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Abstract: The performance of three near-infrared spectroscopy (NIRS) instruments was compared
through the investigation of coriander seed authenticity. The Thermo Fisher iS50 NIRS benchtop
instrument, the portable Ocean Insights Flame-NIR and the Consumer Physics handheld SCiO device
were assessed in conjunction with chemometric modelling in order to determine their predictive
capabilities and use as quantitative tools through regression analysis. Two hundred authentic
coriander seed samples and ninety adulterated samples were analysed on each device. Prediction
models were developed and validated using SIMCA 15 chemometric software. All instruments
correctly predicted 100% of the adulterated samples. The best models resulted in correct predictions
of 100%, 98.5% and 95.6% for authentic coriander samples using spectra from the iS50, Flame-NIR
and SCiO, respectively. The development of regression models highlighted the limitations of the
Flame-NIR and SCiO for quantitative analysis, compared to the iS50. However, the results indicate
their use as screening tools for on-site analysis of food, at various stages of the food supply chain.

Keywords: food authenticity; near-infrared spectroscopy; chemometrics; portable; handheld

1. Introduction

The quality, safety and authenticity of food is under increasing threat due to pressures
arising from the current coronavirus pandemic (COVID-19) and ongoing climate change
issues. The impact of COVID-19 has led to the disruption of food supply chains, increased
demand for specific food commodities, and resulted in significant wastage of other food
products. The price of food remained relatively stable in the first few months of the
pandemic. However, the potential for increased food prices in the future is expected [1].
This instability within the food supply system, merged with a reduced level of surveillance,
has the potential to allow low-quality, unsafe and fraudulently produced commodities to
enter the food chains. The recent seizure of two shipments of horsemeat destined for the
EU markets is a reminder of the vulnerability within food chains [2]. It is evident that there
is a need for analytical testing approaches that can be implemented at various stages of the
food supply chain in order to mitigate food quality, safety and authenticity risks.

Traditional methods employed for food safety, quality and authenticity analysis, such
as mass spectrometry [3], DNA analysis [4] and culturing techniques [5], are generally
expensive, time consuming, non-conducive to on-site analysis and require highly trained
personnel. To overcome these issues, vibrational spectroscopy (near infrared, mid-infrared
and Raman) based approaches have been used due to the fast, non-invasive and simul-
taneous analysis of different chemical and physical parameters [6]. Due to advances
in micro-technologies, such as Micro-Electro-Mechanical Systems (MEMS), Micro-Opto-
Electro-Mechanical Systems (MOEMS), e.g., digital mirror device (DMD™) and Linear
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Variable Filters (LVFs), near-infrared spectroscopy (NIRS) has transitioned from bench-
top/laboratory equipment to a highly portable, low-weight and rugged device [7–9]. The
incorporation of these technological advances makes NIRS handheld or portable devices
more cost effective over their mid-infrared (MIR) and Raman counterparts. These features
make them applicable to widespread use, particularly on-site or on-line analysis. This
has been demonstrated through the incorporation of NIRS handheld devices into process
analytical technology (PAT), due to the potential for real-time monitoring and modelling of
food constituents during the manufacturing process [10].

The advantages and wide applicability of NIRS have accelerated the commercial
development of handheld devices. A comparison of commercially available handheld
NIR spectrometers is shown in Table 1. One of the most widely used and commercially
available, handheld NIR spectrometers is the Viavi MicroNIR 1700ES (formerly JDSU, Santa
Rosa, CA, USA). It incorporates LVF as the monochromator and has an array detector that
covers the wavelength range from 950 to 1650 nm. It is the incorporation of the LVF that
affords the MicroNIR 1700ES its low cost, good spectral resolution, compact design and
low power consumption. New system developments have focused on the incorporation
of single-point detectors rather than array detectors, in a bid to further reduce the cost
of the device. Texas Instruments have developed DLP NIRscan Nano EVM (Dallas, TX,
USA), which replaces the traditional linear array with digital light processing (DLP) digital
micromirror device (DMD) in conjunction with a single-element detector. The technol-
ogy affords low cost, compact size, higher performance (uses a larger single-point 1 mm
detector in comparison to linear array) and improved functionality (e.g., programmable
spectral filters and sampling techniques) over traditional architectures. The SCiO (Con-
sumer Physics, Israel) uses a silicon photodiode array (PDA) detector that is sensitive in the
range of 740–1070 nm. The wavelength range is limited in comparison to other devices that
require indium gallium arsenide (InGaAs) detectors, but the PDA detector is less expensive.
Recently, Si-Ware Systems (Cairo, Egypt) developed a MEMS-based FT-NIRS device that
contains a single-chip Michelson interferometer with a monolithic optoelectro-mechanical
structure. The incorporation of MEMS allows for the simultaneous measurement of various
materials over a wider range, and at the higher end of the NIR spectrum (1150 to 2500
nm), and for the adjustable resolution of the spectrometer. Spectral Engines (Helsinki, Fin-
land) also incorporate MEMS technology into their miniaturised NIRONE spectrometers,
alongside a Fabry-Perot Interferometer, which is a fully programmable, optical filter. A
drawback is the requirement for five spectrometers to cover the NIR wavelength region
1350 to 2450 nm (S1.4-EVK; 1100–1350 nm, S1.7-EVK; 1350–1650 nm, S2.0-EVK; 1550–1950,
S2.2-EVK; 1750–2150 and S2.5-EVK; 2000–2450 nm). For a more in-depth overview of
miniaturised NIR technology, the reader is prompted to the following review [11].

Table 1. Overview of a selection of commercially available handheld NIRS.

