (1,3) 2.275 
(1,5) 3.623 (1,5) 2.595 
(1,6) 4.992 (1,6) 3.682 

Flat (1,1) 1.010 (1,1) 0.506 
(1,3) 2.159 (1,3) 1.073 
(1,4) 5.926 (1,4) 4.142 
(1,6) 6.741 (1,6) 4.548 
(1,7) 6.852 (1,7) 4.570 

Cone (1,1) 4.511 (1,1) 4.014 
(1,3) 5.404 (1,3) 4.538 
(1,4) 6.852 (1,4) 5.674 
(2,4) 8.707 (2,4) 6.873 
(2,6) 9.174 (2,6) 7.563  

Table 6 
Modal frequencies (in Hz) in empty intermediate slender silos (I).  

Type of closure H = 18 m, D = 12 m, h = 8 mm, hc = 8 mm, H/D = 1.5, R/h = 750 H = 15 m, D = 12 m, h = 5 mm, hc = 5 mm, H/D = 1.25, R/h = 1200 

Modes (m, n) Frequency Modes (m, n) Frequency 

Open (1,1) 2.465 (1,1) 2.330 
(1,3) 2.975 (1,3) 2.427 
(1,4) 3.238 (1,4) 2.608 
(2,1) 3.786 (2,1) 3.056 
(2,3) 4.820 (2,3) 3.847 

Flat (2,1) 0.559 (2,1) 0.350 
(2,2) 1.956 (2,2) 1.241 
(2,4) 4.082 (2,4) 2.578 
(2,5) 5.165 (2,5) 3.367 
(2,6) 5.460 (2,6) 5.053 

Cone (2,1) 5.152 (2,1) 5.048 
(2,2) 5.322 (2,2) 5.061 
(2,4) 6.278 (2,4) 6.219 
(2,5) 7.772 (2,5) 7.220 
(2,6) 9.307 (2,6) 8.269  

Table 7 
Modal frequencies (in Hz) in empty squat silos (Q).  

Type of closure H = 12 m, D = 15 m, h = 6 mm, hc = 6 mm, H/D = 0.8, R/h = 1250 H = 7.5 m, D = 15 m, h = 5 mm, hc = 5 mm, H/D = 0.5, R/h = 1500 

Modes (m, n) Frequency Modes (m, n) Frequency 

Open (1,4) 2.902 (1,4) 4.295 
(1,5) 3.234 (1,5) 4.441 
(1,6) 4.036 (1,6) 5.498 
(2,4) 5.254 (2,4) 6.270 
(2,6) 5.480 (2,6) 7.174 

Flat (1,1) 0.000 (1,1) 0.224 
(1,2) 0.301 (1,2) 0.776 
(1,4) 0.577 (1,4) 1.113 
(1,3) 0.940 (1,3) 1.957 
(1,5) 1.121 (1,5) 2.087 

Cone (2,1) 6.155 (2,1) 6.886 
(2,3) 6.271 (2,3) 6.974 
(2,4) 6.721 (2,4) 7.574 
(2,6) 7.179 (2,6) 8.113 
(2,5) 7.597 (2,5) 9.239  
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cone closure the frequency decreases and further indicating that filling levels increases the mass in the silo, hence increases the fre-
quency. From the results during the filling and emptying the silos considering the on floor practical conditions, the 75 %–90 % filling 
levels the variation in fundamental frequency is almost negligible. In Table 10 the tenth modal frequencies in cone silo for different 
levels of filling materials are discussed. To show the higher mode shapes tenth mode shapes are shown. 

Table 11 gives the fundamental frequencies in open silo for different levels of filling materials. It is seen that for 90 % filling 
material the fundamental mode is (1, 1) for 2.0, 1.5 and 0.5 aspect ratios. In all cases the axial mode is one for the fundamental 
frequency. Table 12 explores the fundamental frequencies for H/D = 2.0 for 90 % filling materials. It can be seen that in case of flat 
closure the variation in fundamental frequency in slender silo is not so much affected by the different filling levels. And same nature of 
results is observed in case of intermediate and squat silos also. 

6. Regression approach for predicting mode frequency 

In order to estimation the mode frequency corresponding to aspect ratio of silo, regression approach based on polynomial 
regression is used for predicting the mode frequency of empty and 90 % filled silos. Based on the simulated result for aspect ratio 0.5, 
0.8, 1.25, 1.5, 2.0 and 2.5 and corresponding modal frequency for empty and 90 % filled silos, the polynomial relationship is 

Table 8 
Empty silos fundamental frequencies. 
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developed. For this the first, second, third and fourth order degree polynomial regression equations are used as given in Tables 13 and 
14. The generalized polynomial nth order equation is represented as, 

y(x)= (p1 × xn)+
(
p2 × xn− 1)+……(pn × x) + pn+1 (12) 

From the polynomial regression the polynomial coefficients estimated for the first, second, third and fourth order equations are 

Fig. 7. Modal frequencies for different levels of filling materials.  

