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Abstract
Redundancy Analysis (RDA) is a well-known method used to describe the directional

relationship between related data sets. Recently, we proposed sparse Redundancy

Analysis (sRDA) for high-dimensional genomic data analysis to find explanatory vari-

ables that explain the most variance of the response variables. As more and more

biomolecular data become available from different biological levels, such as geno-

typic and phenotypic data from different omics domains, a natural research direction

is to apply an integrated analysis approach in order to explore the underlying biologi-

cal mechanism of certain phenotypes of the given organism. We show that the multiset

sparse Redundancy Analysis (multi-sRDA) framework is a prominent candidate for

high-dimensional omics data analysis since it accounts for the directional information

transfer between omics sets, and, through its sparse solutions, the interpretability of

the result is improved. In this paper, we also describe a software implementation for

multi-sRDA, based on the Partial Least Squares Path Modeling algorithm. We test

our method through simulation and real omics data analysis with data sets of 364,134

methylation markers, 18,424 gene expression markers, and 47 cytokine markers mea-

sured on 37 patients with Marfan syndrome.
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1 INTRODUCTION

In recent years, technological advancement has enabled large amounts of biomolecular data generation from different biological
levels, such as from the genome, epigenome, transcriptome, proteome, and metabolome. Omics data from multiple biological
levels are often measured on the same patients that share a certain phenotype, and the conceptual information flow between these
different biological levels is well defined by the central dogma of molecular biology (Crick, 1970). Integromics is an emergent
research area with the interest of simultaneously analyzing multiple molecular and clinical data sources from various omics
domains, in order to reveal complex biological pathways that are involved in certain phenotypes (Buescher & Driggers, 2016).
In this paper, we describe a statistical tool that models the conceptual information flow between multiple omics data sets and
extract genotypic data from those data sets in order to model biological pathways of the phenotype of interest. We refer to this
method as the multiset sparse Redundancy Analysis (multi-sRDA).

Redundancy Analysis (RDA) is a well-known multivariate method that models the information flow between two data sets by
maximizing the redundancy index between explanatory and response variables, thus RDA measures the effect of the explanatory
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data set on the response data set (Johansson, 1981). RDA describes the relationships between data sets by finding a linear
combination of the explanatory variables that explain the most variance of the response variables. Thus, if one wishes to perform
an integrated analysis to explain the variability of phenotypes with multiple sets of genotypic data, multiset Redundancy Analysis
(multi-RDA) is a prominent candidate.

Although RDA's conceptual model was already described by van den Wollenberg (1977), and has been widely used in fields
such as ecology (Oksanen et al., 2007) and psychology (Israels, 1984), it has received little attention in high-dimensional genetic
and genomic data analyses (Huang, Chaudhary, & Garmire, 2017). A well-known characteristic of omics data is its high dimen-
sionality (p ≫ n, where 𝑝 is the number of variables and 𝑛 is the number of observations). In this setting, RDA's software
implementations are not applicable, since they rely on using standard multivariate least squares regression steps where high-
dimensional covariance matrices are noninvertible (Oksanen et al., 2007).

Recently, we showed how penalization methods can be introduced for RDA to overcome the high dimensionality problem. By
applying the Elastic Net (ENet) penalization to the multivariate regression equation in a Partial Least Squares (PLS) framework,
we showed that sparse Redundancy Analysis (sRDA) is able to deal with high-dimensional genetic and genomic data and select
the important explanatory variables with high precision (Csala, Voorbraak, Zwinderman, & Hof, 2017). In this paper, we show
how sRDA can be extended into a multiset multivariate method so that the effect of multiple explanatory variables, from multiple
data sets, on a set of outcome variables, measured on one data set, can be assessed simultaneously. Multi-sRDA is a particularly
attractive method for omics data analysis since it is able to account for the directional information flow between data sets from
different omics levels. In addition, Multi-sRDA provides easily interpretable sparse solutions through selecting the important
explanatory variables that explain the most variation in their response data set, while excluding the unimportant variables from
the final model that explain no to little of the variance of their response set.

In this paper, we extend our sRDA approach to multiple sets and we demonstrate multi-sRDA's capacity for high-dimensional
omics data by conducting simulation studies and analyzing real biomedical data from three different omics domains, measured
on the same 37 patients, all diagnosed with the same disease phenotype, namely, Marfan Syndrome. For the simulation studies,
we generate multiple high-dimensional data sets to demonstrate multi-sRDA's ability to find the important explanatory variables
in a high dimensional, multiple data set setting. For the real data analysis, we build a conceptual model that incorporates 364,134
methylation markers, 18,424 gene expression markers, and 47 serum cytokine markers. In this setting, multi-sRDA models the
information transfer from the epigenome through the transcriptome to the proteome. Through this real data analysis, we show
how multi-sRDA can be used to analyze multiple high-dimensional omics sets in order to find the combination of those foremost
biomolecular markers from various biological levels that explain the most variance of the phenotypic variables, while modeling
for the conceptual model of the central dogma of molecular biology.

This paper is organized as follows. Section 2 describes sRDA and multi-sRDA, with an algorithmic implementation of multi-
sRDA in the PLS framework. Section 3 describes the simulation studies that are used to assess multi-sRDA's ability of finding
the important explanatory variables, and Section 4 describes an application of multi-sRDA on real biomedical data. Section 5
discusses the findings of the real data analysis and concludes the paper.

2 DIRECTIONAL MULTISET MULTIVARIATE ANALYSES FOR
HIGH-DIMENSIONAL DATA

2.1 Sparse redundancy analysis
We start with a description of sRDA for two data sets; for explanatory data set X and for response data set Y. Consider data on n
individuals distributed over two data sets, X and Y, where X is an 𝑛 × 𝑝-dimensional matrix containing p explanatory variables
(i.e., 𝑿 ∈ ℝ𝑛×𝑝), and Y is a 𝑛 × 𝑞-dimensional matrix with q response variables (i.e., 𝒀 ∈ ℝ𝑛×𝑞). Let 𝝃 be the 𝑛 × 1-dimensional
latent variable of X (i.e., 𝝃 = 𝑿𝜶, where 𝝃 ∈ ℝ𝑛×1 and 𝜶 ∈ ℝ𝑝×1) and 𝜼 the 𝑛 × 1-dimensional latent variable of Y (i.e., 𝜼 = 𝒀 𝜷,
where 𝜼 ∈ ℝ𝑛×1 and 𝜷 ∈ ℝ𝑞×1). The column vectors 𝜶 and 𝜷 are the associated weights of 𝝃 and 𝜼, respectively.