Spectrometer
Spectral

Resolution
(nm)

Measurement Detector Spectral
Resolution Software Dimensions Weight

MicroNIR
1700 ES
(Viavi)

950–1650

Diffuse
reflection,

transmission,
or transflection

128 pixel
InGaAs

photodiode
array

12.5 nm at
1000 nm

VIAVI MicroNIR Pro
software suitea (data

acquisition, calibration and
method development, user
management, and real-time

prediction)

50 ×45 mm 64 g

DLP
NIRscan

Nano EVM
(Texas

Instruments)

900–1700 Diffuse
reflection

1 mm
single-pixel

InGaAs
uncooled

linear array

10 nm
DLP NIRscan Nano software

b (graphical user interface
only)

62 × 58 × 36 54 g
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Table 1. Cont.

Spectrometer
Spectral

Resolution
(nm)

Measurement Detector Spectral
Resolution Software Dimensions Weight

SCiO
(Consumer

Physics)
740–1070 Diffuse

reflection

Silicon
photodiode

array

28 nm average
across its
working

spectral region
of 740–1070 nm

TheLab a (data acquisition,
calibration and method

development, user
management, and real-time

prediction)

67.7 × 40.2
× 18.8 mm 35 g

NeoSpectra
Micro

(Si-Ware)
1350–2550 Diffuse

reflectance

Single
uncooled
InGaAs

photodetector

16 nm at
1500 nm

SpectroMOST software bc

(graphical user interface only).
Software development kit is
available for development of

application software

60 × 30 × 40
mm

inclusive of
Raspberry Pi

board)

17 g

NIRONE
Sensor S
(Spectral
Engines)

Various:
1100–1350
1350–1650
1550–1950
1750–2150
2000–2450

Diffuse
reflectance

Single element
InGaAs

Various
depending on

the spectral
range:

12–28 nm

SensorControl b (graphical
user interface only)

25 × 25 ×
17.5 mm 15 g

a Data acquisition, calibration and method development, user management, and real-time prediction. b Graphical user interface (GUI).
c Software development kit is available for development of application software.

Due to these advances and advantages of portable or handheld NIRS devices, research
has been carried out to determine the applicability of commercial devices in the area of food
safety, quality and authenticity analysis. Applications include (i) authenticity testing [12–18],
(ii) post-harvest quality of fruit [19], (iii) pork meat composition (fat, moisture and pro-
tein) [20], (iv) determination of sucrose levels in infant cereals [21], (v) acrylamide content in
potato chips [22], and (vi) nutritive composition of compound feedstuffs [23]. The low cost,
non-invasive measurement, compact size and ease of use of NIRS handheld and portable
devices meet the requirements for on-site or on-line analysis. Thus, further investigations
are warranted into the analytical performance of such devices for food quality, safety and
authenticity screening. Current research has compared the performance of a variety of
commercially available portable and handheld devices against one another [22–24] and
against benchtop instrumentation [10,17,18,25–28] for food analysis. To the best of the
author’s knowledge, only one publication has evaluated the analytical performances of a
NIRS benchtop instrument, handheld and portable device [16]. This research focused on
the authenticity of honey origin using three NIRS instruments, which are different to those
used in the current study. The research focused on a small sample size and determined
predictive capabilities only. To the best of the author’s knowledge, no research has been
conducted in the area of coriander authenticity via handheld or portable NIRS. It is evi-
dent that more research is required to assess the performance of handheld and portable
NIRS instruments in comparison to their benchtop counterparts as a means to improve
confidence in the application of these types of instrumentation in field-based applications.

Therefore, the aim of this work was to assess the analytical performance of three
commercially available NIRS instruments, differing in wavelength range, resolution and
portability. A benchtop NIRS (iS50, Thermofisher Scientific, Dublin, Ireland), a portable
NIRS (Flame-NIR, Ocean Insight, USA) and a handheld NIRS (SCiO, Consumer Physics,
Israel) were compared to assess their analytical performance quantitatively and qualita-
tively. These devices were chosen based on their differing specifications, but also their
individual utilisation in the area of food authenticity analysis [29–34]. To the best of the
author’s knowledge, there is no reported authenticity methods developed using the Flame-
NIR. In contrast, methods using the SCiO device have increased over the last number of
years [32–34]. However, no methods have been developed for herb and spice authenticity
analysis. With the increasing need for rapid, on-site analysis of food, it is anticipated that
these findings will provide further knowledge of the accuracy and precision of commer-
cially available portable or handheld NIR spectrometers in comparison to their benchtop
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counterparts. We assess and compare the actual performances of each of the devices for the
determination of coriander seed authenticity, which can differ from theoretical indications,
due to the spectral variation of food samples. Furthermore, the assessment of the SCiO
cloud-based software, The Lab, was conducted to determine the analytical processing
power in combination with the SCiO handheld device. Due to the ubiquitous use in In-
dian, Asian, Middle Eastern and Mediterranean cuisines and potentional vulnerability to
fraud [35], coriander seed was chosen for the method development.

2. Materials and Methods
2.1. Sample Collection and Preparation

Two hundred, whole coriander seed samples with highest-grade quality (AAA rated)
provenance and authenticity, of Indian origin, were obtained from a reputable supplier.
Potential adulterants were identified; salt and sawdust were purchased at a local retailer
(Asda) and starch was obtained from Sigma Aldrich, Pool, UK (CAS number: 9005-25-8).
All samples were stored in sealed containers, at ambient temperature and away from direct
light. Prior to spectroscopic analysis, all samples were ground to a homogenous powder
using a ball mill (Planetary Ball Mill: PM-100 Retsch, Hann, Germany). Approximately
5.0 g of coriander seed was added to the grinding jars and milled at 500 rpm for five
minutes. To prepare the adulterated samples, 10 authentic coriander samples were chosen
(Excel random generator) and spiked at levels of 10, 20 and 30 g/100 g with salt, sawdust or
starch. The concentrations used in this study were chosen based on economically relevant
levels for adulteration. In total, 90 spiked samples were prepared.

