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Abstract: The mono and bi-metallic nanoparticles have conspicuous properties and are widely used
in the environment, energy, and medical fields. In this study, bimetallic nanoparticles composed of
silver and iron were precipitated on the surface of activated carbon in a single process using plasma
in liquid process (PLP). Silver-iron ions and various radicals were actively generated in the aqueous
reactant solution by the PLP. Although metals were precipitated on AC depending on the number of
precursors added to the aqueous reactant solution, the standard reduction potential of silver ions
was higher than that of iron ions, so silver precipitated on AC. The silver precipitate on AC was a
mixture of metallic silver and silver oxide, and iron was present as Fe3O4. Spherical nanoparticles,
100–120 nm in size, were observed on the surface of the Ag-Fe/AC composite. The composition of
the bimetallic nanoparticles could be controlled by considering the ionization tendency and standard
reduction potential of metal ions and controlling the concentration of the precursors. The PLP
presented in this study can be applied to the preparing method of bimetallic nanoparticle/carbon
materials and can be expected to be used in the prepare of energy and environmental materials such
as MFC and absorption materials for removing pollutants.

Keywords: plasma in liquid process; Ag-Fe/AC composite; bimetallic nanoparticles; precursor

1. Introduction

Advances in nanoscience are having a drastic impact in many fields. In particular,
nanoparticles are applied to catalysts and batteries for use in the environment and energy
fields [1,2]. Silver nanoparticles are attracting attention as new high-tech materials with
high added value, and interest is focused on antibacterial substances, antistatic agents,
cryogenic superconductors, and biosensors [3,4]. Although iron nanoparticles can be
prepared inexpensively, they are used widely in environmental purification and recently as
an additive for energy materials [5,6]. Recently, silver–iron bimetallic nanoparticles have
attracted attention because they can be applied to microbial fuel cells (MFCs) using the
oxygen reduction reaction (ORR) [7,8].

Carbon materials, such as activated carbon, graphite, carbon black, graphene, and
carbon nanotubes, are replacing platinum/carbon catalysts because of their relatively low
cost, specific structure, and redox activity [9,10]. In addition, many attempts have been
made to load a low-cost metal with excellent catalytic efficiency into a carbon material,
among which the carbon catalyst in which iron is precipitated showed excellent electron-
donating ability as an MFC cathode [11,12]. On the other hand, silver nanoparticles
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deposited on carbon materials are being used as ORR electrocatalysts with the ability to
inhibit bacteria [13,14].

Recently, the plasma in liquid process (PLP) has attracted attention as a useful method
of depositing various metals on carbon materials [15,16]. Various metal/carbon composites
are prepared by the PLP because it is easy to perform and can precipitate metal on carbon
material easily in a single step [17,18].

In this research, silver and iron were precipitated simultaneously on activated carbon
using PLP in a single step. The physicochemical properties of the Ag-Fe/AC composite
materials synthesized by PLP were investigated through various instrumental analyses.
Furthermore, the composition of bimetallic nanoparticles could be controlled.

2. Materials and Methods
2.1. Materials and Chemicals

Activated carbon (YP-50F, Kuraray chemical Co. Ltd., Osaka, Japan) was used as the
composite substrate. Iron (III) nitrate nonahydrate (Fe(NO3)3·9H2O, Sigma-Aldrich, St.
Louis, MO, USA) and silver nitrate (AgNO3, Sigma-Aldrich, St. Louis, MO, USA) were
used as the silver and iron precursors for the bimetallic nanoparticles (BNPs). Deionized
water with an electrical conductivity of less than 2 µS/cm from Daejung Chemical & Metal
Co. Ltd. was used to prepare the aqueous reactant solution required for the PLP reaction.

2.2. Device

Figure 1 presents a schematic diagram of a PLP device for preparing silver-iron
bimetallic nanoparticles precipitated on activated carbon composites (SIACCs); details of
each part are described in detail elsewhere [15,17]. The two-channel PLP reactor was made
of Pyrex, the aqueous reactant solution was filled inside, and the cooling water supplied
from a chiller was circulated in the outside channel. Cooling water (ethylene glycol 40%)
was circulated to prevent the increase in temperature of the aqueous reactant solution
caused by the heat of the plasma generated by the tungsten electrodes and maintain a
constant reaction temperature. A sensor of optical emission spectroscopy (OES, AvaSpec-
3500, Avantes, Apeldoorn, The Netherlands) was installed over the contacts of the tungsten
electrodes to collect plasma field information. The distance between the plasma field and
the OES sensor was maintained at 3 mm.
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Figure 1. Diagram of the PLP reaction device for preparing Ag/Fe bimetallic nanoparticles supported
on activated carbon composites.