RDA estimates the amount of variance of a given set of response variables in terms of a given set of explanatory variables. The
objective of RDA is to define a linear combination of X (denoted as 𝝃 = 𝑿𝜶) that maximizes the sum of the squared correlations
between 𝝃 and Y, that is,

𝑞∑
𝑗=1

Cor(𝝃, 𝒚𝑗)2. (1)

The weights 𝜶 and 𝜷 can be estimated in an iterative multiple least-squared regression framework (Fornell, Barclay, & Rhee,
1988). Estimating 𝜷 involves q univariate least-squared regressions
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𝛽𝑗 = (𝝃′𝝃)−1𝝃′𝒚𝑗 ,

where 𝒚𝑗 is the 𝑗-th column from the matrix 𝒀 . Estimating 𝜶 involves a multivariate least squares regression, for which the
standard closed-form solution can be used if the number of explanatory variables is smaller than the number of observations
(i.e., 𝑝 < 𝑛);

𝜶 = (𝑿′𝑿)−1𝑿′𝜼. (2)

Since in omics data the number of explanatory variables is typically much larger than the number of individuals (i.e., 𝑝 ≫ 𝑛), the
closed-form solution for the multivariate regression step leads to multicollinearity issues. In this setting, the covariance matrix
in Equation (2) is noninvertible. To solve this problem, we recently proposed using the ENet penalization, which involves both
the LASSO and the Ridge regularization. ENet is applied to the multivariate regression step in the RDA framework (Csala et al.,
2017), which turns Equation (2) into

𝜶 = argmin
𝜶

𝜶
′

(
𝑿

′
𝑿 + 𝜆2𝐈
1 + 𝜆2

)
𝜶 − 2𝜼′

𝑿𝜶 + 𝜆1|𝜶|1, (3)

where |𝜶|1 denotes the 1-norm form of vector 𝜶, 𝜆1 is the LASSO penalty parameter, and 𝜆2 is the Ridge penalty parameter.
Thus sRDA can be applied to high-dimensional data sets 𝑿 and 𝒀 to maximize the correlation described in Equation (1) by

the following steps:

sparse Redundancy Analysis (sRDA) Algorithm
Given explanatory data set 𝑿 and response data set 𝒀

(i) Preliminary steps

• Center and scale 𝑿 and 𝒀

• Set 𝜶(0) and 𝜷(0) to arbitrary vectors [1, 1,… , 1]′ with length 𝑝 and 𝑞, respectively

• Define convergence criterion 𝐶𝑅𝑇 = 1 and a small positive tolerance 𝛾 = 10−6

(ii) Iterative alternating regression
While 𝐶𝑅𝑇 ≥ 𝛾

𝜼 = 𝒀 𝜷(0)

𝜶(1) = argmin
𝜶(0)

𝜶(0)′
(

𝑿
′
𝑿+𝜆2𝐈
1+𝜆2

)
𝜶(0) − 2𝜼′

𝑿𝜶(0) + 𝜆1|𝜶(0)|1
𝝃 = 𝑿𝜶(1)

𝜷(1)′ = [𝝃′
𝝃]−1[𝝃′

𝒀 ]
𝜼 = 𝒀 𝜷(1)

𝐶𝑅𝑇 =
∑
(𝜶(1) − 𝜶(0))2

𝜶(0) = 𝜶(1) and 𝜷(0) = 𝜷(1)

(iii) Upon convergence, return 𝜶(0),𝜷(0)

More detail about the sRDA can be found in Csala et al. (2017).

2.2 Multiset sparse redundancy analysis
Now we describe multi-sRDA for the case when the true explanatory variables are distributed over multiple data sets. Suppose
that the information transfer between the data sets is well-defined and it can be modeled with explanatory and response data set
pairs. The objective function of multi-sRDA is to maximize the correlation given in Equation (1) for every pairs of explanatory
and response data set, that is,

𝑘∑
𝑖=1

𝑞∑
𝑗=1

Cor(𝝃𝑖, 𝒚𝑗)2, (4)

where 𝝃𝑖 is the latent vector of the 𝑘-th explanatory data set and 𝒚𝑗 is the 𝑗-th column of response data set 𝒀 . More precisely,
suppose there are three data sets 𝑿1, 𝑿2, and 𝒀 , assuming a directional information flow from 𝑿1 to 𝑿2 and information flows
from both 𝑿1 and 𝑿2 toward 𝒀 , thus 𝑿1 and 𝑿2 are explanatory for 𝒀 and 𝑿1 is also an explanatory for 𝑿2 (see Figure 1). Our
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F I G U R E 1 Multiset sRDA based on PLS path modeling

framework, where 𝐱11, 𝐱12, and 𝐱13 denote the variables of matrix

𝑿1, and 𝛼11, 𝛼12, and 𝛼13 are elements in vector 𝜶1, denoting the

individual regression weights of the explanatory variables from

matrix 𝑿1 on their latent variable 𝝃1 Notes: Latent variables 𝝃1 and

𝝃2 are explanatory for response latent variable 𝜼1, and 𝝃1 is also an

explanatory for 𝝃2

objective is to find the combination of variables in data sets 𝑿1 and 𝑿2 that explain the most variance in 𝒀 while accounting for
the fact that 𝑿1 also explains variance in 𝑿2 (i.e., 𝑿1 has an explanatory-response relationship with 𝑿2). The resulting 𝜶1 and
𝜶2 weights for data sets 𝑿1 and 𝑿2, respectively, indicate the strength of the contribution of the explanatory variables. Due to
the LASSO penalty, the sparse solution provides the set of variables that has the highest contribution among all variables. The
𝜷1 weights describe the strength of the correlation between the response variables from data set 𝒀 with the linear combination
of their important explanatory variables. Our implementation of multi-sRDA is based on Wold's Partial Least Squares path
modeling algorithm (PLS-PM) (Esposito Vinzi & Russolillo, 2013; Sanchez, 2013; Wold, 1975).

First, we present the algorithm for the case of three data sets (see Figure 1). Afterward, we generalize the algorithm to an
arbitrary number of data sets.

Multiset sparse Redundancy Analysis algorithm for three data sets
Given data sets 𝑿1, 𝑿2, and 𝒀

(i) Preliminary steps
• Center and scale 𝑿1, 𝑿2, and 𝒀

• Set 𝜶(0)
1 , 𝜶(0)

2 , and 𝜷(0) to arbitrary vectors [1, 1,… , 1]′ with length 𝑝1, 𝑝2, and 𝑞, respectively

• Define convergence criterion 𝐶𝑅𝑇1 = 1, 𝐶𝑅𝑇2 = 1 and a small positive tolerance 𝛾 = 10−6

(ii) Iterative alternating regression
While 𝐶𝑅𝑇1 ≥ 𝛾 and 𝐶𝑅𝑇2 ≥ 𝛾

Step (a) Estimate initial latent variables
𝝃1 ∝ 𝑿1𝜶

(0)
1 ; where ∝ indicates that 𝝃1 is normalized to unit variance

𝝃2 ∝ 𝑿2𝜶
(0)
2

𝜼 ∝ 𝒀 𝜷(0)

Step (b) Model the relationship between data sets by calculating the correlation∖regression weights between their latent
variables (i.e., use regression weights for explanatory-response data set pairs and correlation weights otherwise, see the
general case for the precise description)

𝚯 =
⎡⎢⎢⎣

0 𝜃12 𝜃13
𝐶𝑜𝑟(𝝃1, 𝝃2) 0 𝜃23
𝐶𝑜𝑟(𝝃1, 𝜼) 𝐶𝑜𝑟(𝝃2, 𝜼) 0

⎤⎥⎥⎦;

where 𝜃13 are the weights from the regression model [𝝃′1𝝃1]
−1𝝃′1𝝃2, and 𝜃13 and 𝜃23 are the weights from the multiple

regression model [(𝝃1, 𝝃2)′(𝝃1, 𝝃2)]−1(𝝃1, 𝝃2)′𝜼.