Fig. 8. Modal frequencies in open silo for filling materials 90 % for different aspect ratios.  
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Table 9 
Fundamental frequencies in cone silo for different levels of filling material. 
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Table 10 
Tenth modal frequencies in cone silo for different levels of filling material. 
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Table 11 
Fundamental frequencies in open silo for different levels of filling material. 
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given in Table 13 for empty and Table 14 for 90 % filled silos. In the present work, the coefficient of determination (R2) and the root 
mean squared error (RMSE), two statistical metrics, have been used in order to verify and evaluate the created regression models. Thus, 
the statistical connection between two data points using the R2 value. When the linear correlation is measured, a value between 0 and 1 
is obtained, with 0 denoting no correlation and 1 denoting complete correlation. The slope criterion, which is described as the slope of 
the linear regression fit between the predicted and observed modal frequency, is then presented. The following the algorithm for 
regression models used for mode frequency prediction of silo.  

Table 12 
Fundamental frequencies for H/D = 2.0 for 90 % filling materials. 

Table 13 
Polynomial regression coefficients for empty silos.  

(a) For open 

Degree Equation p1 p2 p3 p4 p5 R2 RSME 

1 p1x + p2 − 0.997 4.067 – – – 0.701 0.540 
2 p1x2 + p2 x + p3 0.919 − 3.748 5.695 – – 0.916 0.330 
3 p1x3+ p2x2+ p3x + p4 − 0.672 3.937 − 7.71 7.134 – 0.943 0.334 
4 p1x4+ p2x3+ p3x2+ p4 x + p5 1.888 − 11.968 27.281 − 27.047 12.389 0.993 0.158  

(b) For flat closure 

Degree Equation p1 p2 p3 p4 p5 R2 RSME 

1 p1x + p2 0.415 − 0.150 – – – 0.807 0.168 
2 p1x2 + p2 x + p3 0.155 − 0.048 0.124 – – 0.848 0.173 
3 p1x3+ p2x2+ p3x + p4 − 0.01 0.203 − 0.112 0.147 – 0.848 0.212 
4 p1x4+ p2x3+ p3x2+ p4 x + p5 1.268 − 7.596 15.879 − 13.098 3.676 0.998 0.033  

(c) For cone closure 

Degree Equation p1 p2 p3 p4 p5 R2 RSME 

1 p1x + p2 − 1.284 7.125 – – – 0.814 0.51 
2 p1x2 + p2 x + p3 0.866 − 3.87 8.66 – – 0.948 0.311 
3 p1x3+ p2x2+ p3x + p4 0.523 − 1.48 − 0.789 7.538 – 0.959 0.337 
4 p1x4+ p2x3+ p3x2+ p4 x + p5 1.18 − 6.57 13.19 − 12.94 10.84 0.973 0.387  
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From Table 13(a) for open, Table 13(b) for flat closure and Table 13(c) for cone closure give R2 and RMSE values for first, second, 
third and fourth order polynomial equations. It can be observed that the best fitting for obtaining the relationship between mode 
frequency and aspect ratio of empty silo is by using the fourth order polynomial for open, flat and cone closure. For which the R2 is 
maximum and corresponding RMSE value is minimum for fourth order polynomial which is an ideal case for predicting the modal 
frequency for empty silo. Fig. 9 shows the predicted modal frequencies obtained for aspect ratio from 0.5 to 2.5 using fourth order 
polynomial regression. It can be seen that the modal frequencies is more in cone closure as compared to open and flat closure empty 
silos for aspect ratio 0.5 to 2.5. 

Similarly, by regression approach the modal frequency is also predicted for 90 % filled silos for open, flat and cone closure. Table 14 
(a) for open, Table 14(b) for flat closure and Table 14(c) for cone closure gives the polynomial coefficients estimated for the first, 

Table 14 
Polynomial regression coefficients for 90 % filled silos.  

