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Abstract

Background: Mechanistic models play an important role in many biological disciplines, and they can effectively
contribute to evaluate the spatial-temporal evolution of mosquito populations, in the light of the increasing
knowledge of the crucial driving role on vector dynamics played by meteo-climatic features as well as other
physical-biological characteristics of the landscape.

Methods: In malaria eco-epidemiology landscape components (atmosphere, water bodies, land use) interact with
the epidemiological system (interacting populations of vector, human, and parasite). In the background of the eco-
epidemiological approach, a mosquito population model is here proposed to evaluate the sensitivity of An.
gambiae s.s. population to some peculiar thermal-pluviometric scenarios. The scenarios are obtained perturbing
meteorological time series data referred to four Kenyan sites (Nairobi, Nyabondo, Kibwesi, and Malindi)
representing four different eco-epidemiological settings.

Results: Simulations highlight a strong dependence of mosquito population abundance on temperature variation
with well-defined site-specific patterns. The upper extreme of thermal perturbation interval (+ 3°C) gives rise to an
increase in adult population abundance at Nairobi (+111%) and Nyabondo (+61%), and a decrease at Kibwezi (-2%)
and Malindi (-36%). At the lower extreme perturbation (-3°C) is observed a reduction in both immature and adult
mosquito population in three sites (Nairobi -74%, Nyabondo -66%, Kibwezi -39%), and an increase in Malindi
(+11%). A coherent non-linear pattern of population variation emerges. The maximum rate of variation is +30%
population abundance for +1°C of temperature change, but also almost null and negative values are obtained.
Mosquitoes are less sensitive to rainfall and both adults and immature populations display a positive quasi-linear
response pattern to rainfall variation.

Conclusions: The non-linear temperature-dependent response is in agreement with the non-linear patterns of
temperature-response of the basic bio-demographic processes. This non-linearity makes the hypothesized
biological amplification of temperature effects valid only for a limited range of temperatures. As a consequence, no
simple extrapolations can be done linking temperature rise with increase in mosquito distribution and abundance,
and projections of An. gambiae ss. populations should be produced only in the light of the local meteo-climatic
features as well as other physical and biological characteristics of the landscape.

Background

Space and time variability of climate and more generally
of environmental variables are expected to affect the
morbidity and mortality pattern of human and animal
diseases [1-3] with particular emphasis on vector-borne
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infections [4,5]. Among the vector-borne human dis-
eases, malaria has the potential to modify the area of
distribution and the epidemic pattern in response to
space-time variation of temperature and rainfall, due to
the role of these meteorological variables on the ecology
and the behaviour of the vectors as well as on their
environment [6].

Temperature affects malaria transmission in various
ways [7,8], influencing, for example, the sporogonic

© 2011 Gilioli and Mariani; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:gianni.gilioli@med.unibs.it
http://creativecommons.org/licenses/by/2.0

Gilioli and Mariani Malaria Journal 2011, 10:294
http://www.malariajournal.com/content/10/1/294

period of the Plasmodium parasite, the developmental
period of the aquatic stages of the vector and the
fecundity of the adults. Most of the studies on the
effects of temperature on malaria has been carried out
with methods that can be referred to statistical ecologi-
cal models and to semi-quantitative methods or simpli-
fied dynamical models based on indexes like the basic
reproductive rate. For example, attempts have been
made to interpret recent and anomalous increases in
malaria prevalence as the consequence of temperature
trends in the tropics. Different quantitative approaches
have demonstrated the role of temperature changes
[9,10] or thermal-pluviometric variability associated to
the El Nifo-Southern Oscillation (ENSO) [11,12] in the
malaria resurgence in East African highlands.

Rainfall affects malaria acting not only on persistence
of water bodies but also on physical and bio-chemical
characteristics of aquatic environments hosting the pre-
imaginal stages of mosquito vectors. Heavy rains and
related floods are reported to cause the major malaria
outbreaks in semi-arid or arid lowlands [13], whilst spa-
tial and temporal variations in rainfall have been proved
to determine the nature and scale of malaria transmis-
sion in highland areas. Abnormal rainfall events have
been shown to precipitate malaria epidemics even in
wetter areas, as evidenced by epidemics in Uganda,
Kenya and Ethiopia [14]. Global circulation patterns
have been correlated to malaria prevalence, as for the
influence of El Nino Southern Oscillation (ENSO) in
Uganda [11,15] and for the effect of the Indian Ocean
Dipole (IOD) on malaria risk in the East African High-
lands [12].

