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Abstract
Dynamics can provide deep insights into the functional mechanisms of proteins and protein

complexes. For large protein complexes such as GroEL/GroES with more than 8,000 resi-

dues, obtaining a fine-grained all-atom description of its normal mode motions can be com-

putationally prohibitive and is often unnecessary. For this reason, coarse-grained models

have been used successfully. However, most existing coarse-grained models use extremely

simple potentials to represent the interactions within the coarse-grained structures and as a

result, the dynamics obtained for the coarse-grained structures may not always be fully real-

istic. There is a gap between the quality of the dynamics of the coarse-grained structures

given by all-atommodels and that by coarse-grained models. In this work, we resolve an

important question in protein dynamics computations—how can we efficiently construct

coarse-grained models whose description of the dynamics of the coarse-grained structures

remains as accurate as that given by all-atommodels? Our method takes advantage of the

sparseness of the Hessian matrix and achieves a high efficiency with a novel iterative matrix

projection approach. The result is highly significant since it can provide descriptions of nor-

mal mode motions at an all-atom level of accuracy even for the largest biomolecular com-

plexes. The application of our method to GroEL/GroES offers new insights into the

mechanism of this biologically important chaperonin, such as that the conformational transi-

tions of this protein complex in its functional cycle are even more strongly connected to the

first few lowest frequency modes than with other coarse-grained models.

Author Summary

Proteins and other biomolecules are not static but are constantly in motion. Moreover,
they possess intrinsic collective motion patterns that are tightly linked to their functions.
Thus, an accurate and detailed description of their motions can provide deep insights into
their functional mechanisms. For large protein complexes with hundreds of thousands of
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atoms or more, an atomic level description of the motions can be computationally prohibi-
tive, and so coarse-grained models with fewer structural details are often used instead.
However, there can be a big gap between the quality of motions derived from atomic mod-
els and those from coarse-grained models. In this work, we solve an important problem in
protein dynamics studies: how to preserve the atomic-level accuracy in describing molecu-
lar motions while using coarse-grained models? We accomplish this by developing a novel
iterative matrix projection method that dramatically speeds up the computations. This
method is significant since it promises accurate descriptions of protein motions approach-
ing an all-atom level even for the largest biomolecular complexes. Results shown here for a
large molecular chaperonin demonstrate how this can provide new insights into its func-
tional process.

Introduction
Protein dynamics plays a key role in describing the function of most proteins and protein com-
plexes. The importance of protein dynamics studies has been increasingly recognized alongside
the importance of the structures themselves. Experimentally, protein dynamics can be studied
using nuclear magnetic resonance (NMR) [1, 2], time-resolved crystallography [3], fluores-
cence resonance energy transfer (FRET) [4] and other single-molecule techniques [5], etc.
Computationally, the study of protein dynamics most commonly relies upon molecular
dynamics (MD) simulations [6–8]. Normal mode analysis (NMA) is another popular and pow-
erful tool for studying protein dynamics and was first applied to proteins in the early 80’s [9–
11]. The advantage of normal modes over MD is that they can most efficiently describe protein
motions near the native state. To apply NMA, a structure is first energetically minimized. The
minimized structure is then used to construct the Hessian matrix, from which normal modes
can be obtained from its eigenvectors and eigen-frequencies. This method poses a huge
demand on computational resources, especially memory, since some large supramolecules may
have hundreds of thousands of atoms. The time spent on computing the eigenvalues/eigenvec-
tors also is large, of the order of the cube of the number of atoms. Consequently, its applica-
tions are limited to smaller systems.

For this reason, many simplified models [12–33] have been developed for efficient normal
mode computations. These models use simplified structural models or simplified force fields or
commonly, both. One commonly applied type of coarse-grained model is the elastic network
model [13, 16], which usually treats each residue as one node, and residue-residue interactions
as Hookean springs. It has been demonstrated for a large number of cases that these extremely
simplified models can still capture quite well the slow dynamics of a protein [12]. And because
of their high level of simplicity, they have been successfully applied to study the normal mode
motions of the largest structural complexes such as GroEL/GroES [18, 34–38], ribosome [22,
39–41], nuclear pore complex [29], etc.

However, along with the significant gains from this simplicity comes also some loss of accu-
racy, particularly in the accuracy of the normal modes [42, 43]. The validity of most simplified
models was justified a posteriori, by comparing with experimental B-factors or sets of multiple
experimental structures for example. How well they preserve the accuracy of the original NMA
has rarely been assessed directly [33]. To overcome this problem of accuracy, we built a strong
connection between NMA and elastic network models (ENMs) through a series of steps of sim-
plification that began with NMA and ended with ENMs, and proposed a new way to derive accu-
rate elastic network models in a top-down manner (by gradually simplifying NMA) [33]. Our
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derivation was based on the realization that the Hessian matrix of the original NMA can be writ-
ten as a summation of two main terms, the spring-based terms and the force/torque-based terms,
with the former contributing significantly more than the latter. By ignoring the latter term, we
obtained at a new model, sbNMA (or spring-based NMA), that has high accuracy and closely
resembles the original NMA and requires no energy minimization. sbNMA, like the original
NMA, is force-field dependent and uses many parameters. By further simplifying it, we arrived at
two force-field independent elastic network models, ssNMA (simplified spring-based NMA) and
eANM (enhanced ANM), both of which use many fewer parameters and yet still preserve most
of the accuracy of NMA [33]. For example, the mean square fluctuations predicted by ssNMA
for a set of small to medium proteins have an average correlation of nearly 0.9 with those pre-
dicted with the original NMA [33]. It was shown [42] also that ssNMAmodes are more accurate
than those from other elastic network models. However, this bridging, as detailed in Ref. 33, con-
nected NMA only with all-atom elastic network models but not with coarse-grained ones. Both
ssNMA and eANM, though strongly resembling NMA, are by nature all-atommodels and can-
not be directly applied to coarse-grained structures.

There is little doubt that for very large biomolecular systems, coarse-grained structure repre-
sentations are needed, since all-atom normal mode analyses for such systems are computation-
ally often out of reach. Our aim in this work is to extend the idea of bridging between NMA
and elastic network models to coarse-grained models while preserving sufficient accuracy to
obtain accurate protein dynamics even for very large systems. Is it possible to efficiently con-
struct coarse-grained models whose description of the dynamics of a coarse-grained structure
remains as accurate as that given by all-atom models? Coarse-grained models, such as Cα-
based models, obviously do not have all the structural details of all-atom models. But can they
produce the dynamics of the Cα atoms as accurately as all-atom models? Is it possible to have
both the simplicity of coarse-grained structures and the accuracy of all-atom interactions?
These questions are the focus of this work. And we demonstrate affirmative answers to these
questions by employing a novel iterative matrix projection technique.