2.2. Near-Infrared Spectroscopy

Three NIRS instruments were chosen for the current study. These included benchtop
equipment, iS50 (Thermo Fischer Scientific, Dublin, Ireland), Flame-NIR (Ocean Insight,
USA), a portable NIRS connected to a laptop, and a handheld SCiO device (Consumer
Physics, Tel Aviv, Israel) with Bluetooth connectivity to a smartphone device. All samples
were analysed in the milled form at ambient temperature, three replicates of each sample
were measured and the average was calculated prior to data processing.

The Thermo iS50 NIRS benchtop instrument was operated in the spectral range of
833–2500 nm (12,000–4000 cm−1) with 32 scans and a resolution of 8 cm−1. The samples
were poured into the sample cup (diameter: 3.2 cm, height: 1.5 cm) spinner on the inte-
grating sphere module of the instrument. The resulting spectral data was analysed using
SIMCA 15 chemometric Software (Sartorius, Sweden) and TQ Analyst 8 (Thermo Fisher
Scientific, Dublin, Ireland).

The portable Flame-NIR functions in the wavelength range of 934–1660 nm
(10,707–6250 cm−1). Prior to sample analysis, the device was turned on for thirty minutes
to allow the light source to warm up. Prior to the first measurement, device calibration
was carried out using two Spectralons (99% and 0% reflectance) and this was subsequently
updated every 10 min thereafter. The samples were poured into a Petri dish and placed
over the scan window. The Petri dish has no effect on the spectra. Three measurements
were collected in the reflectance mode with manual rotation in between replicates. The
spectra were downloaded from the Ocean View user interface and analysed using SIMCA
15 software and TQ analyst.

The handheld SCiO operates in the spectral range of 740–1070 nm (13,514–9346 cm−1).
The device was calibrated prior to analysis via insertion of the source and detector down-
wards into the outer protective case where the calibration module is embedded. The
calibration process is initiated through the application and this was repeated every ten
minutes during the analysis. In order to warm up the light source, three scans were initi-
ated. For sample analysis, a Petri dish was used to hold the sample and this was placed
on top of the SCiO device. The Petri dish has no effect on the spectra. The samples were
measured three times in diffuse reflectance mode, with manual rotation of the Petri dish in
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between scans. The spectra were analysed with the cloud-based software, The Lab (SCiO),
as well as with SIMCA 15 chemometric software.

2.3. Multivariate Data Analysis
2.3.1. Spectral Pre-Treatment

Spectra obtained on the Thermo iS50 NIRS, Flame-NIR and SCiO were exported
and evaluated using SIMCA 15 chemometric software. Prior to spectral processing, the
data obtained from each instrument was averaged. Pareto scaling was used throughout,
allowing for a reduction in the relative significance of large values, whilst at the same time
maintaining the structure of the data, by using the square root of the standard deviation
as the scaling factor [36]. Different pre-processing strategies were assessed; data was pre-
treated with standard normal variate (SNV), first-order derivatives (1DER), Savitzky–Golay
(SG) smoothing or a mixture thereof in order to remove irrelevant light scattering from the
spectra and to separate overlapping peaks.

Spectra recorded using the SCiO device were also evaluated using the online, cloud-
based, The Lab software (Consumer Physics). This software works specifically with the
SCiO device and aims to integrate spectral collection and chemometric analysis to provide
the user with a rapid result using publically available databases or privately created ones.
Various pre-processing methods were assessed using The Lab software in custom mode,
which allows for the selection of specific algorithms including SNV and first and second-
order polynomial smoothing with a window of 35 (1DER, 2DER). The Lab software also
features log transformation of the spectra and subtraction of the average or minimum
spectra.

For regression analysis using TQ Analyst 8 (Thermo Fisher Scientific), various spec-
tral pre-processing techniques were assessed including log transformations and first and
second-order derivatives (1DER and 2DER). Savitzky–Golay (SG) smoothing was also
assessed in conjunction with the other pre-processing techniques. Due to compatibility
issues, data obtained on the SCiO device was unable to be uploaded to TQ Analyst for
regression analysis.

2.3.2. Classification Models

For chemometric model development and validation, the samples were split into
a reference set which consisted of 192 samples and a validation set, which consisted of
98 samples which had not been used in the construction of the model (using random num-
ber generator on Excel). The reference and validation sets represented authentic coriander
seeds (67%), starch adulterated (11%), salt adulterated (11%) and sawdust adulterated
(11%).

Chemometric model development was carried out using SIMCA 15 software (SIMCA,
Sartorius, Sweden), with classification models built using Partial Least Squares Discrim-
inant Analysis (PLS-DA) or orthogonal PLS-DA (OPLS-DA). Multiclass and two-class
models were created using the spectral data, focusing on either authentic and starch, salt,
sawdust adulterated or authentic and all adulterated samples. The models were validated
internally via cross-validation, with 1/7th removed and used as the validation set, and
remaining 6/7th used to build the model. The prediction error was calculated for each
validation set and this procedure was repeated for all subsets. The predictability of the
models was also validated using the external validation set (data not used in model de-
velopment). A ‘cut-off’ value was determined using the predicted scores obtained from
SIMCA 15 software during the classification. The highest prediction score, which encom-
passed the maximum correct predictions (authentic coriander and adulterant samples), was
calculated. This allowed for the comparison of sensitivity and specificity of each model.