Epidemiological research on relationship between cli-
mate variability and human health has been far long
dominated by a risk factor analysis founded on an
empirical approach. This latter obeys to the ceteris pari-
bus logic [16] focusing on impacts of single (e.g., tem-
perature) or several variables (e.g., rainfall and
temperature). In such framework, climate variability is
interpreted as a risk factor acting on some transmission
parameters. This gives rise to persuasive because intui-
tive conclusions, but also prone to the risk to ignore
several key factors for the transmission and epidemiol-
ogy of the diseases [8]. Examples are the increased vec-
torial capacity (due to natural or man-made causes), the
immigration of infected people to receptive areas, the
immigration of non-immunes to endemic areas, and
drug resistance which have been identified as the major
epidemic precipitating factors [17]. Also economic and
social factors combine to bring about the response of
health systems to climate variability [17-19].

In eco-epidemiological studies [20] empirical or statis-
tical oriented modelling approaches provide useful
insight when the relationships within the systems are
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insufficiently known. However, mechanistic approaches
can be more profitable when the underlying functional
mechanisms of the processes of interest are known in
sufficient detail. More specifically, mechanistic models
are crucial to evaluate the role of biological, ecological
and socio-economic processes in health systems
dynamics [20], characterized by complexity and non-lin-
earity acting on a wide range of space and time scales
[21,22]. Hence, mechanistic models can be usefully
applied to the analysis and integrated assessment of vec-
tor-borne diseases in order to simultaneously take into
account the influence of physical and biotic ecosystem
components on the disease dynamics [23,24]. This
approach is also relevant to understand the climatic
effects on waterborne and vector-borne diseases and to
provide indications for a proper development of ecologi-
cal and epidemiological models [8].

In order to adopt a mechanistic approach, an
improved inferential reasoning in disease ecology is
required. Following [16] this implies the use of complex
causal diagrams and methods based on triangulation
among field data, experiments, and modelling able to
understand and anticipate complex and nonlinear
dynamics of eco-epidemiological systems [20]. The cau-
sal inference in the eco-epidemiology of malaria necessi-
tates the development of new methods that could
overhaul limits in the traditional statistical methods
based on hypothesis testing and correlation structure.
Following Reiter’s comments [8], approaches with sim-
plified mathematical models to malaria epidemiology
can lead to incorrect interpretation of the effects of
environmental forcing variables on the epidemic pro-
cess. Even considering the population dynamics of the
vectorial component of the malaria system only, integra-
tive processes that give rise to counter-intuitive system
behaviour responses may occur. As a consequence, the
emerging population dynamical patterns are not simply
interpretable in terms of linear effect of environmental
forcing variables. Also traditional methods, not referred
to process-based models, have shown that environmen-
tal forcing variables (e.g., temperature) act on the mos-
quito dynamics giving rise to an unexpected complexity
and no simple conclusions can be drawn [8,25-28].

On the basis of these assumptions, the impact of cli-
mate variability on one of the component of the malaria
system, the vector mosquito, is here analysed. To this
aim a physiologically based model [29] is used to inves-
tigate the impact of specific patterns of change in
meteorological and hydrological variables on the Ano-
pheles gambiae s.s. population dynamics at microscale
[30]. Three process-based models have been developed
and used to represent the interaction among meteorolo-
gical, hydrological, and vector subsystems. In particular,
a meteorological sub-model produces spatial fields of air
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temperature and rainfall, a hydrological sub-model
describes water level and temperature in immature mos-
quito habitats, and a mosquito vector sub-model
describes the structured population dynamics of An.
gambiae s.s. considering variation in both immature and
adult abundance. The model, hereafter denoting the
ensemble of the three process based sub-models, is used
to perform a sensitivity analysis over a set of four Ken-
yan sites, representing four different eco-epidemiological
conditions. Results are then evaluated in order to derive
general pattern of vector mosquito population responses
to climate variability.

Methods

Model components

The analysis of the mosquito vector population system
is based on an ecological framework that considers all
the relevant landscape components and their influence
on the mosquito population dynamics. In the model the
landscape comprises a spatially defined portion of land
characterized by physical, ecological and human ele-
ments, including land-use [31]. All these elements are
viewed in their capacity to create suitable conditions for
the establishment and persistence of a mosquito popula-
tion. Essential parts of the landscape are represented by
land cover (crops, natural vegetation, buildings, etc.),
atmosphere (surface weather variables), soil (textural
and hydrologic parameters) and hydrosphere (ephemeral
or perennial water bodies that are potential breeding
sites for mosquitoes). The model also considers a stable
human host population as source of blood for the mos-
quito adults reproduction.