Cylindrical rod type tungsten electrodes (φ 2mm, L 150 mm, 99.95%, Wolfram indus-
trie, Traunstein, Germany) used to generate the plasma were installed facing each other
at a 1 mm interval in the center of the PLP reactor. The outside of the tungsten electrode
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was insulated using a ceramic insulator and PTFE tube. The power supply (NTI-1000w,
Nanotechnology Inc., Daejeon, Korea) was a high-frequency bipolar pulse type in which
the frequency, applied voltage, and pulse width could be altered. The BNPs were prepared
under the following operating conditions: frequency of 30 kHz, applied voltage of 250 V,
and pulse width of 5 µs.

2.3. Preparation of SIACCs

Figure 2 is a schematic illustration showing the bimetallic nanoparticle formation
and SIACC preparing process using PLP. Silver ions and iron ions present in the reactant
solution due to the dissociation of the precursor undergo particle formation and growth by
PLP and are then precipitated to the activated carbon surface as bimetallic nanoparticles.
The SIACCs were prepared using the PLP is as follows. Ag and Fe precursors were added
to 250 mL of deionized water at a certain concentration ratio and dissolved by stirring.
After adding 0.5 g of activated carbon (AC) as a substrate to the aqueous reactant solution
in which the precursor was dissolved and stirred for 10 min, the prepared aqueous reactant
solution was placed in the reactor shown schematically Figure 1. PLP was performed for
one hour by receiving power from a power supply. After the reaction, the precipitate was
separated from the reactant by centrifugation. The separated sediment was centrifuged
and washed three times, and a final product (SIACCs) was obtained by filtration, and
moisture was removed by vacuum drying at 353 K for 24 h.
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PLP method.

2.4. Characterization of SIACCs

The chemical composition of the SIACCs prepared using PLP was analyzed using a Field
Emission Scanning Electron Microscope (FESEM, JSM-7100F, JEOL, Tokyo, Japan) equipped
with energy dispersive X-ray spectroscopy (EDS, Noran Z-MAX 350, Tokyo, Japan), and
the morphology and constituent elements of silver-iron bimetallic nanoparticles (BNs)
precipitated on the AC surface were observed using a field emission transmission elec-
tron microscope (FETEM, JEM-2100, JEOL, Tokyo, Japan). The chemical state and bond
formation of SIACCs were measured by X-photoelectron spectroscopy (XPS, Multilab 2000
system, Thermo Fisher Scientific, Waltham, MA, USA). The diffraction data of SIACCs
prepared by PLP were measured with a high-resolution X-ray diffractometer (HR-XRD,
Max Ultima III, Rigaku, Austin, TX, USA).