Step (c) Reestimate the latent variables
𝑾 = [𝝃′1, 𝝃

′
2, 𝜼]𝚯

Step (d) Estimate the new 𝜶 and 𝜷 weights and calculate the latent variables

𝜶
(1)
1 = argmin

𝜶1
𝜶

′

1

(
𝑿

′
1𝑿1+𝜆2𝑰

1+𝜆2

)
𝜶1 − 2𝒘′

1𝑿1𝜶1 + 𝜆1|𝜶1|1; where 𝒘1 = 𝝃1𝜽1

𝝃1 ∝ 𝑿1𝜶
(1)
1
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𝜶
(1)
2 = argmin

𝜶2
𝜶

′

2

(
𝑿

′
2𝑿2+𝜆2𝑰

1+𝜆2

)
𝜶2 − 2𝒘′

2𝑿2𝜶2 + 𝜆1|𝜶2|1; where 𝒘2 = 𝝃2𝜽2

𝝃2 ∝ 𝑿2𝜶
(1)
2

𝜷(1)′ =
[
𝒘

′

3𝒘3
]−1[

𝒘
′

3𝒀
]
; where 𝒘3 = 𝜼𝜽3

𝜼 ∝ 𝒀 𝜷(1)

Step (e) Evaluate the convergence criteria and discard the old 𝜶 and 𝜷 weights

𝐶𝑅𝑇1 =
∑(

𝜶
(1)
1 − 𝜶

(0)
1
)2

𝐶𝑅𝑇2 =
∑(

𝜶
(1)
2 − 𝜶

(0)
2
)2

𝜶
(0)
1 = 𝜶

(1)
1 , 𝜶(0)

2 = 𝜶
(1)
2 and 𝜷(0) = 𝜷(1)

(iii) Upon convergence, return 𝜶
(0)
1 ,𝜶

(0)
2 , and 𝜷(0)

The previous example can be generalized to 𝐾 explanatory and a single response data set. In order to obtain the optimal𝜶𝑘 and
𝜷 weights for latent variables 𝝃𝑘 and 𝜼 with arbitrary 𝜶

(0)
𝑘

and 𝜷(0) weights are estimated (Step (ii)(a) in multi-sRDA Algorithm).
𝒁 is the matrix of all 𝐾 + 1 latent variables (i.e., 𝒁 = [𝝃1,… , 𝝃𝐾, 𝜼]), and the link between the response and explanatory latent
variables are modeled by the following multiple regression equations:

𝜻 𝑗 = 𝜃𝑗0 +
∑
𝑗
′
𝜃𝑗𝑗′𝜻 𝑗

′→𝑗
+ 𝝐𝑗 , (5)

where 𝜻 𝑗 denotes a response latent variable, 𝜻 𝑗′→𝑗 denotes a latent variable that is explanatory for 𝜻 𝑗 , and 𝝐𝑗 denotes the residual
vector of 𝜻 𝑗 (Esposito Vinzi & Russolillo, 2013; Sanchez, 2013). The association between the latent variables are expressed by
𝚯 (i.e., 𝜃𝑗𝑗′ is the coefficient denoting the effect of 𝜻 𝑗′→𝑗 on 𝜻 𝑗)

𝐸

(
𝜻 𝑗|𝒁 ′

𝑗′→𝑗

)
=
∑
𝑗
′
𝜃𝑗𝑗′𝜻 𝑗

′→𝑗
. (6)

Coefficient 𝜃𝑗𝑗′ is obtained from the multiple multivariate regression of 𝜻 𝑗 on its latent explanatory variables 𝒁
𝑗
′→𝑗

, and the
latent variables 𝜻 𝑗 are updated with the effect of their explanatories (Step (ii)(b)).

Once matrix 𝚯 is obtained, the latent variables are reestimated and stored in matrix 𝑾 (i.e., 𝑾 = 𝒁𝚯, Step (ii)(c)). Then
latent explanatory variable 𝝃𝑘 is recalculated with 𝜶

(1)
𝑘

weights that are obtained from the penalized multivariate regression
of 𝒘𝑘 on data set 𝑿𝑘. The latent response variable 𝜼 is calculated with the updated 𝜷(1) weights which are obtained by the
univariate regression of 𝒀 on 𝒘(𝐾+1) (Step (ii)(d)).

This process is repeated until convergence and convergence is reached if the summed squared differences of 𝜶(1)
𝑘

and 𝜶
(0)
𝑘

are
smaller than 𝛾 , a predefined small positive tolerance (e.g., 𝛾 = 10−6, Step (ii)(e)).

For an arbitrary number of explanatory data sets and one response data set, the correlation described in Equation (4) can be
maximized by the following steps:

Multiset sparse Redundancy Analysis general Algorithm
Given 𝐾 + 1 data sets, from which 𝐾 number are explanatory data sets 𝑿, that is, 𝑿1,… ,𝑿𝐾 (indexed by 𝑘), and a response

data set 𝒀

(i) Preliminary steps
• Center and scale 𝑿1,… ,𝑿𝐾 and 𝒀

• Set 𝜶(0)
𝑘

(i.e., 𝜶(0)
1 ,… ,𝜶

(0)
𝑘

,… ,𝜶
(0)
𝐾

) and 𝜷(0) to arbitrary vectors [1, 1,… , 1]′ with length 𝑝𝑘, and 𝑞, respectively

• Define convergence criterion 𝐶𝑅𝑇 = 1 and a small positive tolerance 𝛾 = 10−6

(ii) Iterative alternating regression
While 𝐶𝑅𝑇 ≥ 𝛾

Step (a) Estimate initial latent variables
𝝃𝑘 ∝ 𝑿𝑘𝜶

(0)
𝑘

; where 𝑘 is the index from 1 to 𝐾 and ∝ indicates that 𝝃𝑘 is normalized to unit variance

𝜼 ∝ 𝒀 𝜷(0)
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Define matrix 𝒁 = [𝝃1,… , 𝝃𝐾, 𝜼] and define column 𝑗 of 𝒁 as 𝜻 𝑗

Step (b) Model the relationship between data sets by calculating the correlation∖regression weights between their latent
variables

Define 𝚯 ∈ ℝ𝑗×𝑗 as a correlation matrix where 𝜃𝑗,𝑗′ is:

If 𝑗′ < 𝑗 then

𝜃
𝑗,𝑗

′ =

{
𝜃
𝑗𝑗

′ if 𝜻
𝑗
′ explains 𝜻 𝑗

𝑐𝑜𝑟(𝜻 𝑗 , 𝜻 𝑗
′ ) else

else
Define 𝒁𝑗′→𝑗 as the submatrix of 𝒁 formed by all columns 𝜻

𝑗
′ that are explanatory for 𝜻 𝑗

𝜃
𝑗,𝑗

′ =

{
[𝒁 ′

𝑗′→𝑗
𝒁𝑗′→𝑗]−1𝒁

′

𝑗′→𝑗
𝜻 𝑗 if 𝜻

𝑗
′ explains 𝜻 𝑗

𝑐𝑜𝑟(𝜻 𝑗 , 𝜻 𝑗
′ ) else

end if
Step (c) Reestimate the latent variables
𝑾 = 𝒁𝚯
Step (d) Estimate the new 𝜶 and 𝜷 weights and calculate the latent variables

𝜶
(1)
𝑘

= argmin
𝜶𝑘

𝜶
′

𝑘

(
𝑿

′
𝑘
𝑿𝑘+𝜆2𝑰

1+𝜆2

)
𝜶𝑘 − 2𝒘′

𝑘
𝑿𝑘𝜶𝑘 + 𝜆1|𝜶𝑘|1

𝝃𝑘 ∝ 𝑿𝑘𝜶
(1)
𝑘

𝜷(1)′ =
[
𝒘′

(𝐾+1)𝒘(𝐾+1)
]−1[

𝒘′
(𝐾+1)𝒀

]
𝜼 ∝ 𝒀 𝜷(1)