Meteorological determinants influencing mosquito
population dynamics

As discussed by [32], mid-latitude areas that in recent
centuries were widely affected by malaria, benefited in
the last decades from public health policies that have
limited the problem to tropical rainy areas [8]. By conse-
quence this paper focuses on tropical climates (Koep-
pen’s A - [33]) with particular reference to Kenya, a
country which sits astride the Equator and where per-
formance of the model has been evaluated for four
representative sites. Additional file 1 allows to interpret
factors influencing the meteorological variables of major
importance for mosquito population like air and water
temperature and rainfall. Temperature depends on pro-
cesses occurring at microscale (e.g. surface energy bal-
ance, breeze circulations), mesoscale (e.g. tropical
disturbances) and macroscale (e.g. Hadley cell, Enso,
Madden-Julian Oscillation, monsoons). Macro and
mesoscale precipitation systems are mainly fed by
humidity produced by microscale phenomena acting
into the boundary layer. This link among scales is at the
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root of a strong space and time variability detectable in
the whole set of surface variables (first of all cloud cov-
erage and precipitation, radiation fluxes, air temperature
and humidity) that characterizes the tropical environ-
ments and affects the dynamics of mosquito population.
The adoption of conceptual schemes and monitoring
tools (real-time meteorological networks, remote sen-
sing) able to account for this variability is of paramount
importance to improve the risk mapping methods and
the early warning systems [34].

Hydrological determinants

Ephemeral and perennial pools occur commonly
throughout the tropical areas where represent unique or
preferential habitats for a lot of species that support a
rich invertebrates community. The physical-chemical
characteristics and the temporal persistence of water
bodies surface (hydro-period) affect the composition and
reproduction of vegetation and fauna and drive the
establishment and the maintenance of the Anopheles
spp. aquatic phases [35,36]. Additional file 2 shows the
main hydrological processes influencing larval habitats.

Scale aspects and landscape characteristics
Meteorological variables are fundamental driving vari-
ables for the malaria vectors population dynamics acting
not only directly on vectors but also indirectly as deter-
minants of the environmental heterogeneity in general
and hydrological features in particular (e.g., presence
and characteristics of water bodies at macro, meso and
microscale). Heterogeneity and scale aspects related to
landscape and environmental forcing variables have to
be adequately addressed to develop appropriate models
of mosquito population dynamics. Meteorological and
hydrological variables are respectively described in a
scale perspective by [37] and [34]. As far as meteorolo-
gical variables are concerned, a monitoring approach
based on a network of stations at inadequate scale could
give rise to an inaccurate analysis and simulation of
mosquito population dynamics. The existing mean den-
sity of one weather station per 26,000 km? for the Afri-
can Continent, as reported in [38], gives a quite
inaccurate description of the spatial distribution of pre-
cipitation, with strong consequences on the accuracy of
hydrological analysis. An integrated monitoring
approach exploiting both surface stations and remote
sensed data (e.g., satellite operating in the regions of
thermal infrared, visible and microwaves) could at least
partially overcome the above-mentioned limitation.

Scale considerations are also important for the mos-
quito populations. The pre-imaginal phase of malaria
vectors presents a very reduced mobility of the order of
10" m day™. Vice-versa mosquito adults are often char-
acterized by a high mobility, of the order of 10> m day’
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!, The same or higher mobility applies to human hosts.
These aspects impose the selection of an adequate reso-
lution in order to model the interactions between envir-
onment, mosquito and human host.

The above-mentioned multi-scale variability justifies a
multi-scale approach [39] based on a lattice model with
a grid defining square spatial units or cells of different
dimension according to the level of resolution. A propo-
sal of scale classification of phenomena involved in the
malaria vector population dynamics system at different
spatial and temporal resolution is summarized in Addi-
tional file 3. Three levels of resolution are considered,
respectively for spatial units of 1 x 1 km (micro-scale),
10 x 10 km (meso-scale) and 100 x 100 km (macro-
scale). These three levels can be also associated to dif-
ferent levels of management, where policies are mostly
directed by macro-scale analysis, strategies by meso-
scale, and tactics by micro-scale.

Model structure

General architecture

For the objective of the analysis here performed a popu-
lation dynamics model has been developed in the light
of the flux diagram in Figure 1 considering the interac-
tion of the landscape and the vector components at a
micro-level spatial resolution (spatial unit of 1 x 1 km).
For human host a constant population density is
adopted and no management actions are assumed to be
undertaken. The general scheme of the model, repre-
sented in Figure 2, follows the basic framework of dyna-
mical modelling [40], and specific sub-models for
different sub-systems are developed and used. Two
loops with different time steps coexist in the simulation
model. The slow loop is used by models with a daily
time step (meteorological and hydrological models), the
fast loop by models with an hourly time step (vector
model and water temperature models). The model is

LANDSCAPE

Figure 1 Mosquito vector population system. Conceptual
scheme reporting the components (sub-systems) of the mosquito

vector population system and their interactions.
A\
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driven by gridded daily fields of meteorological data
(global solar radiation, maximum and minimum relative
humidity, average wind speed) derived from meteorolo-
gical stations data. Daily weather variables are used to
drive hydrological models (daily water balance of soils
and larval habitats) and to produce hourly values of
meteorological data, which in turn drive mosquito popu-
lation model.