For data analysis using The Lab software, Random Forest (RF) algorithm was used
to develop classification models to predict the authenticity of the coriander samples. The
models were tested using the external validation set and the predictability of the mod-
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els were assessed. The Lab software does not offer any information about the internal
validation of their models.

2.3.3. Regression Models

The same reference and validation sets that were used in the development of clas-
sification models were used in the construction of regression models. Each potential
adulterant was assessed separately alongside the authentic coriander seed samples. The
pre-processed data was uploaded onto TQ Analyst 8 software (iS50 NIRS and Flame-NIR
data) or The Lab (SCiO data only) software. Using the spectral data obtained from TQ
Analyst, regression models were created using Principal Component Regression (PCR) and
Partial Least Squares Regression (PLS-R) algorithm. The validation samples were used to
test the models. For the analysis using The Lab (SCiO data only) cloud-based software,
Partial Least Squared Regression (PLS-R) algorithm was used to create the models. To
evaluate the analytical performance of the regression models, several quality parameters
were determined. The coefficient of determination (R2), a measure of the linearity; the root
mean square error of cross-validation (RMSECV) and root mean square error of prediction
(RMSEP) were calculated to determine the accuracy of the established models. Further-
more, regression models developed using TQ Analyst were evaluated in terms of their
limit of detection (LOD) and limit of quantification (LOQ). The LOD is the lowest analyte
concentration which can be reliably detected for a given analytical procedure (LOD = 3.29σ
of the authentic samples) and the LOQ is the lowest concentration which can be detected
(LOQ = 10σ of the authentic samples) [37].

3. Results and Discussion
3.1. Near-Infrared Spectroscopy

NIR spectra consists of overtones and combination bands that are usually overlapping
and therefore complex. Figure 1 demonstrates the average spectrum for authentic coriander
seed samples obtained on the three NIRS instruments, with the different NIR regions
highlighted. Region 1/“Herschel” region ranges from 800 to 1200 nm (blue), region 2
comprises the range between 1200 and 1800 nm (green) and region 3 encompasses the
region of 1800–2500 nm (orange). Each device is operational over varying regions and
this potentially influences the information that can be determined. Electronic transitions,
overtones and combination bands are observed in region 1, first overtones and combination
bands are demonstrated in region 2 and region 3 mostly displays combination modes [38].

1 
 

 
Figure 1. Average spectrum of authentic coriander seed samples assessed using the Thermo iS50
(blue), Flame-NIR (red) and SCiO (green). The background colors represent the three NIR regions,
blue (region 1), green (region 2) and orange (region 3).

The iS50 benchtop NIR encompasses the spectral range from 833 to 2500 nm
(12,000–4000 cm−1). Thus, the iS50 utilises all three NIR regions and, in theory should
provide the most accurate information in comparison to the handheld and portable de-
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vices. However, due to the number of combination bands over the three regions, data
interpretation can be complex. In contrast, the handheld and portable devices operate over
a shorter range. Spectra obtained from the Flame-NIR utilises the spectral range between
934 and 1660 nm (10,707–6250 cm−1), which corresponds to region 1 and 2 of the NIR spec-
trum. The SCiO operates in the spectral range of 740–1070 nm (13,514–9346 cm−1) which
encompasses region 1 and, interestingly, reaches into the visible part of the electromag-
netic spectrum. This could be of benefit if the adulterant influences the sample color (i.e.,
lightens or darkens), which is the case in terms of the current study. The low wavelength
range of region 1 is also beneficial in terms of sample penetration, which is important in
non-homogenous samples. However, lower wavelengths demonstrate low band intensities
due to their association with second and third overtones [24]. These differences in spectral
range ultimately influence the predictability and robustness of the developed chemometric
models.

3.2. Model Development and Validation
3.2.1. Model Development Using SIMCA 15 Software

PLS-DA and OPLS-DA supervised models were developed using SIMCA 15 software.
Various pre-processing techniques were applied to the spectral data to assess the pre-
dictability of the models (Table 2). Both the iS50 and Flame-NIR correctly predicted 100%
of the adulterated samples using all of the models (M1–16; Table 2). The best predictions
were determined using the benchtop instrument, the iS50, in which correct predictions
of 100% were obtained for both authentic coriander and the adulterants (M3–7, M9–11,
M13 and M16). This was expected due to the wavelength coverage of the instrument,
which encompasses the three NIR regions. M11, a PLS-DA multi-class model with data
transformed with SNV, was deemed to be the best model overall based a high cut-off value
and R2 of 0.99 and Q2 of 0.70. The high R2 and Q2 values indicate that the model can
explain most of the spectral variation and that it has good predictability. M11 consisted of
3 factors that explained 99.7% of the variation (Appendix A).

The best model obtained for the portable Flame-NIR instrument was a two-class, PLS-
DA model with no spectral pre-processing (M1). This model resulted in correct predictions
of 98.5% and 100% for authentic coriander and adulterant samples, respectively. In this case,
a R2 of 1.0 and a Q2 of 0.78 was determined. Using M1, 99.9% of the variation was explained
using 5 factors (Appendix A).These results are comparable to the benchtop iS50 instrument
and demonstrate the applicability of the NIR region 2 to the current investigation. Thus,
the Flame-NIR demonstrated very good potential as a portable device for authenticity
analysis.