While our earlier work [33] connects between NMA and all-atom elastic network models
and represents a force-field simplification of NMA while maintaining most of its accuracy, the
present work presents an additional structural simplification from all-atom elastic network
models to coarse-grained elastic network models. Combined together, the two pieces of work
provide a bridge between all-atom NMA and coarse-grained elastic network models and
should reveal deep insights for how to develop coarse-grained elastic network models that pre-
serve most of the accuracy of all-atom NMA.

Methods
A coarse-grained model has two key components: i) a coarse-grained structure representation,
and ii) an interaction model for the coarse-grained structure. The challenge that one normally
faces in developing coarse-grained models is that there is no prescription for how to represent
the interactions among the coarse-grained structure precisely [44]. Most semi-empirical force
field potentials are for atomic models. Highly simplified Hookean springs were commonly
used to model residue-residue interactions. They provide only a very rough approximation to
the atomic interactions. Other studies that link atomic and coarse-grained models apply force-
matching [44] or require their frequency spectra to have similar distributions [45]. A statistical
mechanical foundation was developed by the same research group [46] to show that many-
body potentials of mean force that govern the motions of the coarse-grained sites could be gen-
erated. Regarding coarse-grained structure representation, Cα atoms are normally used to rep-
resent residues, although other coarse-grained representations also have been investigated [47].
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In this work, to extend the accurate all-atom models to coarse-grained models without los-
ing accuracy in the dynamics, we take two steps. First, we show that it is possible to define a
precise interaction model for the coarse-grained structure so that its dynamics are the same as
that of its all-atom counterpart. Second, we show that the construction of such a precise inter-
action model can be performed efficiently and straightforwardly.

How to Construct a Precise Interaction Model for a Coarse-Grained
Structure?
It is useful first to perform an operation that separates out the atoms used for the coarse-grain-
ing from the remainder of the atoms. Mathematically, it is possible to define a precise interac-
tion model (in the form of a Hessian matrix) for the coarse-grained structure by first
rearranging the original Hessian matrixHall into parts for the coarse-grained atoms and the
remainder of the atoms in separate subspaces, as was done by Eom et. al. [48] and Zhou and
Siegelbaum [49]:

Hall ¼
Hcc Hcr

H>
cr Hrr

 !
; ð1Þ

~Hcc ¼ Hcc �HcrH
�1
rr H

>
rc; ð2Þ

where c stands for the atoms used for the coarse-graining, r stands for the residual part of the
structure, and> represents the matrix transpose. It can be shown mathematically [50, 51] that
~Hcc maintains the same description of the mean-square fluctuations and cross-correlations of

the coarse-grained structure as the original Hessian matrix. All elements in ~H�1
cc are the same

as their corresponding elements inH�1
all . A similar idea of using matrix projection to obtain the

motions for subsystems was previously used also by Brooks and Zheng and their co-workers
[52, 53] to develop their VSA (vibration subsystem analysis) model.

However, this mathematical rearrangement in Eq (2) requires the inversion ofHrr, which
appears to be nearly as difficult as computing the inverse of the original all-atom Hessian
matrix, assuming the number of atoms in the coarse-grained structure is much smaller than

that of the original all-atom model. Therefore, unless ~Hcc can be computed in an efficient way,
the precise interaction model defined in Eq (2) would be computationally too expensive to
apply for very large systems and thus of little practical utility.

In the next section, we present a novel way for computing ~Hcc efficiently, without directly
invertingHall orHrr. As a result, this permits an efficient construction of coarse-grained mod-
els that can represent the dynamics of the coarse-grained structure as accurately as all-atom
models.

Efficiently Construct the Coarse-Grained Hessian Matrix through
Iterative Projection

To efficiently obtain the Hessian matrix ~Hcc from Eq (2) without having to directly invertHrr,
we take advantage of the fact that the Hessian matrixHall, the second derivatives of the poten-
tial, can be highly sparse for some all-atom models.Hall is not so sparse for the conventional
NMA, due to the persistence of electrostatic interactions to long distances. However, it is sparse
for ssNMA, an accurate all-atom model that closely resembles NMA as mentioned above.

The potential for ssNMA includes most of the same interaction terms as for NMA, except
for the electrostatic interactions [33]. As a simplified model of spring-based NMA (or
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sbNMA), ssNMA uses one single uniform spring constant for all bond stretching terms, one
uniform spring constant for all the bond-bending terms, and one for the torsional terms. Its
non-bonded van der Waals interactions are truncated near the equilibrium distance to avoid
negative spring constants in the Hessian matrix [33]. A single set of van der Waals radii are
used for all van der Waals interactions. All the equilibrium values such as bond lengths, bond
angles, and torsional angles are taken from the reference structure. Consequently, most of the
off-diagonal elements in the ssNMA Hessian matrix are zero.

In the following, we use ssNMA to construct the all-atom Hessian matrixHall and show

how a precise interaction model ~Hcc can be efficiently constructed through an iterative matrix
projection procedure. We call this model coarse-grained ssNMA, or CG-ssNMA. CG-ssNMA
preserves the same accuracy as the all-atom ssNMA in its description of the dynamics of the
coarse-grained structure.

The procedure, as detailed below, takes full advantage of the sparseness of the Hessian
matrix. Given a protein that has n atoms, one can iteratively reduce its size (or coarse-grain it)
by removing one atom, or a group of r atoms, at a time without losing accuracy in depicting
the motions of the remaining atoms. This can be done by adding a correction term to the inter-
actions among the remaining atoms. Define byH the Hessian matrix with n atoms as follows:

H ¼ Hkk Hkr

H>
kr Hrr

 !
; ð3Þ

whereHkk is the block matrix ofH for the kept n − r atoms,Hrr the block matrix for r atoms to
be removed, andHkr represents the interactions between the group of atoms to be removed

and the remaining atoms. The effective Hessian matrix ~Hkk of the kept atoms after taking into
account the correction term can be written as [42, 48, 49]:

~Hkk ¼ Hkk �HkrH
�1
rr H

>
kr; ð4Þ

withHkrH
�1
rr H

>
kr being the correction term.