Meteorological data and model

A daily 1983-2009 meteorological dataset collected by
NOAA-Gsod [41] and referred to synoptic stations of
Kenya (Additional file 4), has been adopted as meteoro-
logical input for the model. A preliminary check of the
entire dataset has shown the lack of 40.6% of maximum
temperature data (7x), 39.4% of minimum temperature
(Tn), and 40.4% of total precipitation (Rr). The quality
of the dataset for the four stations adopted for the sensi-
tivity analysis has been evaluated matching yearly means
of the available values with yearly mean values for the
same stations reported by the FAO Climwat database
[42] (see Table 1). The strict agreement between the
two sources testifies the good quality of NOAA-Gsod
data.

Unknown Tx, Tn and Rr data for reference grid points
are obtained applying to stations data a weighted mean
with weight inversely proportional to the square of the
distance (Inverse Distance Weighting Mean - IDWM)
[43]. In order to apply IDWM method, temperature
data have been previously homogenized to the same
height and aspect of the unknown grid point adopting
specific altitude and aspect gradients [44]. The same
IDWM method has been adopted to rebuild unavailable
weather stations data.

For the purpose of this paper the model has been
applied to two different digital terrain models (DTM):
the USGS Gtopo30, with pixel of about 1,000 x 1,000 m
[45], and the NASA SRTM mission, with a resolution of
about 100 x 100 m [46]. Hourly air temperature data
(T,), obtained applying the Parton and Logan model
[47] to daily data (Tx and Tn), feed an energy balance
based model [48] producing hourly water temperature
of larval habitats (7,,)

Ty=T,+ R, +G+LxE)/h,

where R, is the net radiation resulting from the sur-
face radiation balance, G is the heat stored into the
water, L x E is the latent heat flux and /,, is the sensible
heat transfer coefficient. The water temperature model
is described in detail in the Additional file 2.
Hydrological model
The hydrological model that describes the state of water
bodies follows the classical approach based on the conti-
nuity equation (conservation of water) applied to a



Gilioli and Mariani Malaria Journal 2011, 10:294
http://www.malariajournal.com/content/10/1/294

Page 5 of 15

Meteorological data
(Noaa - Gts)

spatialization

D Algorithms

Data

[ <] Driving variables

PRIMARY
DAILY FIELDS

Alr temperature T n

precipitation R

sir temperature 1 X data
reconstruction
elative humiditth

DERIVED
DAILY FIELDS

Global
Solar radiation SI‘

Wind speed WV

Time interpolators
&
Micrometeorological
model

HOURLY FIELDS

- Air temperature

- Relative humidity

- Solar radiation

- Wind velocity

- Water temperature

Briving HydroLo:_:IjicaI
variables mode
— | (soil & ponds)
DAILY FIELDS
- Pond water level
Population
Drl\_ﬂng | model
variables .
— (mosquitos)

Figure 2 General scheme of the model. The scheme focuses on meteorological sub-model which fed hydrological and mosquito vector sub-
models. Both hourly and daily loop are shown. Rectangular boxes are for state variables, ellipses for driving variables and faucets for rate ones.

suitable reservoir as described for example by Hood et  bottom of the water body. The model works with a
al. [49]. The water inflow is due to rainfall and runoff daily time step and simulates the water content of five
from the surroundings while the outflow is due to eva-  classes of water bodies generated by a suitable parabo-
poration from water surface and seepage from the loid of rotation (Figure 3). The final result is a
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Table 1 Yearly mean climatic features for the four selected locations

Feature Unit Reference sites
Nairobi Nyabondo Kibwezi Malindi
mean altitude m as.l. 1778 1532 904 5
location Highlands east of the Rift Area around the Lake Victoria Arid high Southern Coastal Area
Valley ground
Reference station Nairobi Airport Kisumu Marsabit Malindi airport
Reference station m as.l. 1624 1146 1345 20
height
Tx °C 24.0 268 279 306
Tn °C 13.6 145 18.1 233
Td °C 1838 20.7 23 269
Stdev_Td °C 20 1.5 15 1.7
Dtr °C 10.5 123 9.8 7.2
Rr mm 7964 12855 7122 889.3
Ev mm 1882 2156 2033 1900
Rh* % 77.7 66.6 84.6 84.3
Sr* M) m? 6942 7422 6828 7866
Sh* h 2457 2787 2394 3069
wt* km 55500 38880 74430 73410
year’'
Climate Tropical climate modified by Equatorial climate modified by Semiarid to  Modified equatorial climate of
highlands lake Victoria arid climate the Coast