The majority of the models were able to predict 100% of the adulterant samples using
data obtained on the handheld SCiO. The correct predictions for the authentic coriander
samples were generally lower in comparison to the results obtained for both the benchtop
iS50 and the portable Flame-NIR. However, correct predictions of over 90% were achieved.
This was expected due to the limited wavelength range of the SCiO device. The model that
resulted in the greatest correct predictions was a PLS-DA multiclass model that used SNV
and 1DER transformed data (M13). The model achieved correct predictions of 95.6% for
authentic coriander samples and 100% for the adulterant samples, with a R2 and Q2 value
of 0.99 and 0.52. A lower Q2 value was achieved in comparison to that obtained for the iS50
and Flame-NIR best models, this corresponds with the lower predictability found during
external validation for authentic samples. M13 used four factors capable of explaining
99.6% of the variation (Appendix A). Although the SCiO demonstrated lower predictability
of the authentic coriander samples, the results are adequate for use as a screening approach,
where samples determined to be ‘adulterated’ will undergo confirmatory analysis. The best
models for each instrument are shown in Figure 2. Clear separation between the authentic
coriander and adulterant samples is observed.
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Figure 2. The best classification models obtained for each NIRS instrument developed using 
SIMCA 15 software; (A) Spectra obtained from the Thermo iS50 benchtop instrument; a multiclass, 
PLS-DA model with SNV pre-processing applied (R2 = 0.99, Q2 = 0.70). (B) The portable Flame-NIR 
obtained data; a PLS-DA, two-class model with no spectral pre-processing applied (R2 = 1.0, Q2 = 
0.78). (C) Data obtained from the handheld SCiO device, pre-processed with SNV and 1DER; a 
PLS-DA, multiclass model (R2 = 0.99. Q2 = 0.52). 

3.2.2.  Model Development Using the Lab Software (SCiO Only) 

Figure 2. The best classification models obtained for each NIRS instrument developed using SIMCA
15 software; (A) Spectra obtained from the Thermo iS50 benchtop instrument; a multiclass, PLS-DA
model with SNV pre-processing applied (R2 = 0.99, Q2 = 0.70). (B) The portable Flame-NIR obtained
data; a PLS-DA, two-class model with no spectral pre-processing applied (R2 = 1.0, Q2 = 0.78).
(C) Data obtained from the handheld SCiO device, pre-processed with SNV and 1DER; a PLS-DA,
multiclass model (R2 = 0.99. Q2 = 0.52).
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Table 2. Predictability of the two-class and multiclass models developed and externally validated (n = 98) using SIMCA 15
software.

Predictability

Thermo Is50 Flame-NIR SCiO

Type ID Model Pre-Processing Coriander Adulterants Coriander Adulterants Coriander Adulterants

2-
C

LA
SS

M1 PLS-DA None 97.1% 100.0% 98.5% 100.0% 92.3% 96.7%
M2 OPLS-DA None 97.1% 100.0% 95.6% 100.0% 92.6% 96.7%
M3 PLS-DA SNV 100.0% 100.0% 98.5% 100.0% 92.6% 96.7%
M4 OPLS-DA SNV 100.0% 100.0% 97.1% 100.0% 91.1% 100.0%
M5 PLS-DA SNV + 1DER 100.0% 100.0% 95.6% 100.0% 91.1% 100.0%
M6 OPLS-DA SNV + 1DER 100.0% 100.0% 97.1% 100.0% 91.1% 100.0%
M7 PLS-DA SNV + 1DER + SG 100.0% 100.0% 94.1% 100.0% 91.1% 100.0%
M8 OPLS-DA SNV + 1DER + SG 98.5% 100.0% 95.6% 100.0% 91.1% 100.0%

M
U

LT
IC

LA
SS

M9 PLS-DA None 100.0% 100.0% 97.1% 100.0% 92.6% 100.0%
M10 OPLS-DA None 100.0% 100.0% 97.1% 100.0% 91.2% 100.0%
M11 PLS-DA SNV 100.0% 100.0% 95.6% 100.0% 91.2% 100.0%
M12 OPLS-DA SNV 97.1% 100.0% 95.6% 100.0% 91.2% 100.0%
M13 PLS-DA SNV + 1DER 100.0% 100.0% 94.1% 100.0% 95.6% 100.0%
M14 OPLS-DA SNV + 1DER 98.5% 100.0% 94.1% 100.0% 94.1% 100.0%
M15 PLS-DA SNV + 1DER + SG 94.1% 100.0% 94.1% 100.0% 91.2% 100.0%
M16 OPLS-DA SNV + 1DER + SG 100.0% 100.0% 94.1% 100.0% 91.2% 93.3%

3.2.2. Model Development Using the Lab Software (SCiO Only)

The Lab software was also used to develop models from the spectral data obtained
using the handheld SCiO device (Table 3). Interestingly, predictions obtained using The
Lab software favored the determination of authentic coriander over the adulterated sam-
ples. This differs from the prediction models developed using SIMCA 15 software, were
predictability was greater for the adulterants. This is a limitation of The Lab software, as
wrongly predicted ‘adulterated’ samples will be classified as ‘authentic’, and subsequently
allowed to enter the food chain. Nonetheless, the best predictions were obtained for M1
(Table 3), a two-class model built with spectral data which had not undergone any pre-
processing. Correct predictions of 99% and 89% were obtained for authentic coriander
samples and adulterants, respectively. Compared to the best model obtained from the
SIMCA 15 analysis of the SCiO spectral data (M13; 95.6% and 100% correct predictions for
authentic oregano and adulterants, respectively), correct prediction of the adulterants had
decreased. These variations are probably due to the differences in algorithms used in the
software. The Lab software provides a performance value (F1) which indicates the accuracy
of the models to detect authentic coriander or adulterated samples. For M1 the F1 value
was the highest at 0.966. The Lab software has limited statistical development opportunities
as it is consumer-orientated. This has both positive and negative implications, as it is easily
accessible to many users but does not allow a more in-depth development of statistical
parameters. Based on this finding, SIMCA 15 software is preferable for the development of
prediction models using spectral data from the SCiO device. However, due to restrictions
on the software, the assessment of spectral data from other instruments is prohibited. Thus,
it not known whether this finding would be consistent across other instruments.
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Table 3. Predictability of the two-class and multiclass models developed and externally validated
(n = 98) on the handheld SCiO device, using The Lab software.