Step (e) Evaluate the convergence criteria and discard the old 𝜶 and 𝜷 weights

𝐶𝑅𝑇 =
∑(

𝜶
(1)
𝑘

− 𝜶
(0)
𝑘

)2
𝜶
(0)
𝑘

= 𝜶
(1)
𝑘

and 𝜷(0) = 𝜷(1)

(iii) Upon convergence, return
(
𝜶
(0)
1 ,… ,𝜶

(0)
𝑘

,… ,𝜶
(0)
𝐾

)
,𝜷(0)

Note that the only assumption of this model is that there is a linear relationship between the explanatory and response variables
that can be modeled through latent variables (Equations 5 and 6). Also, PLS-PM does not require any assumptions regarding the
sample size or the distribution of the explanatory and response variables, therefore it is considered to be an exploratory approach
rather than a confirmatory one (Vinzi, Trinchera, & Amato, 2010).

In the next section, we describe how to determine the best penalization parameters for the penalized multivariate equation
step (i.e., selecting 𝜆1 and 𝜆2 when computing 𝜶

(1)
𝑘

).

2.3 Selecting the best parameter for the penalization variables
As the main goal of the analysis is to maximize the correlation given in Equation (1) for every explanatory and response pairs of
data sets, we define the best penalization parameters as the values for 𝜆1 and 𝜆2 that leads to the maximization of the correlation
described in Equation (4). To determine the best penalization parameters for the penalized multivariate equation (i.e., selecting
𝜆1 and 𝜆2 when computing 𝜶

(1)
𝑘

), we define a search space of values for both variables and assessing all possible combinations of
these through a standard 10-fold cross validation (CV) procedure. This procedure is repeated for every explanatory data set and
the selected best penalization parameters are the ones that maximize the sum of squared correlations between response variables
in data set 𝒀 with their latent explanatories 𝑾 →𝜂 .

Finding the best penalization parameters becomes quickly computationally expensive with extending the search space for 𝜆1
and 𝜆2. For example, extending the search space from two possible values for both 𝜆1 and 𝜆2 to two values for 𝜆1 and three values
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for 𝜆2 introduces 80 extra multi-sRDA runs in a 4 data set setting, since the total number of runs are defined by: search space
(𝜆1) × search space (𝜆2) × 𝑘 × 10. This high computational burden can be mitigated by introducing Univariate Soft Thresholding
(UST) penalization, which can be seen as a special version of ENet, where 𝜆2 → ∞. With UST, the covariance matrix from the
multivariate equation in Equation (3) is ignored, which implies that with UST we ignore the correlation between the variables
within the explanatory data set 𝑿.

2.4 Assessing the statistical significance of the proposed model and quantifying multi-sRDA's
ability of including the relevant variables in the final model
For assessing the statistical significance of the proposed model, we conduct a permutation study as follows. The null distribution
of the sum of squared correlations between the latent explanatory variables and the response variables are approximated by
removing the correlation between explanatory and response data sets by permuting the rows of the matrices, thus the observations
are shuffled keeping the internal correlation structure intact while removing the correlation between the involved matrices. We
fit the model on the permuted data sets to obtain the 𝜶 weights. The estimated 𝜶 weights are used to determine the sum of
squared correlations, and the null distribution of the sum of squared correlations is obtained by repeating the permutation test
many times.

In addition, a resampling method is used to approximate the confidence interval of the optimum estimate of sum of absolute
correlations. We use bootstrapping by taking a sample of observations from the original data, with replacement. We do this 100
times and fit a model on each bootstrap sample and report the mean and selected quantiles of the resulting distribution.

In order to assess multi-RDA's ability to select the relevant (i.e., truly associated) variables from each data set, we calculate the
true-positive rate (TPR) and true-negative rate (TNR) during the simulation studies. That is, for TPR we study the proportion
of the number of truly associated variables identified by the algorithm (i.e., those that the model assigned with nonzero 𝜶

weights) with the total number of truly associated variables that were simulated during the data generation. For TNR, we assess
the proportion of the number of truly nonassociated variables excluded from the final model (i.e., those truly nonassociated
variables that the model assigned with nonzero regression weights) to the number of truly nonassociated variables.

It is important to note that the TPR and TNR measures are hampered by the restricted computational resources. That is,
finding the best penalization parameters is increasingly computationally expensive as the search space for the possible parameters
extends and it is possible that the optimal value is not included in the search space at all. For example, the model might not include
all the associated variables due to a restricted search space for 𝜆1; during the CV study one might restrict the search space for
five possible values for 𝜆1 and these all might result in a model with fewer nonzero weights than the total number of the truly
associated variables, that is some of the truly associated variables will not be identified. In order to account for this bias, we
provide a measure which is less restrained by the search spaces of the penalization parameters, and is less affected when 𝜆1 is
smaller than the number of the real associated variables. We call this the truly associated variable inclusion (TAVI) measure.
Thus TAVI gives a better indication about how many times some of the truly associated variables are included in the model.
TAVI is then defined as the proportion of truly associated variables identified by the algorithm, to either the total number of
truly associated variables or the value of the selected 𝜆1 parameter, whichever is smaller, that is

𝑇𝐴𝑉 𝐼 =

∑𝑝𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

𝑖=1 𝐼

(
𝜶𝑝𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡+𝑖 ≠ 0

)
min

(
𝑝𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡, 𝜆1

) .

3 SIMULATION STUDIES

We assessed multi-sRDA's ability of selecting the relevant variables from the explanatory data sets and the response data sets.
That is, we quantified the methods ability of assigning nonzero regression weights to the variables from the explanatory data
sets that explain the most variation in the response data set and indicate which response variables has the highest variance. To
do this, we designed four simulation studies. The data were created in a similar fashion for all simulation studies, therefore we
first describe the general approach of data generation and then we describe the particular parameters for the different studies.

3.1 Data generation
In general, we created 𝐾 = 3 explanatory data sets, 𝑿1,… ,𝑿3 and one response data set, 𝒀 . For all explanatory data sets
𝑿1,… ,𝑿3, we generated 𝑝𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 irrelevant variables that were not associated with their latent variables. The irrelevant
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variables were sampled from the standard normal distribution with mean 0 and a standard deviation of 1. We generated 𝑝𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

relevant variables that were associated with their latent variables, and the strength of the association was indicated with the
regression weights 𝜶𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡. The strength of the associations between data sets were modeled by 𝜃 regression weights, that is,
𝝃3 = 𝜃2𝝃2 + 𝜃1𝝃1.