Data referred to the reported reference meteorological station and climatic classification from Ininda et al. (2007). Tx, Tn, Td = maximum, minimum and mean
temperature; Dtr = daily thermal range; Ev = Evaporation; Rh = Relative humidity; Sr = Solar radiation; Sh = sunshine duration; Wt = wind totalized. Tx, Tn, Td,
Dtr and Rr are from 1983-2009 data (NOAA, 2010). Data from FAO Climwat database[54] are highlighted with the asterisks.

PONDS - GEOMETRICAL MODEL

hmax

\

PONDS - DAILY WATER BALANCE

Evaporation Precipitation

Runoff from
surroundings

Infiltration
Figure 3 Geometrical model of the larval habitats. Larval

habitats are represented as paraboloids of revolution inscribed in a
parallelepiped with a squared base.

quantitative estimate of the length of the hydro-period
under different weather and hydrological conditions.
The adoption of a single geometric solid to approximate
different larval habitats is useful in order to create a
general framework where the physical processes that
affect the behaviour of water bodies can act. In the
model, the runoff is simulated with a curve number
model, evaporation is simulated with the Hargreaves
and Samani evapotranspiration equation applying a sui-
table correction factor and seepage is simulated with the
Morel - Seidoux approach. The hydrological algorithm,
the calibration and validation processes and the final
model parameterization and the references are reported
in the Additional file 2.

Mosquito vector model

The vector model here used has been developed by [30]
for the simulation of the stage-structured mosquito
population dynamics. The model adopts a physiologi-
cally-based approach where bio-demographic rate func-
tions depends on environmental forcing variables (e.g.,
temperature), and on the ratio between resources avail-
ability and per-capita demand for resources [29]. For a
given spatial unit i, the model simulates the variation in
the abundance of mosquito immature stages L; (), non-
infected A; (¢) and infected V; (¢) adult stage (Figure 4).
The abundance in immature and adult mosquito stages
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Figure 4 Flux diagram representing the mosquito vector population dynamics. The population stages and their interaction with water

J

varies according to stage-specific bio-demographic and
behavioural (i.e., search for resources, both larval habi-
tats and human hosts) processes. More in detail (i)
immature developmental rate depends on local water
temperature (T, ; (¢)), (ii) survival rate of immature
depends on local water temperature T, ; (¢), the avail-
ability of water bodies surface W; (¢), structured in
many different dimensional classes, and age, (iii) survival
rate of the adults depends on air temperature 7, ; (¢)
and age, (iv) fecundity rate of adults depends on air
temperature 7, ; (), age, availability of blood and water
resources (W; (£)), as well as on behavioural process of
search for those resources (functional responses). The
population of human hosts in the cell i is structured in
susceptible S; (¢), infected I; (t) and recovered R; (£). For
the purpose of this work the vector model is simplified,
and all processes related to the transmission and devel-
opment of infection in the vector as well as in the host
are neglected. As a consequence, mosquito adults are
grouped into a single category M; (¢) = A; (¢) + V; (¢),
and the same has been done for the human population,
setting a constant number of individuals per cell.
Model parameterization and sensitivity analysis
Calibration, validation and sensitivity analysis are crucial
to obtain a model useful for operational purposes [50].
Sensitivity analysis has been applied to the calibrated
hydrological, meteorological and vector models to evaluate
the forcing role of climate variability on the dynamic of
An. gambiae s.s. population in four different Kenyan sites.
Sensitivity analysis for a system driven by meteorological
variables can be carried out imposing a perturbation to
the time series of weather data by means of stochastic
methods or adopting deterministic methods modifying the
dataset with predefined changing factors [51]. The latter
method is here adopted, imposing progressive changes to
the daily time series of temperature and precipitation.

The observational time series of temperature T (S) and
rainfall R (S) are considered the reference standard. For
the sensitivity analysis an additive coefficient / (with & =

-3, -2, -1, 0, +1,+2, +3) has been applied to daily tem-
perature T (S) obtaining the series [T (S) - 3 = 7(-3), T
(8) -2 =T(-2), T(S) -1 = T(-1), T (S) + 0 = T(0), T (S)
+1=T 1), T(S) +2=T(+2), T(S) +3=T(+3)]. A
multiplicative coefficient k (with k = 0.8, 0.9, 1, 1.1, 1.2)
has been applied to daily rainfall obtaining the series
[0.8R(S) = R(0.8), 0.9 R(S) = R(0.9), 1R(S) = R(1),1.1 R(S)
= R(1.1),1.2 R(S) = R(1.2)].