Predictability

Type ID Pre-Processing Coriander Adulterants

2-
C

LA
SS

M1 None 99.0% 89.0%
M2 Log 100.0% 88.0%
M3 SNV 96.0% 90.0%
M4 1DER 100.0% 86.0%
M5 2DER 96.0% 91.0%
M6 SNV + 1DER 98.0% 82.0%
M7 SNV + 2DER 99.0% 82.0%
M8 Log + SNV + 1DER 97.0% 85.0%
M9 Log + SNV + 2DER 99.0% 84.0%

M
U

LT
IC

LA
SS

M10 None 100.0% 82.0%
M11 Log 100.0% 85.0%
M12 SNV 100.0% 63.0%
M13 1DER 99.0% 87.7%
M14 2DER 99.0% 88.7%
M15 SNV + 1DER 100.0% 75.3%
M16 SNV + 2DER 98.0% 80.0%
M17 Log + SNV + 1DER 98.0% 79.3%
M18 Log + SNV + 2DER 97.0% 74.6%

3.2.3. Regression Models Developed Using TQ Analyst Software (iS50 and Flame-NIR)

Regression (PCR) models were established and externally validated for each of the
three potential adulterants using TQ Analyst 8 (Thermo Fisher Scientific, Waltham, MA,
USA). Spectral data obtained from the benchtop iS50 and portable Flame-NIR was up-
loaded onto the software, and various pre-processing parameters were assessed. The
iS50 instrument outperformed the Flame-NIR device in terms of linearity, accuracy, limits
of detection and quantification and recovery (Table 4). The coefficient of determination
(R2) was above 0.9 for all models developed using the iS50-derived data, over all of the
adulterants tested (salt, starch and sawdust). The regression models developed for starch
demonstrated particularly good linearity (between 0.99 and 1.0). These results indicate
good correlation between the spectral and reference data. A low root mean square error of
cross-validation (RMSECV) (0.33–4.33) and root mean square error of prediction (RMSEP)
(0.31–4.59) was determined for the regression models developed using the iS50 derived
spectral data, indicating good accuracy across all adulterants tested. The regression models
for starch in particular demonstrated a low RMSECV and RMSEP, with the lowest values
of 0.33 and 0.31 obtained using M6. This highlights the potential of the models for the
quantification of starch. The LOD and LOQ coincided with these findings. The best starch
regression model had the lowest LOD and LOQ of 0.6% and 1.9% (M6), respectively. The
LOD and LOQ for salt and sawdust were slightly higher than that found for starch. The
best regression model demonstrated a LOD and LOQ for salt of 3.5% and 10.6% (M2),
respectively and 2.8% and 8.4% for sawdust (M7). The recoveries were generally between
90% and 100% for all of the models with regards all adulterants, with a few outliers. These
findings demonstrate good accuracy and robustness of the models using spectral data from
the benchtop iS50.

The regression models developed using spectral data from the portable Flame-NIR
device demonstrates a lower coefficient of determination (R2) for all the adulterants in
comparison to the regression models developed using spectral data from the iS50. This
finding suggests that these models are less robust and may require more samples to
improve the accuracy. Furthermore, the RMSECV (1.92–5.39) and RMSEP (1.65–5.39) were
greater in comparison to the regression models developed using spectral data from the
iS50. As the iS50 covers a larger spectral range, more information is provided between
1700 and 2500 nm, which might explain the improved accuracy of the model. Similar to the
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results found for the iS50 regression models, the analysis of starch adulteration using the
Flame-NIR demonstrated a lower RMSECV and RMSEP of 1.92 and 1.65 (M2), respectively,
in comparison to salt and sawdust. These models in particular are robust and demonstrate
good accuracy based on the high fitting and prediction efficiency. The LOD and LOQ for
starch using the regression models developed from Flame-NIR spectral data was 5.6%
and 17.5%, respectively (M2). The lowest LOD and LOQ determined from the sawdust
regression models were calculated at 7.6% and 33.1%, respectively (M7). Interestingly, the
LOD and LOQ for salt was lower than that found for starch and sawdust, with a level
of 4.8% and 14.6% determined (M5). This is of significance due to the inability of salt
to absorb NIR light. Nonetheless, it is likely that the developed models are capable of
recognising differences between the samples, not specifically the addition of salt. This
correlates with the recovery values determined for salt, with over recovery noted at 10%
and under recovery calculated at 20% and 30%. In general, the recoveries were poor for the
Flame-NIR regression models in comparison to those obtained from the iS50 regression
models. Again, the extended wavelength range on the iS50 instrument can explain this
difference.

Partial Least Squares Regression (PLS-R) models were also developed using TQ
Analyst and spectral data from the iS50 and Flame-NIR. The best models are shown in
Table 5. The best PLS-R models developed using spectral data from the iS50 demonstrated
a comparable R2, but higher RMSECV, RMSEP, LOD and LOQ values in comparison to the
developed PCR models with regard to all adulterants (M6; starch, M2; salt, M7; sawdust,
Table 4). Interestingly, all of the best PLS-R models developed using the Flame-NIR spectral
data underwent no pre-processing. In the case of the processed spectral data, there was poor
correlation between the spectral and reference data, possibly due to overfitting of the data.
The best model developed using Flame-NIR spectral data for salt determination showed
improved LOD and LOQ over the best PCR model (Table 4, M5). The best regression
model for starch determination demonstrated comparable results with the best PCR model
(Table 5, M2). However, sawdust quantification improved using the best PLS-R model in
comparison to the best PCR model (Table 4, M5).
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Table 4. Statistical parameters determined from PCR models developed using TQ Analyst software with spectral data obtained from the iS50 and Flame-NIR instruments.