3. Results and Discussion
3.1. Characteristics of Aqueous Reactant Solution

The optical spectra generated in the aqueous reactant solution were observed to
confirm the chemical species generated during the PLP reaction. Figure 3a shows the OES
spectra in the range of 200 to 900 nm for DI water, silver, iron, and silver-iron solutions. The
concentrations of silver and iron precursors used were 1 mM and 10 mM, respectively. Five
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strong peaks were observed in the OES spectra of water shown at the bottom: hydroxyl
radicals (309 nm), hydrogen radicals (486 nm and 656 nm), and oxygen radicals (777 nm and
844 nm) [19]. The radical peaks (hydroxyl, hydrogen, and oxygen) generated in the reactant
aqueous solution in which the silver precursor (AgNO3, 1 mM) is dissolved show a slightly
decreased intensity than those generated in water. Meanwhile, new peaks were observed
at 328.0 nm, 338.2 nm, 520.9 nm, and 546.5 nm, which were assigned to Ag I (Ground
state: 1s22s22p63s23p63d104s24p64d105s2S1/2) generated in the aqueous reactant solution by
the PLP reaction [20]. In the case of the OES spectra of the reactant aqueous solution in
which the iron precursor (Fe(NO3)3, 10 mM) was dissolved, the intensity of the radical
peaks observed in the water rapidly decreased. The OES spectra of the reactant aqueous
solution are measured by the light emitted during plasma reaction, and the intensity of the
generated peaks is affected by the transparency of the reactant solution. Figure 3b presents
a photograph of the color change of the solution after performing the PLP reaction for one
minute on an aqueous reactant solution in which the metal precursor was dissolved. The
Ag solution remained colorless and transparent as before the PLP reaction, but the aqueous
reactant solution (Fe solution and Ag/Fe solution) containing the iron precursor changed
to brown. This was attributed to the formation of iron oxide (Fe3O4) nanoparticles by the
PLP reaction. In a previous study, iron oxide nanoparticles were not produced when an
aqueous reactant solution was prepared using ethanol, but some iron oxide nanoparticles
and iron nanoparticles were produced when an aqueous reactant solution was prepared
using water [21]. The decrease in intensity of radical peaks in the OES results of the iron
precursor reactant aqueous solution is presumed to be due to the transparency caused by
the color change of the reactant solution. Even in the case of OES of a reactant aqueous
solution containing silver and iron precursors, the intensity of radical peaks decreased
sharply, and peaks caused by Ag I were observed.
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It was confirmed that the characteristics of Ag solution and Fe solution were simul-
taneously expressed by the plasma generated in the reactant aqueous solution. Figure 3c
shows an enlarged portion of the OES spectra of Ag-Fe aqueous reactant solution, and
peaks by Fe I (249.0 nm, 344.0 nm, 374.9 nm, and 382.0 nm) and Fe II (260.7 nm) were
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observed [20,22]. Silver ions (Ag+) and iron ions (Fe3+) present in the aqueous reactant
solution generate various active peaks in the PLP reaction.

3.2. Properties of Silver-Iron Bimetallic Nanoparticles

Figure 4a shows the EDS spectrum attached to the FE-SEM for the SIACC composite
prepared by mixing the precursor concentration ratio of Ag and Fe at 1:50. The strong
peak at 0.25 keV is due to carbon (C Kα), which is a major constituent element of activated
carbon. The weak peak at 0.53 keV is due to oxygen (O Kα). The peak observed at 2.98 keV
is silver (Ag Lα), and the peaks at 0.70 keV and 6.39 keV are peaks due to Lα and Kα

of iron (Fe). From these results, silver and iron precipitated in the composite by PLP.
Figure 4b shows the real image of FE-SEM, and Figure 4c–e is an elemental mapping image
showing the distribution of oxygen, silver, and iron elements in the region of Figure 4b.
In Figure 4c, it can be seen that oxygen in SIACC has the same distribution as that of AC.
From Figure 4d,e, it can be seen that the silver and iron elements are uniformly dispersed
in the SIACC composite and show a relatively similar shape.
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Table 1 shows the initial precursor concentration and chemical composition of SIACCs
using pristine AC (YP-50F) prepared by PLP. The Fe(NO3)3·9H2O concentration in the
aqueous reactant solution was kept constant at 10 mM, and the silver nitrate (AgNO3)
concentration was changed to 0.1–1.0 mM. YP-50F is mostly composed of carbon with
3.6 wt.% oxygen. The chemical composition of SIACCs prepared by PLP was changed by
the precursor concentration of Ag and Fe. In the case of SIACC-10, the ratio of silver and
iron precursors was 1:10. On the other hand, the silver and iron content in the resulting
composite was 3.0 wt.% and 0.8 wt.%, respectively, indicating a higher silver content than
iron. As shown in Figure 2, active species and electrons are generated from the plasma
field generated by PLP. Silver ions and iron ions that existed in an ion state in the reactant
aqueous solution are reduced by electrons and changed into metallic particles. Bimetallic
particles composed of silver and iron elements that are continuously reduced by electrons
generated in the PLP reaction are precipitated on the AC surface through the generation
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and growth. The reduction rate of metal ions is affected by the standard reduction potential
(SRP). The SRP of Ag+ is +0.799 V, which is higher than Fe2+ (−0.04 V). Therefore, silver
reduced faster than iron and more silver precipitated on the AC [23–25]. The iron nitrate
used in this study can cause etching on silver metal. In this experiment, an aqueous reactant
solution was prepared by mixing silver nitrate (0.1–1 mM) and iron nitrate (10 mM) at a
low concentration, and bimetallic particles were prepared by simultaneous reduction of
two metal ions by plasma reaction. As can be seen from the results in Table 1, the etching
effect by iron nitrate hardly occurred, and it was found that the chemical composition was
determined by the SRP of the metal ions. In addition, the oxygen content of the SIACCs
prepared by the PLP reaction was higher than that on bare AC, which was attributed to
oxides included in the BNPs generated on the AC surface.