The seven series of temperature and the five series of
precipitation were associated in a factorial design in
order to obtain a total of 35 combinations or meteorolo-
gical scenarios. These scenarios have been used to evalu-
ate the impact of climatic variability on the mean
abundance of mosquitoes expressed as the total number
of immature and adults per spatial unit. Simulation have
been performed at micro-scale, considering a single 1 x 1
km cell, and for the period 1983-2009. Values reported in
the Additional file 2 are used as initial conditions for the
number of larval habitats per cell referred to the five
dimensional classes, for the number of mosquito imma-
ture/larval habitat in each class of larval habitat, and for
the total constant human population per cell.

The mean value of the simulated abundance of imma-
ture L(T(S),R(S)) and adult M (T (S),R(S)) stages
are obtained using the reference time series for the per-
iod 1983-2009.

Let be M (T(S)+h,kR(S)) and L(T(S) +h, kR (S))
the mean values of adults and immature abundance for a
modified temperature and precipitation regimes, then the
indexes of variation of adults
Py = M(T(S) + h, kR (S)) /M (T (S),R(S)) and imma-
ture P, = L(T (S) + h, kR (S)) /L (T (S),R(S)) population
abundance have been calculated for each weather regime.

Results

Site-specific sensitivity analysis

The obtained results for four different sites are hereafter
presented. All changes in vector population abundance
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are compared to the simulated abundance obtained for
the observational time series 1983-2009 (reference con-
dition 7(0) and R(1)).

Nairobi (1778 m asl, yearly mean temperature = 18.8°
C, yearly mean rainfall = 796 mm). Low temperatures
are the main limiting factor for the vector population in
this site. If only the effect of temperature is considered
(R(1) precipitation scenario), population abundance
increases with temperature, and the most effective
increase is observed in the scenario 7(+3) with +94% for
the adults and +111% for immature (Figure 5a, b). Tem-
perature decrease reduces the mosquito population
abundance and the decline reaches -70% for the imma-
ture and -74% for the adults for 7(-3). On the other
hand, if only rainfall variations are considered (7(0)
temperature scenario), rainfall increase results in a
much smaller change in the mosquito population (+6%
for both immature and adults in the transition from sce-
nario R(1) to the R(1.2)), while a rainfall decrease leads
to a lowering of -14% for immature and -12% for adults
in transition from R(1) to R(0.8).

The variation of the system response to tempera-
ture, obtained averaging the effects of the whole range
of rainfall levels, follows an almost linear positive
trend for both immature and adults, with an average
increase of +27.5% and +31% per°C respectively. A
similar trend has been obtained for rainfall, although
the slope of the interpolating line is much lower
(about +5% for both immature and adults per 10% of
rainfall increase).

Nyabondo (1,532 m asl, yearly mean temperature =
20.7°C, yearly mean rainfall = 1,285 mm). Thermal influ-
ences on vector population are still important in this
site but slightly less evident than in Nairobi (Figure 5c,
d). If only the effect of temperature is considered ((R (1)
precipitation scenario), the transition from T(0) to 7(+3)
gives a positive change of +50% for immature and +61%
for adult population abundance. Vice-versa the strong
decrease in temperature 7T(-3) leads to a decrease in
abundance by -61% and -66% for immature and adults
respectively. The effect of rainfall variation, setting con-
stant the temperature, is similar to that observed in
Nairobi, with an increase up to +6% for the immature
and +5% for the adult in the transition from R(1) to R
(1.2) and a decrease of -17% and -15% for the same
stages in the transition from a R(1) to R(0.8). Averaging
the effects of the whole range of rainfall levels at each
temperature, population abundance variation is almost
linear and positive with temperature, with a slope of
19% per°C for the immature and 22% for the adults.
Also rainfall modification (transition from R(0.8) to R
(1.2)) at different temperatures shows a linear positive
trend, with +5.8% and +5.3% for immature and adults
every 10% change in precipitation.
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Kibwezi (904 m asl, yearly mean temperature = 23°C,
yearly mean rainfall = 712 mm). The pattern of variation
for this site is quite peculiar, with a clear non-linear,
bell-shaped, response surface. The optimal temperature
is quite close to the standard conditions, more precisely
in the regime T(+1) (Figure 5e, f). Most of the departure
from the current climate produces a decrease in vector
abundance. In T(-3) and R(1), the reduction is about
-35% and -39% for immature and adults respectively. In
T(+3) and R(1) the decrease is less important, reaching
-5% for the immature and -2% for the adults. The simu-
lated response of vector to rainfall variation only is
quite linear, with an average increase of about 6% for
each 10% of rainfall increase for both stages (adults and
immature).