Salt Starch Sawdust

Recovery (%) Recovery (%) Recovery (%)

Model R2 RMSEC RMSEP LOD
(%)

LOQ
(%) 10.00 20.00 30.00 R2 RMSEC RMSEP LOD

(%)
LOQ
(%) 10.00 20.00 30.00 R2 RMSEC RMSEP LOD

(%)
LOQ
(%) 10.00 20.00 30.00

iS
50

1.00 0.94 2.56 2.07 4.80 14.70 100.05 92.89 90.99 1.00 0.46 0.47 1.10 3.30 106.97 98.28 99.67 0.96 4.33 4.59 3.50 10.50 106.59 91.89 86.19
2.00 0.95 2.30 1.82 3.50 10.60 132.25 98.75 85.99 1.00 0.65 0.34 0.70 2.20 103.12 97.98 99.82 0.96 2.07 3.34 4.20 12.70 109.15 93.43 94.33
3.00 0.91 3.02 2.74 6.60 20.10 110.28 88.30 86.30 0.99 0.92 1.04 2.40 7.20 89.06 91.72 99.01 0.92 2.12 3.44 5.40 16.50 106.81 84.80 76.22
4.00 0.94 2.56 2.07 4.80 14.50 100.05 92.89 90.99 1.00 0.46 0.47 1.10 3.30 106.97 98.28 99.67 0.96 2.96 3.96 3.46 10.50 106.59 101.21 84.19
5.00 0.94 2.56 2.07 4.80 14.50 106.97 98.28 99.67 1.00 0.46 0.47 1.10 3.30 106.97 98.28 99.67 0.96 2.07 3.34 3.50 10.50 106.58 101.21 85.33
6.00 0.95 2.31 1.83 3.50 10.60 131.83 98.69 85.92 1.00 0.33 0.31 0.60 1.90 103.06 98.06 99.81 0.98 2.07 3.34 4.50 13.70 97.09 108.38 88.55
7.00 0.91 2.95 2.67 6.10 18.60 94.23 85.53 89.79 1.00 0.37 0.39 0.80 2.40 97.98 96.65 100.17 0.97 1.51 2.99 2.80 8.40 101.83 102.96 91.44
8.00 0.94 2.56 2.07 4.80 14.50 100.05 92.89 90.99 1.00 0.46 0.47 1.90 3.30 106.97 98.28 99.67 0.96 1.73 3.15 4.70 14.40 106.58 101.21 84.47

Fl
am

e
N

IR

1.00 0.88 3.65 3.41 5.10 15.40 137.45 77.23 76.22 0.96 2.02 2.56 7.20 21.90 78.30 92.73 93.25 0.83 2.07 3.34 10.90 33.10 137.45 77.23 76.22
2.00 0.80 3.99 4.06 5.70 18.50 110.30 68.96 75.53 0.97 1.92 1.65 5.60 17.50 81.43 94.23 99.32 0.74 4.34 4.56 13.00 39.70 110.30 68.96 75.53
3.00 0.64 5.83 5.39 8.50 25.70 117.80 55.20 51.67 0.84 4.04 3.62 10.30 31.20 115.10 80.55 69.78 0.75 5.24 4.76 10.90 38.04 117.80 55.20 51.67
4.00 0.88 3.65 3.41 5.10 15.40 137.45 77.23 76.22 0.96 2.02 2.56 7.20 21.90 78.30 92.73 93.25 0.83 5.13 4.65 10.90 33.10 137.45 77.23 76.22
5.00 0.87 3.75 3.59 4.80 14.60 134.55 74.81 75.08 0.96 2.02 2.57 7.20 21.90 78.00 92.59 93.17 0.83 4.34 4.56 10.80 32.90 134.55 74.81 75.08
6.00 0.86 3.92 3.92 5.10 15.60 104.55 68.32 73.80 0.96 2.01 1.71 6.00 18.30 80.83 94.51 98.32 0.74 4.33 4.59 13.00 39.60 104.55 68.32 73.80
7.00 0.78 4.76 4.99 6.60 20.20 139.50 59.74 50.20 0.96 2.12 1.98 6.60 20.00 88.73 90.61 99.37 0.94 5.24 4.76 7.60 33.10 139.50 59.74 50.20
8.00 0.87 3.79 3.59 4.80 14.60 134.55 74.81 75.08 0.96 2.02 2.57 7.20 21.90 78.00 92.59 93.17 0.83 2.60 2.13 10.80 33.10 134.55 74.81 75.08

Pre-processing; M1 = none, M2 = 1DER, M3 = 2DER, M4 = Log10, M5 = Log10 + SG, M6 = 1DER + SG, M7 = 2DER + SG, M8 = SG.
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Table 5. PLS-R models developed using spectral data from the benchtop Thermo iS50 and portable Flame-NIR on TQ
Analyst.