It can be shown that the motions of the remaining atoms as described by ~Hkk is the same as
from the original Hessian matrixH. This numerical preservation is crucial when an all-atom
Hessian matrix is gradually coarse-grained by repeatedly removing non-Cα atoms, since it
guarantees that the quality of the description of the Cα atoms remains the same while the size
of the Hessian matrix is being reduced.

Note that each atom interacts only with a few, saym on average, atoms due the sparseness
of the Hessian matrix. As a result,Hkr has only a small number (rm) of non-zero elements, rep-
resenting the interactions between the group of atoms to be removed and the kept atoms.

Therefore, the termHkrH
�1
rr H

>
kr in Eq (4) can be computed in O(r3 + r2m2) time. Coarse-grain-

ing the whole protein structure takes roughly n/r iterations and thus requires a total time of O
((r2 + rm2)n), which is linear in the protein size n.

To further reduce the running time, matrix elements that are near zero (weak interactions)
are set to zero if their absolute values are less than a predetermined threshold value ξ. A prop-
erly chosen ξ can further improve computation speed while preserving the accuracy, by effec-
tively reducing the number of interactions, especially those between the atoms being removed
and the remaining atoms. Different ξ values are tested, as detailed in the next section.

Fig 1 illustrates how the sparseness of the Hessian matrix is maintained throughout the iter-
ative matrix projection procedure. At the initial step, atoms are shuffled so that Cα atoms are
grouped together and placed on the left-most side of the Hessian matrix, as shown in Fig 1(A),
where the grouped Cα and non-Cα atoms are represented by dark and light gray blocks,
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respectively. Blue dots represent the non-zero elements of the Hessian matrix. The non-Cα

atoms can then be further rearranged, for example, using the Cuthill-McKee algorithm [54], so
that the atoms that interact with one another are placed close together in the matrix. As a
result, the non-zero elements are relocated near the diagonal of the matrix (see Fig 1(B)). In
such a sparse matrix, Fig 1(C) shows the effect of applying one matrix projection using Eq (4),
where the red dots represent the elements of the matrix whose values are modified. Note that
the sparseness of the non-Cα region is mostly unaffected by the projection. The sparseness of
the white region (interactions with Cα atoms) can be maintained by using an appropriate
threshold value ξmentioned earlier.

Algorithm 1 lists the steps that iteratively reduce the all-atom Hessian matrix to a coarse-
grained one. The algorithm takes as input the all-atom Hessian matrixH, a set of Cα atom indi-
ces {k1, . . ., kn}, and a threshold value ξ. All matrix elements whose absolute values are less than
ξ are set to 0. In practice, it turns out that lines 4–11 run more efficiently if each iteration of the
coarse-graining process removes not a single atom but a group of atoms (Ri as in line 2).
Removing a group of adjacent atoms reduces the average number of interactions (m in the
above Big-O notation) with the remaining atoms. These groups of atoms are determined by
spatially partitioning the whole structure (3-D) into cubic blocks (18*Å for each dimension).
These blocks represent initial groups of atoms. The reason why atoms are partitioned in this
way is to minimize the number of interactions among the different groups. Blocks are then
sorted by their sizes (i.e., the number of atoms) in descending order. Next, starting with the
smallest one, blocks on the “small” end (usually blocks on the outsides of a structure) are itera-
tively merged together with the next smallest block as long as the size of the merged group does
not exceed the size limit (which is about 500 atoms per group, the number of atoms in a regular
cubic block). The merging process stops when there are no small blocks left to be merged. In
lines 7 and 9, sparse(A, b) returns a sparse matrix of A by setting to zero A’s elements that sat-
isfy |Ai,j|< b, where |Ai,j| is the absolute value of Ai,j. Threshold ξ/m is used in line 9 since the

Fig 1. Illustration of how the sparseness of the Hessianmatrix can bemaintained throughout the iterative matrix projection procedure, when
coarse-graining is performed by selecting the Cα atoms for retention. (A) In the first step the original Hessian matrix is shuffled so that Cα atoms (in dark
gray at the top-left corner) are separated from the non-Cα atoms (in light gray). Blue dots represent non-zero elements. (B) In the second step the non-Cα

atoms are rearranged again so that those interacting with one another are placed close together in the matrix using, for example, the Cuthill-McKee algorithm
[54]. As a result, most non-zero elements are placed near the diagonal. (C) Matrix after performing one projection to remove atoms in group r. The red dots
represent the blocks modified by the projection. The sparseness of the non-Cα region is mostly unaffected. The sparseness of the white region (interactions
with Cα atoms) can be maintained by using an appropriate threshold value ξ, see text.

doi:10.1371/journal.pcbi.1004542.g001
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addition (or subtraction) in line 10 is accumulatedm times. Line 9 prevents very small values
from being added toH in line 10 and then removed in line 7 at the next iteration.

Algorithm 1 CoarseGrain(H, {k1, . . ., kn}, ξ)
1: K {k1, . . ., kn}
2: R {R1, R2, . . ., Rm}
3: H Hessian matrix of H reshaped in the order of K, R1, R2, . . ., Rm
4: for i = m, m − 1, . . ., 1 do

5: k jK j þPi�1
j¼1 jRjj

6: r k + jRij
7: B sparse(H1..k, k + 1..r, ξ)
8: D Hk + 1..r, k + 1..r

9: E sparse(BD−1 B>, ξ/m)
10: H1..k,1..k H1..k, 1..k − E
11: end for
12: H sparse(H1..|K|,1..|K|, ξ)
13: return H

Results

Validation of Model Accuracy and Efficiency
In this section, we first verify computationally that the coarse-grained ssNMAmodel con-
structed according to the proposed procedure indeed not only preserves the accuracy of all-
atom models in its description of the motions of the coarse-grained structure but also is com-
putationally efficient. To this end, we first show, by applying it to a dataset of 177 small to
medium proteins, that with a properly chosen threshold value ξ, the coarse-grained ssNMA
preserves full accuracy. We then extend the same coarse-graining procedure, using the same ξ
value, to construct coarse-grained ssNMA Hessian matrices for 80 large superamolecules of
different sizes and show that the construction of these ssNMA Hessian matrices requires only a
nearly linear time and can thus be carried out quickly, even for large systems.

The Iterative Coarse-Graining Procedure Preserves Accuracy
To validate the accuracy of the method, Algorithm 1 is applied to 177 small-to-medium sized
proteins whose sizes are greater or equal to 60 residues but less than 150. This is the same set of
proteins that was used in our earlier work [33]. Only small to medium sized proteins are used
at this stage due to the high computational costs of running all-atom models, which have also
been computed here for comparison purposes.