More precisely:

Generate 𝐾 + 1 latent variables:

(i) 𝚵 ∈ ℝ𝑛×(𝐾+1)

(ii) 𝝃1 ∈ ℝ𝑛 distributed  (0, 1)
(iii) For 𝑖 = 2,… , 𝐾 + 1:

(a) 𝑚 = 0
(b) 𝑠2 = 0
(c) For 𝑐 = 𝑖 − 1,… , 1:

i. 𝑚 = 𝑚 + 𝜃𝑐𝝃𝑐

ii. 𝑠2 = 𝑠2 + 𝜃2
𝑐

(d) 𝝃𝐢 ∼  (𝑚,
√
1 − 𝑠2)

Generate the 𝑘-th data sets (where 𝑘 is the running index from 1 to 𝐾 + 1):

(iv) 𝐗𝑘 ∈ ℝ𝑛×
(
𝑝𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡+𝑝𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

)
(v) For 𝑖 = 1,… , 𝑝𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡:

𝐱𝑖 ∈ ℝ𝑛 distributed  (0, 1)
(vi) For 𝑐 =

(
𝑝𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 + 1

)
,… ,

(
𝑝𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 + 𝑝𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

)
:

𝒙𝑖 ∈ ℝ𝑛 distributed 
(
𝜶𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝝃𝑘,

√
1 − (𝜶𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡)2

)
Steps (iv)–(vi) are repeated 𝐾 + 1 times to obtain 𝐾 + 1 data sets and the last data set obtained was treated as the response

data set (i.e., 𝑿1,… ,𝑿𝐾 were explanatory data sets and 𝒀 = 𝑿𝐾+1 was the response data set).

3.2 Data simulation
First, we designed three different simulation studies with different sample sizes; small (𝑛 = 100), medium (𝑛 = 250), and large
(𝑛 = 500) sample size. Otherwise, all three simulation studies shared the same parameters, namely, the number of data sets was
set to 4 (𝐾 = 4), the number of irrelevant variables per data set were 𝑝𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡1,…,4 = (1,000, 500, 200, 10), the number of relevant

variables were 𝑝𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡1,…,4 = (10, 8, 8, 2), the strength of the association between the latent variables were set to 𝜃 = (0.8, 0.7, 0.4),

and the regression weights for the relevant variables in the four different data sets were 𝜶𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡
1,…,4 = ([0.5, 0.5, 0.5, 0.3, 0.3, 0.2,

0.2, 0.2, 0.2, 0.2], [0.5, 0.5, 0.5, 0.4, 0.4, 0.3, 0.2, 0.2], [0.5, 0.5, 0.5, 0.3, 0.3, 0.2, 0.2, 0.2], [0.5, 0.1]).
In order to assess multi-RDA's ability to select the associated variables from each data set, we calculated the TPR, the TNR,

and the TAVI rate over 1,000 simulations. The TPR measures are reported for all three explanatory data sets (i.e., 𝑇𝑃𝑅𝑋1
,

𝑇𝑃𝑅𝑋2
, and 𝑇𝑃𝑅𝑋3

). The results are presented in Table 1. TPR values ranged from 0.72 to 0.91 and it showed a tendency
to increase by increasing sample size. The measures for TAVI are reported in Table 1 for all three data sets (i.e., 𝑇𝐴𝑉 𝐼𝑋1

,
𝑇𝐴𝑉 𝐼𝑋2

, and 𝑇𝐴𝑉 𝐼𝑋3
). The values for TAVI ranged from 0.87 to 1.

The TNR measures are reported for the three different explanatory data sets (i.e., 𝑇𝑁𝑅𝑋1
, 𝑇𝑁𝑅𝑋2

, and 𝑇𝑁𝑅𝑋3
) and the

results are reported in Table 1. The TNR values ranged from 0.985 to 0.998 and were not much affected by the varying sample
size. We observed and reported earlier that ENet was slightly superior to UST in precision of the relevant explanatory variables
selection in such high-dimensional setting, but ENet imposed huge computational costs compared to UST (Csala et al., 2017).
Therefore, given the size of our data, we used UST penalization for all simulation studies.

In addition, we designed a simulation study that resembles the size of the omics data used for the real data analysis in Section 4.
This study had the following parameters; a sample size of 37 (𝑛 = 37), the number of data sets was 3 (𝐾 = 3), the number of
irrelevant variables per data set were 𝑝𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡1,…,3 = (360,000; 18,000; 47), the number of relevant variables were 𝑝𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡1,…,3 = (100;
80; 8), the strength of the association between the latent variables were set to 𝜃 = (0.8; 0.4), and the regression weights for
the relevant variables 𝜶𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

1,…,3 in the three data sets varied between 0.2 and 0.5. The TPR, the TNR, and the TAVI rate were
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T A B L E 1 Results of simulation study

𝒏 = 100 𝒏 = 250 𝒏 = 500
𝑇𝑃𝑅𝑋1

0.72 0.76 0.75

𝑇𝑃𝑅𝑋2
0.76 0.88 0.90

𝑇𝑃𝑅𝑋3
0.79 0.81 0.79

𝑇𝐴𝑉 𝐼𝑋1
0.89 0.99 0.99

𝑇𝐴𝑉 𝐼𝑋2
0.87 0.99 0.99

𝑇𝐴𝑉 𝐼𝑋3
0.92 0.99 1.00

𝑇𝑁𝑅𝑋1
0.99 0.99 0.99

𝑇𝑁𝑅𝑋2
0.99 0.99 0.99

𝑇𝑁𝑅𝑋3
0.99 0.99 0.99

Notes: True positive rates (TPR), the rate of truly associated variable inclusion

(TAVI), and true negative rates (TNR) computed from 1000 replicates.

calculated over 100 simulations. TPR resulted in 0.66 for the first explanatory data set and in 0.79 for the second explanatory
data set. TAVI resulted in 0.68 for the first explanatory data set and in 0.81 for the second explanatory data set and we observed
the value 0.99 for TNR for both explanatory data sets.

4 HIGH-DIMENSIONAL OMICS DATA ANALYSIS

We applied multi-sRDA to high-dimensional omics data in order to explain variability in proteome variables explained by
biomarkers from the epigenome and transcriptome. Our data sets included 364,134 methylation markers measured in blood
leukocytes by the Illumina Infinium HumanMethylation450 BeadChip, 18,424 gene expression markers obtained from skin
biopsy with Affymetrix Human Exon 1.0ST Arrays, and 47 cytokine markers measured in blood plasma (Radonic et al., 2012).
The data included in the analysis were measured on 37 patients with Marfan syndrome who participated in the Dutch Compare
Trial (Groenink et al., 2013). The conceptual model we built regarded the methylation data as explanatory for both the gene
expression measurements and the cytokine markers, and the gene expression measurements were regarded as explanatory for
the cytokine markers. Given the size of the data, we used UST penalization for our model, with which one multi-sRDA run took
364 s. In order to find the best 𝜆1 parameters for UST, we used 10-fold CV, which resulted in selecting 150 nonzero explanatory
variables from the methylation markers, with the sum of absolute correlations criterion of 6,842.32, and selecting 15 nonzero
explanatory variables from the gene expression markers, with the sum of absolute correlation criterion of 8.61 (see Figure 2).
We show the sum of absolute correlations instead of the sum of squared correlations for ease of interpretation.

In order to assess the statistical significance of our findings, we conducted a permutation study with the real data. We per-
formed the permutation study 100 times and observed that the sum of absolute correlations obtained with the best penalization
values were significantly different from the null distribution of the sum of absolute correlation for the methylation markers (with
𝑝-value of 9.447 × 10−11), but not for the gene expression markers (with 𝑝-value of 0.085) (see Figure 3). We used bootstrapping
to estimate the confidence interval of the sum of absolute correlation. We obtained a 95% CI [3872.59, 9147.52] for the sum
of absolute correlation for the methylation markers and a 95% CI [8.65, 16.34] for the sum of absolute correlation for the gene
expression markers.