Table 1. Chemical composition of SIACCs using pristine AC prepared by PLP.

Sample
Initial Conc. (mM) Carbon Oxygen Silver Iron

AgNO3 Fe(NO3)3 wt.% wt.% wt.% wt.%

AC(YP-50F) 0 10 96.4 ± 0.3 3.6 ± 0.3 0.0 ±0.0 0.0 ± 0.0
SIACC-01 0.1 10 93.2 ± 0.2 4.6 ± 0.2 0.3 ± 0.1 2.0 ± 0.2
SIACC-02 0.2 10 93.1 ± 0.4 4.4 ± 0.2 0.7 ± 0.1 1.7 ± 0.1
SIACC-10 1.0 10 91.9 ± 0.4 4.3 ± 0.3 3.0 ± 0.2 0.8 ± 0.1

Figure 5 shows the XPS spectrum measured to confirm the chemical state and bond
formation of SIACC-02. The survey spectrum in Figure 5a shows that C1s and O1s peaks
are generated at 284 eV and 530 eV, respectively, which are constituent elements of AC, and
Ag3d (BE 367 eV and 372 eV) and Fe2p (BE 711 eV and 724 eV) showed that Ag and Fe had
precipitated on the AC surface through the PLP reaction. In the spectrum of C1s region in
Figure 5b, the strong peak of BE 284.6 eV is due to sp2-hybridized graphitic carbon (C-C
group), and the peaks at BE 286.2 eV and BE 288.9 eV are hydroxyl/epoxy group (CO) and
it is due to the carbon of the carboxyl group (O-C=O) [26–28]. All three peaks are due to
carbon of AC, and no new peaks were observed [29]. Figure 5c is the spectrum for the O1s
region. BE 530.5 eV (C-O group), 532.2 eV (C=O group), and 533.8 eV (C-OH group) were
peaks produced by oxygen combined with AC and were identical to the O1s region results
of AC (YP-50F) [30]. In addition, the weak peak observed at BE 529.8 eV is due to O2−

of the Fe-O group, indicating oxygen bound to iron in BNPs [26]. In the Ag3d region of
Figure 5d, two peaks were observed in Ag3d3/2 and Ag3d5/2, respectively. The peaks at BE
367.7 eV and 372.5 eV were due to Ag+ of Ag2O, and the peaks at BE 368.2 eV and 374.7 eV
were due to metallic silver (Ag0) [31,32]. Therefore, the Ag nanoparticles on the AC surface
by PLP are a mixture of metallic silver and silver oxide. Figure 5e shows the results for
the Fe2p region. The peaks due to Fe 2p3/2 and Fe2p1/2 were observed at BE 724.3 eV
and 710.7 eV, respectively. The interval between the two peaks was 13.6 eV. Hence, the
peak was assigned to Fe3O4 [33]. The BE 710.8 eV and BE 712.7 eV of Fe2p3/2 were peaks
generated by Fe2+ and Fe3+, The peak shown at BE 718.7 eV is a shake satellite peak for Fe
ion of divalent sate [34–36]. Therefore, the BNPs on the AC surface by the PLP reaction
exist in the form of a mixture of Ag, Ag2O, and Fe3O4. The atomic percentages (At.%) of Ag
and Fe elements of SIACC-02 measured through XPS analysis were 0.24 At.% (1.92 wt.%)
and 0.95 At.% (4.12 wt.%), respectively, which were higher than the data obtained by EDS
analysis (Table 1). In general, XPS is applied for surface analysis rather than bulk material
analysis because of its low sampling depth (1–10 nm). The increase in Ag and Fe values in
XPS analysis compared to EDS analysis means that there are many Ag and Fe elements on
the surface of AC, and it is because BNPs generated by PLP were mainly precipitated on
the AC surface.
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Figure 6 shows the XRD patterns of AC (YP-50F) and SIACC-10. The XRD pattern
of AC (YP-50F) showed broad peaks at 22◦ and 43◦ 2θ. The broad XRD peak centered at
22◦ 2θ was assigned to the 002 plane of parallel graphite flakes, and the peak at 43◦ 2θ was
due to the 101 planes of the honeycomb structure. The broad XRD peak indicated that it
was amorphous [37,38]. In the XRD pattern of SIACC-10 prepared by PLP, sharp peaks
were also observed at 38.1, 44.2, 64.4, and 77.4◦ 2θ, which were assigned to Ag (111 plane)
and Ag2O (020 plane), Ag2O (202 plane) [39,40], Ag (202 plane) and Ag2O (040 plane), and
Ag (300 plane) and Ag2O (402 plane), respectively [39]. Hence, Ag precipitated on the AC
by the PLP reaction as a mixture of Ag and Ag2O. On the other hand, in the XRD pattern
of SIACC-10, no peak for iron was observed, which is because the chemical composition of
the iron was below the detection limit XRD.