Each protein structure is first energy minimized. From the all-atom ssNMA Hessian matrix,

two coarse-grained Hessian matrices,H and Ĥ, are computed.H is computed by direct matrix

projection (as in Eq (2)), which is an exact but very expensive computation, while Ĥ is com-

puted with the proposed iterative projections as in Algorithm 1. To show that Ĥ preserves the
same accuracy asH, we compute the correlations between mean square fluctuations (MSF)

computed withH and those with Ĥ, and the eigenvalue-weighted overlaps between modes by

H and those by Ĥ. The eigenvalue-weighted mode overlap is defined as:

X3n
i¼7

wi

w
jmi � m̂ ij; ð5Þ

where n is the number of atoms,mi (and m̂ i) is the ith mode ofH (and Ĥ), wi = 1/λi is the rela-

tive weight and is set to be the inverse of the ith eigenvalue ofH, and w ¼P3n
i¼7 wi is the
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normalization factor. The reason why we use the modes with the same indices (mi and m̂ i)
instead of the best matching modes when computing the weighted-overlap is to measure also
how well the order of the modes is preserved. Lower frequency modes are given higher weights
in this weighted overlap measure. The intuition behind this weighted mode scheme is that it
represents how similar the modes (including their orders) are between the two models.

Table 1 shows the levels of accuracy that can be achieved when different threshold values ξ
are applied to ssNMA [33]. It is seen that ssNMA preserves the full accuracy (1.0 in correla-
tions and overlaps) in mean square fluctuations and modes when a threshold value (ξ) as large
as 0.01 is used. Similar results are also seen for the enhanced ANMmodel (eANM) [33],
another all-atom model that closely resembles NMA. Using a large threshold value allows the
sparseness of the Hessian matrix to be maintained during the iterative matrix projection pro-
cess and consequently the construction of the coarse-grained ssNMA Hessian matrix to be car-
ried out quickly.

For conventional NMA, however, the iterative coarse-Graining approach as described
above does not work nearly as well (see Table 1). This is due to the slowly-decreasing, long-
range electrostatic interactions.

The Iterative Coarse-graining Procedure Is Efficient
Secondly, we look at the efficiency, i.e., how much time does this iterative coarse-graining pro-
cedure require? To this end, we apply the same iterative coarse-graining procedure to construct
coarse-grained ssNMA Hessian matrices for a number of large proteins and protein complexes.
The same threshold value, ξ = 0.01, is used, which has been shown in the previous section to
preserve the full accuracy.

Fig 2 shows the efficiency (computational time) of the proposed method as a function of the
system size. In the figure, each blue and red point represent respectively, for a protein of that
size, the coarse-graining time, i.e., the time required to construct the coarse-grained ssNMA
Hessian matrix (with ξ = 0.01), and the diagonalization time of that coarse-grained Hessian
matrix. The dashed lines show the growth rates of the time cost as a function of the system size.
The curves are obtained from the least squares fitting to a non-linear function f(x) = axb. As
shown in the figure, the diagonalization time (red curve) grows approximately as the cube,
while the coarse-graining time grows approximately linearly. Especially for large complexes,
the time needed for coarse-graining the all-atom Hessian matrix using Algorithm 1 becomes

Table 1. The accuracy of models at different threshold values ξ.

ξ a NMA (0.0b) ssNMA (0.99b) eANM (0.98b)

corrc w-ovlpd corr w-ovlp corr w-ovlp

0.0001 0.99 0.96 1.00 1.00 1.00 1.00

0.001 0.85 0.62 1.00 1.00 1.00 1.00

0.01 0.82 0.69 1.00 1.00 1.00 0.99

0.1 0.56 0.53 0.99 0.92 0.98 0.83

The accuracy of ssNMA, in both mean-square fluctuations and mode details, is fully preserved at ξ = 0.01. The initial sparseness of the Hessian matrix, in

parentheses, is 0.0, 0.99, 0.98 for NMA, ssNMA, and eANM, respectively.
a ξ: the threshold value used to set to zero the small elements in the Hessian matrix;
binitial sparseness of the Hessian matrix;
ccorr: mean-square fluctuation correlation;
dw-ovlp: eigenvalue-weighted mode overlap as defined in Eq (5).

doi:10.1371/journal.pcbi.1004542.t001
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increasingly smaller relative to the diagonalization time. As a result, the total time for comput-
ing the normal modes for such large protein complexes using the coarse-grained ssNMA Hes-
sian matrices is about the same as for other coarse-grained elastic network models such as
ANM.

In summary, the results in this section demonstrate that the proposed iterative coarse-grain-
ing procedure not only preserves the accuracy in depicting the motions of the coarse-grained
structures but is also computationally highly efficient.

This result is significant since it means that we can construct coarse-grained models that
preserve all-atom accuracy even for very large protein complexes, which was not previously
possible. Next, as an application, we apply the proposed procedure to compute and analyze the
dynamics of the GroEL/GroES complex.

Application to GroEL/GroES complex
The GroEL/GroES complex [55] is a molecular chaperone that assists the unfolding of partially
folded or misfolded proteins, by providing them with the chance to refold. GroEL consists of
cis and trans rings, each of which has 7 subunits. Each subunit is 547 residues. GroES also has 7
chains and each chain contains 97 residues. The GroEL cis-ring and GroES form a capped
chamber that can hold proteins and facilitate protein unfolding partly through their intrinsic
collective motions, such as compressing, stretching, twisting, shearing, and relaxing. Fig 3
shows the GroEL/GroES structure (pdbid: 1AON) in top and front views. In Fig 3(A), the three
domains of the cis and trans rings are distinguished with different colors: equatorial (green),
intermediate (yellow), and apical (blue) domains.

To understand its functional mechanisms, it is informative to obtain the intrinsic motions
of this complex. However, for large protein complexes such as GroEL/GroES that has over
8,000 residues, standard all-atom NMA will take a prohibitively large memory and a long time
to run. Consequently, past normal mode studies on this complex were limited to coarse-
grained models [18, 36], or all-atom models of single subunits [34]. Though a more accurate
description of its normal modes is highly desirable and may provide deeper insights into the
functional mechanism of the complex, it was lacking due to computational constraints.