The names and weights of the 150 methylation markers and the 15 genes that were included in our final model can be found
in Table 3 and 2 in Section 5. Our method also provided the genes and cytokines with the highest correlation coefficients in
the response data set, thus those gene expression values whose variability was most affected by the combination of the 150
selected methylation markers and those cytokine markers whose variability was most affected by the combination of the 15 gene
expression variables and the 150 selected methylation markers. These variables can be found in Table 4 with their corresponding
𝜷 weights, where the 𝜷 weights are the individual correlation coefficients with the combination of their explanatory variables.

The final model is represented in Figure 4. The methylation markers are positioned in the upper right corner in the figure,
with their corresponding latent variable 𝝃1, and only 15 markers with the highest 𝛼 weights are represented out of the 150. The
gene expression markers are plotted in the bottom with their latent variable 𝝃2 and the top 40 markers that have the highest
𝜷 weights are plotted. The cytokine markers are represented upper left on the plot with their latent variable 𝜼, and the top 15
cytokine markers that have the highest 𝜷 weights are represented. The observed correlation was 0.807 between 𝝃1 and 𝝃2, 0.763
between 𝝃1 and 𝜼, and 0.611 𝝃2 and 𝜼.
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F I G U R E 2 Representation of the 10-fold CV results for finding the best penalization parameters for the number of nonzero 𝜶 weights (i.e., the

𝜆1 penalty) Notes: On the 𝑥-axis, the number of nonzeros selected are given and on the 𝑦-axis the values for the sum of absolute correlations are

represented. On the left in red, these values are associated with the gene expression markers and on the right in black with the methylation markers.

A total of 150 methylation markers were selected for the final model that maximize the sum of squared correlations with the cytokine markers

(weights 𝜶 are given in Table 4), resulted in the sum of absolute correlations criterion of 6,842.32. The results from the CVs are represented with

black dots, with scale on the right side of the figure. Similarly, 15 gene expression markers are selected (with 𝜶 weights given in Table 3) that

maximizes the sum of squared correlation with the cytokine markers, with the sum of absolute correlation criterion of 8.61, and the CV results are

represented with red triangles, with scale of the left side of the figure

F I G U R E 3 The null distribution of the sum of absolute correlations of the methylation markers (in gray) plotted with the sum of absolute

correlation (6842.32) observed with the best optimal penalization parameters (𝑝-value 9.447 × 10−11) Notes: The red dashed lines represent the 95%

confidence interval of the distribution obtained through bootstrapping and the red dots represent the sum of absolute correlation values obtained for

the 100 bootstrap samples

We used an online overrepresentation analysis tool (available at https://reactome.org) to test whether the variables
included in the final model can be associated with any known biological pathways. Several pathways were identified, including
“Cytokine Signaling in Immune system” pathway, with genes involved TCEB1, PPP2CB, HIST1H3A, KPNA2, BIRC2
(with 𝑝-value 4.32 × 10−2), “Cellular responses to stress” pathway, with genes involved HIGD1A, TCEB1, AQP8, HSPH1,
HIST1H3A (with 𝑝-value 4.41 × 10−2), and the “Regulation of HSF1-mediated heat shock response” pathway with the gene
involved HSPH1 (with 𝑝-value 4.96 × 10−3).

5 DISCUSSION

In the present paper, we have shown how sRDA can be extended into a multiset multivariate method (multi-sRDA) so that
the effect of multiple explanatory variables, from multiple data sets, on multiple outcome variables, measured on one data set,
can be assessed simultaneously, while modeling the sequential information transfer between the involved data sets. We showed
through simulation studies and through genomewide high-dimensional omics data analysis that our proposed multi-sRDA model
is able to deal with data sets containing hundreds of thousands of variables and is able to indicate those explanatory genotypic
variables that explain the most variation in the response phenotypic variables, with high precision. To quantify the precision of
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T A B L E 2 Gene expression variables that were selected for the

final model with their corresponding 𝜶 weights

Gene Name 𝜶 Weight
AASDH 0.0746

AZIN1 0.0720

C12orf5 0.0742

C16orf61 0.0740

C20orf15 0.0781

HSPH1 0.0734

KIAA1841 0.0736

KPNA2 0.0782

KPNA2_A 0.0745

MINPP1 0.0743

NDUFAF4 0.0772

PTGR1 0.0763

SGMS2 0.0727

SNX16 0.0796

TAC4 0.0751

F I G U R E 4 Plot of the model obtained by applying multi-sRDA to the Marfan data set Notes: Upper right are the 𝜶 weights of the methylation

markers, from which only 15 represented on the plot with their corresponding latent variable 𝝃1. Bottom are the 𝜷 weights of the gene expression

markers, from which the highest 40 correlated are plotted and 𝝃2 represents the gene expression markers' latent variable. Upper left are the 𝜷 weights

of the cytokine markers, from which the highest 15 correlated are plotted and 𝜂 represents the latent variable of the cytokine markers. The correlation

between 𝝃1 and 𝝃2 is 0.807, between 𝝃1 and 𝜼 is 0.763, and between 𝝃2 and 𝜼 is 0.611

multi-sRDA, we ran simulation studies and used two true-positive measures and a negative rate measure. Our simulation studies
indicate that multi-sRDA is able to find important explanatory variables with high precision (TPR and TAVI range from 0.66 to
1, depending on sample size and the number of variables) and that the unimportant variables are almost always excluded from
the final model (TNR ranges from 0.985 to 0.998). As we described, TAVI is less restrained by the size of the search spaces
of the penalization parameters, and is less affected in the case when only a subset of the real associated variables are included
in the model, thus when the number of nonzero 𝜶 weights is smaller than the number of the real associated variables, which
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T A B L E 3 Methylation sites that were selected for the final

model with their corresponding 𝜶 weights

Methylation Site 𝜶 Weights
cg21535222 0.0078

cg20314620 0.0077

cg27559870 0.0078

cg00571339 0.0079

cg00719323 0.0081

cg15133963 0.0084

cg17459215 0.0079

cg09451427 0.0077

cg10550308 0.0077

cg15999104 0.0077

cg26309929 0.0082

cg27507919 0.0084

cg01101647 0.0078

cg03415545 0.0078

cg07784166 0.0078

cg23008238 0.0079

cg19176453 0.0082

cg01287342 0.0077

cg12217600 0.0082

cg18862888 0.0077

cg07209141 0.0077

cg16993220 0.0078

cg25188298 0.0079

cg01230784 0.0077

cg00716025 0.0077

cg18514065 0.0082

cg13191049 0.0078

cg12391328 0.0078

cg21487894 0.0079

cg26217813 0.0080

cg03751734 0.0081

cg20110347 0.0079

cg02021210 0.0078

cg02394421 0.0080

cg03541057 0.0078

cg04993276 0.0078

cg05309877 0.0081

cg05650632 0.0079

cg07091551 0.0079

cg15568225 0.0078

cg16514995 0.0078

cg26352401 0.0081

cg09994323 0.0080

cg14932133 0.0078

cg17673205 0.0077
(Continues)
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T A B L E 3 (Continued)