3.3. Controlling the Chemical Composition of Bimetallic Nanoparticle

Figure 7 shows the morphology and components of the nanoparticles precipitated on
the AC surface by PLP using FE-TEM. Figure 7a,e includes real images of nanoparticles of
SIACC-02 and SIACC-10. The precipitated nanoparticles were spherical, approximately
100–120 nm in size. Figure 7b,c shows the elemental maps of Ag and Fe of SIACC-02. More
Fe was present than Ag. Hence, more Fe precipitated than Ag, which is consistent with
the results in Table 1. Figure 7d shows the line scanning profile for the BNP of Figure 7a.
The intensity by Fe was higher than that of Ag, showing a high concentration in the whole
part of the particle. Figure 7e–h shows a real image, elemental mapping, and line scanning
profile of the nanoparticles precipitated from the SIACC-10 aqueous reactant solution.
Figure 7f,g includes the Ag and Fe element mapping results. The content of Ag was higher
than that of the Fe, possibly due to the increase in Ag precursor concentration in the
aqueous reactant solution. The concentration of the Fe precursor in the aqueous reactant
solution of SIACC-02 and SIACC-10 was the same (10 mM), and the initial concentration
of Ag precursor was increased slightly from 0.2 mM to 1 mM. Hence, the reduction of
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silver ions occurred preferentially in the PLP reaction. Figure 7h shows the line scanning
profile of BNP precipitated in the SIACC-10 aqueous reactant solution. Compared to the
Fe element, the intensity of Ag was larger in the entire part of the particle. These results
suggest that the metal precursor ratio in the reaction solution is an important factor in the
chemical composition of BNPs in the generation of BNPs through the PLP reaction. In
conclusion, the composition of bimetallic nanoparticles can be controlled by considering
the ionization tendency and standard reduction potential of the metal ions and adjusting
the precursor concentration.
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4. Conclusions

Silver and iron were precipitated on AC powder in a single step using PLP. OES
confirmed silver and iron ions and various radicals in the reaction aqueous solution. EDS
quantified the content of elements present in SIACC. Although metals were precipitated
on AC depending on the amounts of precursors added to the aqueous reactant solution,
the standard reduction potential of silver was higher than that of iron, so relatively more
silver precipitated on AC powder. XPS confirmed that silver precipitated on AC powder as
a mixture of metallic silver and silver oxide and iron as Fe3O4. FE-TEM showed that the
BNP on the surface of the SIACC were spherical, 100–120 nm in size. Elemental mapping
and line scanning profile revealed bimetallic particles containing silver and iron, and the
chemical composition could be controlled by changing the concentration of the initial
precursors. It can be said that this study suggested a method for preparing a carbon
composite incorporating BNPs and controlling the composition of BNPs. These research
results can be applied to MFC and materials for removing environmental pollutants, and
we plan to conduct research on performance improvement in future studies.
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experiments.; Y.-K.P., B.-J.K., K.-H.A. and S.-C.K. contributed to the analysis and the interpretation of
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the published version of the manuscript.
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