Here, we apply the proposed iterative procedure to obtaine a coarse-grained ssNMA Hes-
sian matrix for the entire GroEL/GroES complex. This coarse-grained ssNMA (or CG-ssNMA)

Fig 2. Comparison of the coarse-graining time using the proposedmethod and the diagonalization
time of the coarse-grained Hessianmatrix.

doi:10.1371/journal.pcbi.1004542.g002
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model preserves the same all-atom accuracy in its description of the motions of the coarse-
grained structure as the original ssNMA.

Mean-Square Fluctuations
First, we apply CG-ssNMA to compute mean-square fluctuations. To this end, we use the
GroEL-GroES-(ADP)7 complex (pdbid: 1AON) [55] as the initial structure. This structure is
composed of the co-chaperone GroES, the cis-ring whose subunits are bound with 7 ADPs,
and the trans-ring (see Fig 3).

Structure Preparation. The residues whose side-chains are not present in the PDB struc-
ture (1AON) are effectively treated as alanines (no side chains have been added). Since the
crystal structure contains only heavy atoms, hydrogen atoms are added using the psfgen pro-
gram from VMD [56] and energetically minimized. Lastly, the Hessian matrix of all-atom
ssNMA [33] is determined, and is coarse-grained using the proposed procedure as detailed in
Algorithm 1.

Fig 4 shows the mean-square fluctuations (MSFs) determined by CG-ssNMA (in red) and
by the coarse-grained Cα-based ANM (in gray), and the experimental B-factors (in black). In
(A), all 8015 residues’MSFs and B-factors are shown for three separate parts: the cis-ring with
a white background, the trans-ring with a light gray background, and the GroES cap with a
white background. In (B), the first subunits of the three parts (cis and trans rings, and GroES)
are re-plotted to show the MSF in more detail. In the figure, the mean-square fluctuations by
ssNMA and ANM are computed using all the modes (including all the high-frequency modes)
and scaled to minimize the root-mean-square deviation from the experimental B-factors. The

Fig 3. Structure of the GroEL/GroES complex in (A) front and (B) top views. For subunits of the GroEL, the equatorial, intermediate, and apical domains
of cis and trans rings are colored green, yellow, and blue, respectively. The GroES cap is displayed in red.

doi:10.1371/journal.pcbi.1004542.g003
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correlation between experimental and predicted B-factors is 0.69 for ssNMA, and 0.52 for
ANM. Note that there are a few high peaks in ssNMAMSFs.

Motion Correlations and Cooperativity
The motion correlation (or cooperativity) Ci,j between the i-th and j-th residues can be
expressed as follows:

Ci;j ¼
hri � rji

ðhri � riihrj � rjiÞ1=2
; ð6Þ

where ri and rj are the displacement vectors for the i-th and j-th residues in a given mode,
respectively, a � b is the dot product of two vectors a and b, and hai is the average value of a
within the first k lowest frequency modes. Fig 5 shows the cooperativity of residue motions
within each subunit and across the whole protein complex. The cooperativity plot is generated
from the first 15 dominant (i.e., lowest frequency) modes given by the coarse-grained ssNMA.

Fig 5(A) shows the cooperativity among residue pairs within a single set of subunits: one
subunit from the cis ring (chain A of 1AON), one from the trans ring (chain N), and one from
GroES (chain O). The cooperativity of residue pairs is color coded: red for strong correlated
motions (Ci,j = 1), cyan for uncorrelated (Ci,j = 0), and purple/blue for anti-correlated (Ci,j =
−1). The most noticeable difference between the cis and trans rings is the involvement of the

Fig 4. Comparisons of the experimental B-factors with the mean-square fluctuations (MSFs) computed with the new coarse-grained ssNMA and
with ANM, for (A) all residues and (B) only the first subunit in each ring. The middle gray region is the trans-ring of GroEL, and the left and right white
regions are the cis-ring of GroEL and the GroES cap, respectively.

doi:10.1371/journal.pcbi.1004542.g004
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intermediate domain in the motions of the apical or equatorial domain. In the cis ring, the
red regions indicate that the motions of intermediate domain (I1 and I2) are strongly corre-
lated with those of the equatorial domain (E1 and E2), while the motions of the apical
domain (A) are largely independent of them. In the trans ring, however, the motions of inter-
mediate domains (I1’ and I2’) are more correlated with those of the apical domain (A’) than
with the equatorial domain (E1’ and E2’). A similar cooperativity plot for the ANMmodel is
given in Supporting information (S1 Fig). Overall, the two methods give similar correlation
patterns. The main noticeable difference is that the relative motions between equatorial (E1’
and E2’) and apical (A’) domains of the trans-ring subunit are more clearly shown as anti-
correlated (i.e., the region appears to be bluer) in Fig 5 (given by ssNMA) than with ANM
shown in S1 Fig.

One general role of the intermediate domain is connecting the apical and equatorial
domains and facilitating the communication between them. The results in Fig 5 imply that the
dynamics or motion partner of the intermediate domain depends on the structural form of the
GroEL ring: cis or trans. Considering the structure transitions of cis! trans and trans! cis
that take place during the GroEL/GroES functional cycle, it is not surprising that the transition
path in the former case may be different from a simple reverse of the latter. Additionally, Fig 5
(A) shows that the motions of GroES and the apical domain (A) of the cis ring also are highly
correlated.

The cooperativity of all the residues in the complex is presented in Fig 5(B). Along the off-
diagonal there are four dark blue mesh bands, implying that the apical domains of the subunits
that sit on opposite sides across the rings, such as chain C/D and chain A, are strongly anti-cor-
related. Another interesting observation is that the motions of GroES are strongly anti-corre-
lated to the equatorial domain of the cis ring.

Fig 5. Cooperativity of residuemotions using the first 15 lowest frequency modes of the coarse-grained ssNMAmodel. (A) The cooperativity within a
single set of subunits: chain A from the cis ring, chain H from the trans ring, and chain O from GroES. (B) The cooperativity among all residue pairs in the
GroEL/GroES complex.

doi:10.1371/journal.pcbi.1004542.g005
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The Characteristics and Quality of the ssNMAModes
The ssNMAmodel presented in this work, though coarse-grained in structure, maintains an
all-atom level accuracy in its description of the interactions and consequently an all-atom level
accuracy in its description of the normal mode motions of the coarse-grained structure. Such
an accurate description of the normal mode motions is highly desirable but has not been per-
formed before for large protein complexes such as GroEL/GroES that has over 8,000 residues.
In the following, we will examine closely the first few lowest frequency modes of ssNMA and
characterize their motions. The quality of these modes is then assessed. A comparison with Cα-
based ANMmodes is made at the end.