Methylation Site 𝜶 Weights
cg19032144 0.0083

cg20362287 0.0077

cg20419724 0.0078

cg25058482 0.0081

cg25325588 0.0077

ch.2.24120 0.0077

ch.2.15408 0.0078

ch.2.33765 0.0077

cg05997021 0.0078

cg06606548 0.0078

cg11271830 0.0077

cg12904680 0.0078

cg15146004 0.0078

cg23817981 0.0077

cg25562664 0.0077

ch.3.57315 0.0078

cg00045439 0.0086

cg00669856 0.0081

cg02945007 0.0080

cg05493561 0.0078

cg11818376 0.0077

cg16781275 0.0082

cg16818931 0.0083

cg21363050 0.0085

cg22904577 0.0079

cg27096981 0.0078

ch.4.16806 0.0084

ch.4.32075 0.0077

ch.4.33836 0.0079

cg06017028 0.0079

cg16537383 0.0079

cg17231906 0.0078

cg24194998 0.0081

cg25564121 0.0080

cg26891849 0.0077

ch.5.91394 0.0078

cg00949008 0.0080

cg01802635 0.0080

cg04673565 0.0080

cg06442073 0.0079

cg10684686 0.0078

cg12882103 0.0078

cg17774634 0.0078

cg18715868 0.0079

cg19004138 0.0079

cg03413884 0.0077
(Continues)
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T A B L E 3 (Continued)

Methylation Site 𝜶 Weights
cg05896120 0.0077

cg13791269 0.0078

cg15394787 0.0077

cg19861697 0.0084

cg20752420 0.0082

cg20956366 0.0078

cg23124695 0.0084

cg27552912 0.0079

ch.7.16370 0.0077

cg00940812 0.0081

cg13562276 0.0078

cg16717480 0.0079

cg17813074 0.0078

cg24704908 0.0078

cg26669044 0.0078

cg13596081 0.0084

cg21225548 0.0083

cg22807823 0.0084

cg10715637 0.0078

cg23656443 0.0082

cg24903527 0.0082

cg01991180 0.0081

cg03569616 0.0081

cg09076770 0.0082

cg11031737 0.0077

cg14706107 0.0082

cg02076642 0.0082

cg05666055 0.0078

cg14263244 0.0079

cg24883413 0.0077

cg01837275 0.0081

cg02632314 0.0081

cg04570827 0.0077

cg06549607 0.0078

cg08542640 0.0079

cg14210817 0.0080

cg22417789 0.0077

cg27163659 0.0077

cg05100432 0.0080

cg10208821 0.0077

cg13015872 0.0078

cg20279895 0.0079

cg23114881 0.0080

cg24478145 0.0081

cg20560091 0.0080

cg27625481 0.0079
(Continues)
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T A B L E 3 (Continued)

Methylation Site 𝜶 Weights
cg01289020 0.0081

cg02215945 0.0081

cg05160228 0.0079

cg07691874 0.0079

cg19803976 0.0080

cg05297461 0.0080

cg07688933 0.0079

cg18244544 0.0078

cg18708075 0.0078

cg03933490 0.0078

cg13888886 0.0081

cg18166947 0.0077

ch.22.9096 0.0077

we observed several times during the simulation studies. Measuring TAVI showed that in fact multi-sRDA found a subset of
the important explanatory variables almost every time for all the involved data sets in the medium and large sample size setting
(range from 0.99 to 1).

Note that the simulation studies are limited due to the fact that the generated model is quite simple since the latent variable is
not a combination of the explanatory variables, but instead the explanatory variables are directly sampled from a one-dimensional
distribution which might not represent well the structure of the omics data used for the real data analysis. Also, there is a
somewhat unexpected behavior observed in the optimization curve of the 𝜆1 parameters for the methylation markers during the
real data analysis (see Figure 2). Our best explanation is that around the value 140 for the 𝜆1 penalty, the model starts to generate
a linear combination of 𝜶 weights that correlate much stronger with the response variables that leads to the substantial increase
in the sum of absolute correlation. Nevertheless, the overrepresentation analysis of the resulting multi-sRDA model provided
reasonable pathways, that is, “Cytokine Signaling in Immune system” pathway given one of the data sets were the cytokine
markers and “Cellular responses to stress” makes sense too from a biomedical perspective since the characteristic of Marfan
syndrome is the hampered strength and elasticity of the connective tissue.

We also applied regularized canonical correlation analysis (rCCA) (Waaijenborg & Zwinderman, 2009) to the same omics
data sets that we used in our real data analysis. Canonical correlation analysis is a multivariate statistical method similar to
RDA, but instead of maximizing the correlation between the explanatory latent variable and the response variables, it searches
for latent variable pairs that have the maximum covariance with each other. Well-known drawbacks are that CCA's results
are not readily interpretable (i.e., the 𝜷 weights cannot be interpreted as correlation coefficients like in RDA) and that CCA
cannot model the presumed sequential information transfer between data sets. Nevertheless, for comparison, we applied rCCA
on the three omics data sets we described in Section 4. By treating all data set as response, thus running the analysis only
with multivariate regression steps to calculate the weight vectors, multi-sRDA's framework was used for rCCA. We observed
the value of 6118.28 for the sum of absolute correlation between the outcome cytokine variables and the latent variable of the
methylation markers and the value of 7.47 for the sum of absolute correlation between the outcome cytokine variables and the
latent variable of the methylation markers. These values are substantially lower than we found with our sRDA method, which
makes sense given CCA's different objective function. Thus if we can assume directionality between data sets, it is better to
use our new method. Recently, minimal Bayes Information Criterion (BIC) was proposed for selecting the best optimal 𝜆1 for
sparse canonical correlation analysis (Wilms & Croux, 2015) which is an attractive alternative to replace CV in order to mitigate
computational burden, although CV outperformed BIC in the average number of iterations needed for algorithmic convergence
in what the authors call “Ultra high-dimensional” scenario, with 𝑛 = 50 and 𝑝 = 1, 000.

Although multi-sRDA is based on the PLS framework, it should not be confused with penalized multiblock PLS models
(Kawaguchi & Yamashita, 2017). Penalized multiblock PLS, like CCA, does not model the sequential information flow between
data sets. When there is a well-defined information transfer assumed between data sets, multi-sRDA has the advantage of account-
ing for this information flow and extracting the biologically relevant variables from the data sets, while penalized multiblock
PLS extract the variables that has the highest correlation with each other, disregarding the explanatory-response relationships
between data sets (Karaman et al., 2015).



CSALA ET AL. 421

T A B L E 4 The 40 highest 𝜷 weights from the resulting model

for the gene expression and cytokine markers

Gene Expression Values Cytokine Markers
Gene Name 𝜷 Weight Cytokine Marker 𝜷 Weight
AASDH 0.761 Eotaxin 43 0.508