Malindi (5 m asl, yearly mean temperature = 26.9°C,
yearly mean rainfall = 889.3 mm). The modelled trend
of population variation shows that the site is located in
a temperature range significantly sub-optimal due to
high temperatures (Figure 5g, h). Only negative changes
in temperature result in an increase of population abun-
dance. The transition from 7(0) to T(-3) for R(1) deter-
mines an increase of +12% in the immature and +11%
in the adults while the transition from T(0) to T(+3) for
R(1) a decrease of -36% for both the immature and the
adults. The response surface is nonlinear, particularly if
the reduction in temperature is considered. The increase
in rainfall produces an almost linear increase of the vec-
tor abundance. The increase of population from R(0.8)
to R(1.2), averaging the simulated values at different
temperatures, is +6% every 10% of change in
precipitation.

General pattern

The simulated data obtained for different sites and com-
binations of thermal-pluviometric data have been
grouped to evaluate the overall system response to cli-
mate variability (Figure 6). Since several sites are taken
into account, no specific reference values can be used to
normalize the data that are here considered in their
absolute values as number of individuals per cell.

The trends of the response variable in Figure 6 show
that change in both temperature and rainfall influences
the behaviour of the simulated biological system. A
clear pattern of variation has been highlighted for the
investigated thermal regimes. The mean population
abundance follows a bell-shaped distribution with an
optimal response for a mean air temperatures of 24-25°
C, and a reduction in the abundance of adult and imma-
ture population for each departure from this optimal
temperature.

The response pattern to rainfall is much less compact,
though it is clear that an increase in rainfall always gives
an increase (mostly linear) of the vector population
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Figure 6 Simulated average abundance of mosquitoes per cell as function of variation in temperature and rainfall. Both thermal effects
on immature (a) and adult (b) and rainfall effects on immature (c) and adult (d) are shown combining the results obtained for the four selected

abundance. However, the rate of change of the response
variable is smaller than the one obtained for air tem-
perature. Therefore, in the range of values analyzed in
this paper the system is less sensitive to rainfall varia-
tions than to the thermal ones.

Discussion
Demographic rates of arthropods vectors of human
pathogens, as poikilotherm organisms, are sensitive to
changes in temperature and, in many cases, also in
water availability [39]. The proposed model approaches
by a mechanistic point of view the causal chain linking
environmental forcing variables to bio-demographic
rates and population dynamics of An. gambiae s.s. The
model allowed to perform a sensitivity analysis on the
systematic change in temperature and precipitation at
four different Kenyan sites characterized by different
landscape, hydrology, climate and epidemiological
pattern.

The first investigated site is Nairobi, characterized by
a tropical climate modified by highlands (climatic zones
6 in the classification scheme of [52]). Temperatures are
relatively low and the precipitation regime is character-
ized by two maxima in April and November. The site is
currently classified as not prone to malaria epidemic,
but an increase in temperatures is expected to contri-
bute to make the Nairobi area more suitable to malaria

[8]. However, the contribution of rising temperature to
vector population abundance appears to be important
only for substantial temperature changes. In fact, results
of our simulation show how the effect of a temperature
increase of 1°C on mosquito development, survival and
reproduction produces an adult population variation of
+37%, that becomes +77% for +2°C, and +111% for +3°
C. The contribution of mosquito abundance change to
the local epidemiological pattern is quite difficult to
infer. In the Nairobi area, a temperature increase could
also give a more rapid sporogonic cycle. Biting rate is
also expected to be affected by an increase of mosquito
adult population abundance. Only a physiological-based
mechanistic approach, considering the interaction
among vector, pathogen and host, could highlight how
such modification in the vectorial component may con-
tribute to a change in the malaria prevalence.

A decrease in temperature could make the Nairobi
area even more protected from malaria risk, as a result
of the joint effect of temperature on both the key pro-
cesses of vector population dynamics and maturation
time of the parasite. The effect of negative variations in
temperature has proved comparatively more important
than the positive one, depleting the adult population of
31%, 56%, and 74% for thermal changes of -1, -2, and
-3°C respectively. Furthermore, rainfall changes are
expected to be much less important than thermal ones,
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at least in the tested range -20%/+ 20%. In any case,
population dynamics display a positive linear pattern of
variation with rainfall increase.