Fig 6 characterizes the slow dynamics of GroEL/GroES in individual modes or pairs of
modes. The first lowest frequency mode portrays a rotational motion around the cylindrical
axis of the complex. This mode matches with the first mode of ANM nearly perfectly, with a
high overlap of 0.97. The third mode is about opening the gate of the trans ring to receive sub-
strates into its chamber, by moving its apical domains to conform its structure to resemble that
of the cis ring. The second and fourth modes are mainly about a swing motion of the trans
ring. This motion also helps to open the chamber gate of the trans ring. In ssNMA, this gate
opening motion in the trans ring is clearly captured by these three distinct modes, especially
the third mode, whose importance is manifested also in the conformation transitions during
the GroEL/GroES functional cycle that will be described in the next section. In ANM, there is
not a single mode that closely matches the third mode of ssNMA. The gating opening motion
seems to spread into several modes in ANM and be mingled with other motions. The 5th–6th

Fig 6. Descriptions of the first 13 lowest frequencymodes of GroEL/GroES, determined by the coarse-grained ssNMA. (A) mode 1, (B) mode 3, (C)
modes 2 and 4, (D) modes 5 and 6, (E) modes 7 and 8, (F) modes 9 and 10, (G) modes 11, and (H) modes 12 and 13.

doi:10.1371/journal.pcbi.1004542.g006
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modes are shearing motions of the GroES cap and the apical domains of the cis ring. This
motion causes them to shift significantly relative to the equatorial domains. This motion (in
the 5th/6th modes) is similar, to some extent, to that in the second and third modes of ANM,
which in turn have some resemblance also to the second/fourth modes of ssNMA. The 7th–
10th modes display alternating motions of compression and extension of the whole complex.
The 11th mode is mainly about stretching/compressing the chamber of the cis-ring. To some
extent, this motion (of the 11th mode) changes the structure of the cis ring towards the shape
of the trans ring. The 12th–13th modes are mainly about tilting the cis/trans rings and the
GroES cap.

The animations of the top 13 dominant modes (lowest frequency) of ssNMA (and ANM)
are made available at http://www.cs.iastate.edu/~gsong/CSB/coarse.

Next, we compare more quantitatively the modes of ssNMA and ANM.
Quantitative comparisons of the normal modes of ssNMA and ANM. Table 2 summa-

rizes the overlaps between the lowest frequency modes of coarse-grained ssNMA and ANM.
Note that the first ssNMAmode matches nearly perfectly with the 1st ANMmode with a high
overlap value of 0.97, while other modes match only moderately well. The order of modes
between the two models also seems to be scrambled. The fairly low overlap values indicate that
only the lowest frequency mode is well preserved in ANM, but significantly less so for other
modes. This is consistent with our previous observations [42, 57]. The third ssNMAmode is
mainly about opening the gate of the trans ring by moving its apical domains apart so that its
structure becomes more similar to the cis ring. This mode is functionally important as it
describes a key protein transition (see the next section). However, in ANM, the closest resem-
blance of this motion is to the 20th mode that describes a mixed motion of expanding/com-
pressing of both GroEL chambers.

Fig 7 shows how well the quality of the secondary structures are preserved as the protein
complex moves in the directions of the modes of ssNMA or ANM. In this study, for each
mode, the protein structure is deformed along the mode direction until its RMSD changes 1 Å
from the initial structure. The RMSDs of individual secondary structures (alpha-helices or
beta-sheets) are determined independently, and the average RMSDs of these secondary struc-
tures are then computed. This procedure is repeated for the first 100 lowest frequency modes
of both coarse-grained ssNMA and ANM. In the figure, the solid red (black) line represents the
secondary structure deviations by the coarse-grained ssNMA (or ANM), and the dashed lines
are the least-square fits to the solid lines. The plot shows that secondary structures are pre-
served about twice as well with ssNMA as with ANM.

Table 2. ssNMAmodes and their corresponding best matching modes in ANMwith which they have the largest overlaps.

ssNMA ANM overlap ssNMA ANM overlap

1 1 0.97 8 7 0.83

2 4 0.65 9 9 0.64

3 20 0.62 10 10 0.66

4 5 0.66 11 8 0.78

5 2 0.68 12 11 0.60

6 3 0.72 13 12 0.62

7 6 0.77

Results shown are for the first 13 lowest frequency modes, the same modes whose motion characteristics are presented in Fig 6.

doi:10.1371/journal.pcbi.1004542.t002
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In summary, there are two major quality improvements in ssNMAmodes over ANM
modes, both of which can be attributed to the all-atom accuracy that is maintained in ssNMA.
First, the secondary structures are better preserved in ssNMAmodes than in ANM. The modes
determined by coarse-grained ssNMA appear to be more accurate and realistic. This is consis-
tent with the the more realistic potential that ssNMA employs. ssNMA has several terms in its
potential function that enforce covalent geometry while the ANMmodel treats the whole sys-
tem with uniform elastic springs. Second, which is related to the first, the modes by coarse-
grained ssNMA seem to characterize the different collective motion patterns of the protein
complex better. So, interestingly there is some significant amount of cohesion that is lost in the
coarse-graining with ANM but is retained in CG-ssNMA.

Normal Models Facilitate the Functional Conformation Transitions
In this section, we apply CG-ssNMA to interpret the conformation transitions in the functional
cycle of GroEL/GroES. Our hypothesis is that the intrinsic normal mode motions of the com-
plex should facilitate its conformation transitions. To measure how well the modes are related
to the conformation transitions, we compute the overlaps between normal modes and a given
transition. We then repeat the computations and analysis using ANM and compare the results
with those from CG-ssNMA.

In total there are six conformation transitions among the five known conformation states of
the complex (see Table 3) considered: T! R, T! R000, R00 ! R00flipped, R

00
nocap ! R00nocap;flipped, R

00

! S, and S! R0 0, where “nocap” stands for the absence of the GroES cap. Table 4 summarizes,

Fig 7. Preservation of secondary structures in modemotions. The solid red (or black) line represents the
average structure deviations of all secondary structures of the GroEL/GroES complex when it moves along a
normal mode of ssNMA (or ANM). The dashed lines are the least-square fits to the solid lines.

doi:10.1371/journal.pcbi.1004542.g007

Table 3. The five conformation states of the GroEL/GroES complex used in this work.

conformation pdb-
id

description

T state 1GR5 The tense state.