Recovery %

Preprocessing R2 RMSEC RMSEP LOD LOQ 10 20 30

iS
50

Salt 2DER + SG 0.95 2.19 2.39 6.02 18.30 120.55 109.91 72.96
Starch None 1.00 0.43 0.43 0.90 2.74 100.00 103.84 101.59

Sawdust SG 0.97 1.88 3.00 2.86 8.69 87.27 87.64 89.86

Fl
am

eN
IR Salt None 0.78 4.80 4.71 10.38 31.56 154.80 65.01 70.05

Starch None 0.98 1.62 1.92 5.73 17.43 102.67 99.15 92.89
Sawdust None 0.95 2.56 2.14 7.41 22.52 181.54 105.92 101.97

3.2.4. Regression Models Developed Using the Lab Software (SCiO Only)

Due to the set-up of the SCiO device and the web-based, The Lab software, data could
not be transferred to TQ Analyst. Thus, PLS-R models were developed on The Lab software
directly using spectral data obtained from the SCiO device. Various data pre-processing
transformations were applied. However, The Lab software is limited by the available
statistical methods. The results are displayed in Table 6. Generally, the R2, RMSECV and
RMSEP are consistent between the different models for each individual adulterant. Again,
the regression models for starch stand out due to a higher R2 and lower RMSECV and
RMSEP value in comparison to the other adulterants. The spectral range of the SCiO, which
enters into the visible part of the spectrum, may explain this finding. The lower R2 value
and higher RMSECV and RMSEP value for the salt regression models coincides with the
previous findings in Tables 4 and 5, and can be explained by the poor absorption of NIR
light by salt. The Lab software has a set criteria to validate the developed models. This
prohibited the external validation of the PLS-R models as more samples were required and
limited the calculation of other parameters such as LOD, LOQ and recovery. In comparison
to the best PLS-R models developed using iS50 derived data, the linearity, predictability
and fit (R2, RMSEP and RMSECV) is poor. However, the PLS-R models developed using
Flame-NIR derived data are comparable. Nonetheless, it is evident from these preliminary
findings that the SCiO has the potential to be useful in starch quantification.

Table 6. Statistical parameters obtained from PLS-R models developed using The Lab software, from spectral data obtained
on the SCiO device.

Salt Starch Sawdust

Model R2 RMSEC RMSEP R2 RMSEC RMSEP R2 RMSEC RMSEP

Raw 0.793 2.94 2.94 0.971 1.23 1.23 0.887 2.17 2.17
Log 0.798 3.013 3.013 0.967 1.296 1.296 0.886 2.26 2.26

Log SNV 0.881 2.46 2.45 0.966 1.273 1.273 0.881 2.135 2.135
Log SNV 1DER 0.792 3.35 3.35 0.963 1.34 1.34 0.885 2.242 2.241

4. Conclusions

Three NIRS instruments were investigated to evaluate their performance as an analyt-
ical tool for food authenticity analysis. The three instruments, with varying specifications,
namely different wavelength ranges and portability, were assessed based on classification
and regression model development via chemometric software (use as a qualitative and
quantitative tool). This included the development of prediction models using SIMCA 15
and The Lab software. The best predictions were determined using the benchtop iS50
derived spectral data, with 100% correct predictions for authentic coriander seeds and
adulterated samples. The models developed using the portable Flame-NIR spectral data
also demonstrated good predictability with 98.5% and 100% of authentic coriander and
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adulterant samples correctly identified. The best model developed using spectral data from
the handheld SCiO correctly predicted 95.6% of the authentic coriander samples and 100%
of adulterated samples. Although the predictive performance of the Flame-NIR and SCiO
is lower relative to the iS50, both present adequate results for use as a screening technique.
As the best models for both instruments can correctly predict 100% of the adulterated sam-
ples, any sample wrongly identified as adulterated will go through confirmatory analysis.
Although SIMCA analysis of the spectral data demonstrated high predictability, analysis
of The Lab software was necessary to fully assess the on-site usability of the SCiO device.
Considering the attributes of each instrument, in terms of sensitivity, robustness, cost,
usability and portability, both the Flame-NIR and SCiO devices demonstrate an excellent
analytical tool for on-site food integrity screening.
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Appendix A

Table A1. Number of factors determined for each model.

Thermo iS50 Flame-NIR SCiO

Type ID Model Pre-Processing A R2Xcum A R2Xcum A R2Xcum

2-
C

LA
SS

M1 PLS-DA None 4 1.00 5 1.00 1 0.99
M2 OPLS-DA None 2 + 2 + 0 1.00 1 + 3 + 0 1.00 1 + 1 + 0 0.91
M3 PLS-DA SNV 3 0.99 3 0.83 2 0.95
M4 OPLS-DA SNV 2 + 1 + 0 0.99 1 + 2 + 0 0.83 1 + 1 + 0 0.78
M5 PLS-DA SNV + 1DER 3 1.00 4 0.91 4 0.81
M6 OPLS-DA SNV + 1DER 2 + 1 + 0 1.00 1 + 3 + 0 0.91 2 + 2 + 0 0.80
M7 PLS-DA SNV + 1DER + SG 3 0.98 3 0.91 4 0.80
M8 OPLS-DA SNV + 1DER + SG 2 + 1 + 0 0.93 1 + 2 + 0 0.91 2 + 2 + 0 1.00

M
U

LT
IC

LA
SS

M9 PLS-DA None 2 0.98 4 1.00 2 1.00
M10 OPLS-DA None 1 + 1 + 0 0.98 2 + 2 + 0 1.00 1 + 2 + 0 1.00
M11 PLS-DA SNV 3 1.00 4 0.91 4 1.00
M12 OPLS-DA SNV 1 + 3 + 0 1.00 2 + 2 + 0 0.91 2 + 2 + 0 1.00
M13 PLS-DA SNV + 1DER 3 1.00 3 0.99 4 1.00
M14 OPLS-DA SNV + 1DER 1 + 2 + 0 1.00 2 + 2 + 0 0.99 2 + 2 + 0 0.81
M15 PLS-DA SNV + 1DER + SG 3 0.98 3 0.92 4 0.80
M16 OPLS-DA SNV + 1DER + SG 1 + 2 + 0 0.92 2 + 2 + 0 0.95 2 + 2 + 0 0.99

A = Number of PLS factors, R2Xcum = Cumulative explained fraction of the variation.
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