(a) For open 

Degree Equation p1 p2 p3 p4 p5 R2 RSME 

1 p1x + p2 − 31.58 79.12 – – – 0.780 13.94 
2 p1x2 + p2 x + p3 24.79 − 105.7 123 – – 0.953 7.411 
3 p1x3+ p2x2+ p3x + p4 − 23.25 129.2 − 242.8 172.8 – 0.988 4.436 
4 p1x4+ p2x3+ p3x2+ p4 x + p5 23.92 − 166.3 424.9 − 487.7 239.4 0.997 2.789  

(b) For flat closure 

Degree Equation p1 p2 p3 p4 p5 R2 RSME 

1 p1x + p2 − 5.09 25.23 – – – 0.755 2.408 
2 p1x2 + p2 x + p3 − 2.716 3.03 20.42 – – 0.833 2.298 
3 p1x3+ p2x2+ p3x + p4 − 5.096 20.17 − 27.02 31.33 – 0.896 2.216 
4 p1x4+ p2x3+ p3x2+ p4 x + p5 9.772 − 63.56 141 − 127.1 58.533 0.952 2.132  

(c) For cone closure 

Degree Equation p1 p2 p3 p4 p5 R2 RSME 

1 p1x + p2 − 16.89 50.39 – – – 0.972 2.374 
2 p1x2 + p2 x + p3 4.198 − 29.45 57.82 – – 0.993 1.288 
3 p1x3+ p2x2+ p3x + p4 2.163 − 5.515 − 16.7 53.19 – 0.995 1.394 
4 p1x4+ p2x3+ p3x2+ p4 x + p5 − 4.24 27.53 − 57.94 26.72 41.39 0.996 1.702  

Algorithm 1: Regression for Mode Frequency Prediction 

p x  =p x  p x  p x  p  x  p
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second, third and fourth order polynomial equations for 90 % filled silo. In case of 90 % filled silo the best fitting for obtaining the 
relationship between mode frequency and aspect ratio of is obtained by the fourth order polynomial for open, flat and cone closure. For 
which the R2 is maximum and corresponding RMSE value is minimum for fourth order polynomial which also an ideal case for 
predicting the modal frequency for 90 % filled silo. Fig. 9 shows the predicted modal frequencies obtained for aspect ratio from 0.5 to 
2.5 using fourth order polynomial regression. It can be seen that the modal frequencies is more in open as compared to cone and flat 
closure 90 % filled silos for aspect ratio up to nearly 1.5 and beyond 1.5 aspect ratio the modal frequencies are almost same for open, 
flat and cone silos for 90 % filled silos. 

By using the regression approach based 4th order polynomial regression equations proposed in the present work will be useful in 
predicting the modal frequencies of empty and filled silos. In addition it is also find that for the mentioned prediction problem 
increasing order of polynomial beyond 4 is not feasible and degrades the efficiency. Thus, 4th order polynomial regression is selected 
as optimum solution. 

7. Conclusions 

In the present work the free vibration analysis of thin circular cylindrical steel silos considering various aspect ratios, slender, 
intermediate slender and squat silos; for empty and varying storage filled conditions is carried out. The modal frequencies for empty 
and 25 %, 50 %, 75 % and 90 % filled silos are evaluated. Also, silos are considered having open, flat and cone type of closures at its top, 
in order to study the effect of closures on the natural frequencies of silos. Finally, regression approach is adopted for predicting the 
mode frequency of empty and filled silos. The following conclusions are obtained from the present study.  

(1) As aspect ratio increases the fundamental frequency is reduced in empty silo. It is more in the case of squat silo. It can be seen 
that the fundamental frequency is less in the case of flat closure in all the aspect ratios of the silo. The frequency values are more 
in the case of cone closure is observed. Also as the mode number increases the modal frequency value increases.  

(2) As the filling level is increased the modal frequency also increases. The less value of frequency is in open slender silo. With 
increase in the aspect ratio in cone closure the frequency decreases and further indicating that filling levels increases the mass in 
the silo hence increases the frequency. The fundamental frequencies for H/D = 2.0 for 90 % filling materials, in case of flat 
closure the variation in fundamental frequency in slender silo is not so much affected by the different filling levels. And same 
nature of results is observed in case of intermediate and squat silos also. Through these free vibration studies on empty and 
varying storage filled conditions of different aspect ratios will most certainly aid in comprehending the dynamic behavior of 
steel silos. 

(3) By using the regression approach based 4th order polynomial equations proposed in the present work will be useful in pre-
dicting the modal frequencies of empty and 90 % filled silos. The modal frequencies are more in cone closure as compared to 
open and flat closure empty silos for aspect ratio 0.5 to 2.5. The modal frequencies are more in open as compared to cone and 

Fig. 9. 4th order polynomial regression for empty and 90 % filled silos.  
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flat closure 90 % filled silos for aspect ratio up to nearly 1.5 and beyond 1.5 aspect ratio the modal frequency are almost same for 
open, flat and cone for 90 % filled silos. 

The free vibration analysis of empty and different filled levels of silo along with different closures is examined in the present work. 
This investigation will definitely results in the understanding the structural and dynamic response of steel silos, also the dynamic 
interaction behavior between the storage materials and the structural components of flat-bottom silo. 
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