R 2C7E The relaxed state, 7 ATP bound

R0 0 1AON Bullet-shaped structure, 7 ADP bound, GroES bound

R00� 1GRU Bound with 7 ATP and 7 ADP, GroES bound

S 4PKO S is obtained by removing one GroES ring from the football-shaped complex
4PKO that is bound with two GroES rings and 14 ADP.

doi:10.1371/journal.pcbi.1004542.t003
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for these transitions, the top 3 largest overlaps found using CG-ssNMA and ANM. The indices
of the modes that give the largest overlaps also are given. The first two cases represent transi-
tions from the apo form to ATP/GroES bound forms. The transitionsR00 ! R00flipped and

R00nocap ! R00nocap;flipped were thought to take place during the functional cycle of GroEL/GroES

[58], in which the two GroEL rings alternate as a functional chaperone. However, recent work
[59] suggested that in vivo the GroEL/GroES complex assumes a football shape in the func-
tional process and that both GroELs might work simultaneously as protein unfolding chaper-
ones. For this reason, we consider also the functional transitions between states R00 and S.
Table 4 lists the results.

T! R andT! R00� : Transitions T! R and R00� in Table 4 show that these are mostly
achieved with a torsional motion along the vertical axis of the structure. Both the CG-ssNMA
and ANMmodels capture this torsional motion, but their mode indices are different. It is the
fourth mode in CG-ssNMA that gives the largest overlap while it is the first in ANM. The
results clearly show that the motion to R (as induced by ATP binding) is along the path to R00� ,
as observed by Roseman et al. [60] from low resolution cryo-EM images.

R00 ! R00flipped : Ranson et al. [58] suggested that the functional process of GroEL/GroES

involves alternations to the two GroEL rings as functional units and the complex is bullet-
shaped [55] in vivo.

Here we consider the transition from a bullet-shaped complex (R00) to its flipped counter-
part. In this transition, one of the GroEL rings goes from the trans form to the cis form, while
the other ring changes from cis to trans. Results in Table 4 show that the coarse-grained
ssNMA captures well the transition from trans to cis using its fourth mode, which has the sec-
ond largest overlap, while the 17th mode has the best overlap and characterizes mostly the
transition from cis to trans ring, as well as a partial transition from trans to cis. ANM, on the
other hand, describes the transition of trans! cis and cis! trans using the 17th and 18th
modes, each of which is a mixture of both cis-ring and trans-ring deformations.

It is thought that after the binding of the ATPs to the trans ring, the GroES cap is removed
and the substrate protein is released. Then the two GroEL rings go through trans! cis and cis!
trans transitions, respectively, and another GroES will bind the opposite ring, completing a cycle.
The GroES cap stabilizes the cis ring in its conformation and prevents its transition to a trans con-
formation. However, after the ATP binding at the opposite ring, the GroES cap is removed,
which makes the transition from a cis to a trans conformation easier. The larger overlap seen in

Table 4. Top three highest overlaps between structure displacements and normal modes computed by CG-ssNMA or Cα-based ANM.

transition models T! R T ! R00� R00 ! R00flipped R00nocap !
R00nocap;flipped

R0 0 ! S S! R0 0

ovlp mode ovlp mode ovlp mode ovlp mode ovlp mode ovlp mode

coarse-grained ssNMA 0.56 4 0.64 4 0.40 11 0.49 17 0.53 1 0.41 2

0.24 46 0.27 60 0.36 15 0.29 4 0.39 3 0.26 3

0.24 16 0.25 17 0.26 3 0.29 13 0.27 15 0.24 14

CA-ANM 0.57 1 0.55 1 0.46 13 0.51 18 0.52 1 0.47 3

0.33 51 0.40 11 0.36 32 0.43 17 0.35 20 0.39 14

0.33 10 0.23 96 0.33 20 0.27 116 0.26 68 0.24 24

Structure S is obtained by removing one GroES from the football-shaped structure (pdbid: 4PKO). For the transition from R0 0 to its flipped counterpart, the

normal modes are computed either with or without the GroES cap, in both of these cases only the two GroEL rings are used to compute the conformation

displacement. The values in each table entry are the overlaps between the given conformation transition and a mode, with the mode index also given.

doi:10.1371/journal.pcbi.1004542.t004
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this transition without the GroES cap (see Table 4) provides evidence that GroES is probably
removed first before the cis$ trans conformation transitions take place rather than occurring
simultaneously. This agrees with the idea that structures facilitate functional transitions.

R00 ! S (opening the trans ring gate): Recent work by Fei et al. [59] suggested that the
GroEL/GroES complex in vivo should have a football shape. The formation of a football-
shaped GroEL/GroES complex was thought to be promoted by substrate protein (SP), and that
“SP shifts the equilibrium between the footballs and bullets in favor of the former, consequently
making them the predominant species.” [59]

Here, we examine the transitions between a football-shaped complex and a bullet-shaped
complex. Transition R00 ! S opens the gate of the trans ring to receive a substrate protein
(unfolded or misfolded) in its chamber. This is accomplished by conforming the structure of
its apical domain to that of a cis ring (see the third mode in Fig 6 and in S1 Video). S2 Fig high-
lights the conformation change that takes place within a trans-ring monomer in this transition.
The overlaps between the transition and normal modes reveal a large contribution by the tor-
sional rotation along the vertical axis (mode 1), as the trans ring of S is rotated about 8 degree
counter-clockwise from that of R00 [59]. Secondly, this transition is captured by the third
ssNMAmode that mainly depicts a chamber-opening motion. In contrast, CA-ANM provides
this transition mainly using its 20th mode, which is a mixture of the chamber opening motion
and some other deformation of the cis ring and the GroES cap.

S! R00 (closing the cis ring gate): Transition S! R00 closes the gate of the cis ring to con-
form its structure to that of a trans ring. Similar to the transition R00 ! S, this transition
requires torsional rotations and gate-closing motions. The coarse-grained ssNMA captures this
transition using the second and third low frequency modes. CA-ANM captures the torsional
rotation properly using the third mode, but has to rely on higher-frequency modes to capture
the gate-closing transition (See Table 4, last column).

Summary. For all the above conformation transitions, CG-ssNMA’s interpretation of
them involves more of the first few lowest frequency modes than ANM. This is consistent with
the observation made earlier that ssNMAmodes tend to preserve the secondary structures bet-
ter and thus likely are of better quality. Indeed, it is expected that the all-atom accuracy that
CG-ssNMAmaintains should render a more accurate description of protein motions.