AQP8 0.699 FGF basic 44 0.462

AZIN1 0.703 G CSF 57 0.314

BIRC2 0.675 GM CSF 34 0.585

C11orf60 0.673 GRO a 61 0.266

C12orf5 0.717 HGF 62 0.184

C16orf61 0.704 IFN a2 20 0.249

C20orf15 0.702 IFN g 21 0.097

C9orf41 0.678 IL 10 56 0.211

CEACAM4 0.686 Il 12 p40 28 0.277

CGB5 0.710 IL 12 p70 75 0.798

DKFZp779 0.694 IL 13 51 0.333

DMRTC1 0.678 IL 15 73 0.367

DPM1 0.684 Il 16 27 0.312

DUSP19 0.672 IL 17 76 0.793

FAM98A 0.674 Il 18 42 0.495

FASTKD1 0.692 Il 1a 63 0.273

GTPBP8 0.679 IL 1b 39 0.907

HIGD1A 0.678 IL 1ra 25 0.589

HIST1H3A 0.678 IL 2 38 0.345

HSPH1 0.702 Il 2Ra 13 0.208

IPO7 0.679 Il 3 64 0.407

KIAA1841 0.709 IL 4 52 0.146

KPNA2 0.734 IL 5 33 0.196

KPNA2_A 0.714 IL 6 19 0.145

MEF2B 0.680 IL 7 74 0.094

MEMO1 0.707 IL 9 77 0.167

MFSD1 0.674 IP 10 48 0.286

MINPP1 0.737 LIF 29 0.509

MRPL42 0.672 M CSF 67 0.310

NDUFAF4 0.734 MCP 3 26 0.174

NOC3L 0.681 MIF 35 0.319

PTGR1 0.672 MIG 14 0.657

RPP40 0.688 MIP 1a 55 0.364

SGMS2 0.698 MIP 1b 18 0.366

SIGLEC11 0.693 PDGF bb 47 0.618

SNX16 0.745 SCF 65 0.559

TAC4 0.693 TNF b 30 0.244

TCEB1 0.691 TRAIL 66 0.418

TRIM16L 0.691 VEGF 45 0.316
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The proposed multi-sRDA model is easily extendable for multidimensional latent variable extraction. After the first latent
variables 𝝃𝑘 are obtained for data sets 𝑿𝑘, 𝝃𝑘 explained effects are subtracted from original data sets 𝑿𝑘 in order to obtain
residual data sets 𝑿𝑟𝑒𝑠

𝑘
, on which the analysis can be repeated to obtain the following latent variables. Since the multidimensional

latent variables are orthogonal to each other, each of them explains a different portion of variance of their response data set.
By definition, the first latent variable has the highest absolute sum of squared correlation with its response data set, and all the
following variables explain a smaller or equal portion of variance of the response data set. The number of latent variable to
be extracted from a data set can be determined using the permutation test we proposed in Section 2; one might stop extracting
further latent variables when the permutation test indicates nonsignificant results.

However, obtaining multiple latent variables introduces further computational burdens, which, as we already mentioned
before, practically restricted the present model to the UTS penalization scheme. When the data sets consist hundreds of thousands
variables, estimating the optimal penalization parameters are costly due to the CV procedure and extracting 𝑙 number of latent
variables would increase the computational costs 𝑙-fold. Currently, we are investigating how to implement multidimensional
latent variable extraction so that it is also applicable in real omics data settings.

In this paper, we extended our sRDA approach to multiple explanatory sets and we demonstrated multi-sRDA's applicability
for high-dimensional omics data through conducting simulation studies and analyzing real biomedical data from three different
omics domains. We conclude that multi-sRDA can be used to analyze multiple high-dimensional omics sets in order to explore
the combination of those foremost biomolecular markers from various biological levels that explain the most variance of the
phenotypic variables, while modeling the conceptual model of the central dogma of molecular biology.

ACKNOWLEDGMENT
The authors would like to thank two anonymous referees and the associate editor for their comments and insights that significantly
improved this paper. The first author also would like to thank for the support and help of Christopher, Grace, Jesper, Jim, Leon,
Martha, Nastya, Stephanie, and William.

CONFLICTS OF INTEREST
The authors have declared no conflict of interest.

ORCID
Attila Csala https://orcid.org/0000-0003-4969-5555

R E F E R E N C E S
Buescher, J. M., & Driggers, E. M. (2016). Integration of omics: More than the sum of its parts. Cancer & Metabolism, 4(1), 4.

Crick, F. (1970). Central dogma of molecular biology. Nature, 227(5258), 561–563.

Csala, A., Voorbraak, F. P. J. M., Zwinderman, A. H., & Hof, M. H. (2017). Sparse redundancy analysis of high-dimensional genetic and genomic
data. Bioinformatics, 33(20), 3228–3234.

Esposito Vinzi, V., & Russolillo, G. (2013). Partial least squares algorithms and methods. Wiley Interdisciplinary Reviews: Computational Statistics,
5(1), 1–19.

Fornell, C., Barclay, D. W., & Rhee, B.-D. (1988). A model and simple iterative algorithm for redundancy analysis. Multivariate Behavioral Research,
23(3), 349–360.

Groenink, M., Den Hartog, A. W., Franken, R., Radonic, T., De Waard, V., Timmermans, J., … Mulder, B. J. M. (2013). Losartan reduces aortic
dilatation rate in adults with Marfan syndrome: A randomized controlled trial. European Heart Journal, 34(45), 3491–3500.

Huang, S., Chaudhary, K., & Garmire, L. X. (2017). More is better: Recent progress in multi-omics data integration methods. Frontiers in Genetics,
8, 84.

Israels, A. Z. (1984). Redundancy analysis for qualitative variables. Psychometrika, 49(3), 331–346.

Johansson, J. K. (1981). An extension of Wollenberg's redundancy analysis. Psychometrika, 46(1), 93–103.

Karaman, Ä., Nørskov, N. P., Yde, C. C., Hedemann, M. S., Bach Knudsen, K. E., & Kohler, A. (2015). Sparse multi-block PLSR for biomarker
discovery when integrating data from LC–MS and NMR metabolomics. Metabolomics, 11(2), 367–379.

Kawaguchi, A., & Yamashita, F. (2017). Supervised multiblock sparse multivariable analysis with application to multimodal brain imaging genetics.
Biostatistics, 18(4), 651–665.

Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Stevens, M. H. H., Oksanen, M. J., & Suggests, M. (2007). The vegan package. Community Ecology
Package, 10, 631–637.

https://orcid.org/0000-0003-4969-5555
https://orcid.org/0000-0003-4969-5555


CSALA ET AL. 423

Radonic, T., de Witte, P., Groenink, M., de Waard, V., Lutter, R., van Eijk, M., … Zwinderman, A. H. (2012). Inflammation aggravates disease severity
in Marfan syndrome patients. PLoS ONE, 7(3), 1–9.

Sanchez, G. (2013). PLS path modeling with R. Berkeley: Trowchez Editions.

van den Wollenberg, A. L. (1977). Redundancy analysis an alternative for canonical correlation analysis. Psychometrika, 42(2), 207–219.

Vinzi, V. E., Trinchera, L., & Amato, S. (2010). PLS path modeling: From foundations to recent developments and open issues for model assessment
and improvement. In Handbook of partial least squares (pp. 47–82). Berlin: Springer.

Waaijenborg, S., & Zwinderman, A. H. (2009). Sparse canonical correlation analysis for identifying, connecting and completing gene-expression
networks. BMC Bioinformatics, 10(1), 315.

Wilms, I., & Croux, C. (2015). Sparse canonical correlation analysis from a predictive point of view. Biometrical Journal, 57(5), 834–851.

Wold, H. (1975). Path models with latent variables: The NIPALS approach. In Quantitative Sociology (pp. 307–357). New York: Elsevier.

SUPPORTING INFORMATION
Additional Supporting Information including source code to reproduce the results may be found online in the supporting infor-
mation tab for this article.

How to cite this article: Csala A, Hof MH, Zwinderman AH. Multiset sparse redundancy analysis for high-dimensional
omics data. Biometrical Journal. 2019;61:406–423. https://doi.org/10.1002/bimj.201700248

https://doi.org/10.1002/bimj.201700248