Discussion
Normal mode analysis (NMA) is an indispensable tool for obtaining the patterns of intrinsic
collective dynamics of biomolecular systems around their native states. Such dynamics studies
and computations are important since dynamics is tightly linked to functional mechanisms
and can reveal insights that studies based on static structures alone cannot provide. For very
large complexes and eventually even a cell, all-atom descriptions of the dynamics of the system
are neither feasible nor necessary. A coarse-grained structure representation is often sufficient.
But what about the dynamics for a coarse-grained structure? Even though the structure repre-
sentation is coarse-grained, we still would like to have an accurate description of its dynamics,
ideally as close in accuracy to an all-atom model as possible.

It was by the use of coarse-grained models that past normal mode studies of very large bio-
molecular systems were carried out and remarkable insights were gained in these studies [18,
22, 29, 36, 39, 40]. There is little doubt that the levels of coarse-graining chosen for studying
these large systems were appropriate. However, what was not previously assessed was the qual-
ity of the dynamics that was provided by those coarse-grained models. Since most coarse-
grained models use extremely simple potentials to model the interactions within the coarse-
grained structures, the dynamics they render are likely to have some deficiencies.
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In this work, we have successfully bridged this gap and have presented a new method for
constructing coarse-grained models that can preserve all-atom accuracy in dynamics. The
method takes advantage of the sparseness of the Hessian matrix and iteratively reduces its size
through projection until it is reduced to that of the desired coarse-grained structure. Since the
projections maintain the accuracy of the interactions, the final Hessian matrix represents the
precise interactions within the coarse-grained structure. Compared with the RTB (rotation-
translation block) method [61] or BNM (block normal modes) [19], which assumes rigidity
and ignores flexibility within each block, our method provides a more accurate description of
the motions of the coarse-grained systems. Compared with the VSA model (vibration subsys-
tem analysis) [52, 53], the advantage of our method is that it is computationally significantly
more efficient.

Results presented in this work are highly significant since they promise to provide descrip-
tions of normal mode motions at the all-atom level of accuracy even for the largest biomolecule
complexes. While preserving all-atom accuracy through matrix projection is not new and has
been done previously [49, 50, 52, 53], one of our key contributions here is developing a new
algorithm that can carry out this matrix projection highly efficiently and therefore make it
applicable to very large structure complexes, which has not been done previously. Such accu-
rate descriptions of the intrinsic dynamics may help reveal new insights into the functional
mechanisms of many biomolecular systems. It should be noted that because we are able to effi-
ciently obtain a precise interaction model (the Hessian matrix) for the coarse-grained systems,
we can solve it not only for the first few lowest frequency modes, but for all the modes. This is
in line with the overarching aim of our work: to bridge between NMA and coarse-grained elas-
tic network models while preserving the all-atom accuracy. If only the first few lowest fre-
quency modes are needed, then there are some alternative methods that may be more efficient.

Our application of the method to GroEL/GroES reveals some new insights into the functional
process of this biologically important chaperonin. For example, our results show that the confor-
mational transitions of this protein complex in its functional cycle are even more closely linked
to the low frequency modes than was previously observed using other coarse-grained models.

This work is a continuation of our previous work that aimed to bridge NMA with elastic net-
work models [33]. While the previous work bridged between NMA and all-atom elastic network
models, this work represents the second half of developing this bridge, namely between all-atom
elastic network models and coarse-grained elastic network models. Combined together, the two
pieces of work demonstrate how one can bridge between the conventional NMA that uses an
all-atommodel with a full force-field and coarse-grained elastic network models that are nowa-
days the preferred choice for normal mode computations due to their simplicity. This bridging
reveals novel insights on how one may develop coarse-grained models that are not only simple
to use, but also maintain most of the accuracy of the conventional NMA.

Limitations and Future Work
Although the proposed iterative coarse-graining procedure can be used to efficiently construct
coarse-grained models whose description of the dynamics of the coarse-grained structures pre-
serves all-atom accuracy, it is limited in that it can be applied only to some of the models, such
as ssNMA, eANM, or sbNMA (see S1 Table). It cannot be applied to the conventional NMA.
This is because the potential of NMA contains electrostatic interactions that decay rather
slowly and consequently the NMA Hessian matrix is not sparse; however, there remain some
uncertainties about how to best compute the electrostatics.

A possible partial solution is to add a switch function to the non-bonded interactions of
NMA and make it decay to zero at some cutoff distance, as is commonly done in MD
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simulations. This will make the Hessian matrix much sparser and make it possible to apply the
proposed iterative procedure to NMA. We have shown this to be the case (see results in S1
Table). However, this is only a partial solution since it recovers only the short range part of the
electrostatics. The long range electrostatic interactions, which may have a pronounced contri-
bution to long-range collective motions and cooperativity, are still missing. Additionally, the
cumbersome energy minimization (which ssNMA does not require) becomes necessary, which
can be a challenge when working with large biomolecular complexes.

One possible future work is to study the effects of electrostatic interactions on normal
modes, specifically the extent of contributions by short-range or long-range electrostatic inter-
actions. If the short-range component of the electrostatic interactions dominates the long
range component in contributing to normal modes, then the aforementioned partial solution
will provide an excellent approximation.

Supporting Information
S1 Table. The accuracy of screened-NMA and sbNMA at different threshold values ξ.
(DOCX)

S1 Fig. Cooperativity of residue motions using the first 15 lowest frequency modes of the
CA-ANMmodel. (A) The cooperativity within a single set of subunits: chain A from the cis
ring, chain H from the trans ring, and chain O from GroES. (B) The cooperativity among all
residue pairs in the GroEL/GroES complex.
(EPS)

S2 Fig. The conformation changes within a trans-ring subunit in R00 ! S transition. The
trans-ring subunit of conformation R00 is represented by the thin gray line, while that of confor-
mation S by the thin red line. The thick curve (in blue, yellow, and green) displays, for this R00

! S transition, the conformation change contributed by the third mode (of the ssNMAmodel)
alone. This figure shows that a large conformation change takes place within the subunits in
this conformation transition and is well captured by the third mode of ssNMA. The three con-
formations shown are aligned at the equatorial domain (in green).
(EPS)

S1 Video. The important gate-opening mode (mode 3) in R00 ! S transition. The video
shows the motions of the GroEL/GroES complex along this important gate-opening mode.
More animations for transitions listed in Table 4 are available at http://www.cs.iastate.edu/~
gsong/CSB/coarse.
(WMV)
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