Nyabondo shows an equatorial climate modified by
the influence of the lake Victoria (climatic zone 9 of
[52]). The main climatic characteristics are high tem-
peratures, high precipitation and absence of dry months
[42]. The area is prone to malaria epidemic due to
abundant rainfall and temperature relatively close to the
thermal optimum for biological performance of mos-
quito population (Figure 6a, b). Simulated scenarios
show a gradual change in adult vector abundance with
temperature rise, with an increase of 26%, 47% e 69%
for +1, +2 and +3°C respectively. Sensitivity to tempera-
ture is less than in Nairobi, because the observed tem-
peratures are closer to the optimum (Figure 6).
Temperature decrease produces changes comparable
with those obtained for Nairobi; such variation falls in
the left trait of the distribution in Figure 6, where the
slope of an interpolating curve is expected to be maxi-
mum. According to the model simulations, rainfall
would not be a limiting factor, in agreement with values
that are already high (1,285 mm) and well distributed
along the year. In any case also for Nyabondo the abun-
dance shows a direct linear positive correlation with the
rainfall.

Kibwesi is prone to malaria epidemic and shows a tro-
pical continental/semi-desert climate (zone 5 of [52])
with yearly precipitation below 500 mm. The pattern of
variation of population dynamics is closely related to
mean value of temperatures at this site that is very close
to the optimum identified in Figure 6a, b. As a conse-
quence, negative changes in temperature and most of
the positive ones negatively effect population abundance.
The system is sensitive to changes in rainfall, and the
magnitude of variation is comparable with the values
simulated for other sites, even if rainfall in this site is
lower.

Malindi is characterized by the influence of the Indian
Ocean that gives rise to a modified equatorial climate
(climatic zones 1 of [52]) with high temperatures mod-
erated by land and sea breeze (oceanic effect), very short
or no dry season, two main precipitation maxima (May
and November) and high humidity throughout the year.
The pattern of response is highly dependent on the
position of the average temperature with respect to dis-
tribution in Figure 6. Mosquito populations in Malindi
are negatively affected by the super-optimal thermal
conditions and population abundance may suffer of a
further increase in temperature, while it may benefit
from a temperature decrease. The gain in population
abundance is proportional to the decrease of tempera-
ture at a rate that gradually decreases approaching opti-
mal temperature.
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The analysis here undertaken is site-specific because
in this way we were able to feed the model with time
series of real meteorological data deterministically per-
turbed. However, the pattern emerging from our simula-
tions is of general validity (Figure 6a, b), and
significantly follows the typical pattern of many biologi-
cal response functions to temperature [29]. This has two
main implications. First, the three main bio-demo-
graphic rate functions (development, mortality and
fecundity) are shaped in a way that population perfor-
mance is optimized at a specific temperature and
decreases departing from this thermal optimum. This is
important for adaptation and influences habitat selection
and species distribution. Second, the distribution in Fig-
ure 6a, b could be adopted as an index summarizing the
integrated effects of temperatures on development, mor-
tality and reproduction. This index expresses the An
gambiae s.s. population potential productivity as func-
tion of average temperature conditions at local level.
The index has a maximum at 25°C and non-linearly
decreases toward zero approximately at 14-15°C, with a
10% mean rate of variation for each’C of temperature
change. A decrease was also highlighted beyond the
thermal optimum with a comparable but negative slope
(-10%).

Population abundance typically increases linearly with
rainfall variation (Figure 6¢, d) throughout the whole
precipitation range investigated and independently from
the selected site. Symptoms of non-linearity, however,
appear at the extremes of the studied range, suggesting
that non-linear responses could take place outside the
tested interval. The relatively uniform response of the
system may be explained by the model parameterization.
In fact, in all the sites the landscape is characterized by
the same larval habitats features. This oversimplification
is undoubtedly a limitation to achieve general conclu-
sions, however it supports the idea that rainfall is a lim-
iting factor and that, to some extent, the increase in
water availability, in terms of surface for egg laying, pro-
motes positive linear response in population productiv-
ity. In most of the cases such a change in population
productivity resulted of 5-6% every 10% of precipitation
increase.

The outcome of our analysis warns against any sim-
plistic interpretation of the possible role of climatic
variability on the malaria eco-epidemiology. In detail,
the issue on climate change influences on vector popu-
lation dynamics raised in our work leads to the argu-
ments hereafter listed and briefly discussed.

a) Climate change analysis cannot be limited to the
study of the temperature change effects. For many vec-
tor-borne diseases an increasing set of evidences show
that other weather components, mainly precipitation
and other hydrological variables, can significantly
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contribute to the system response. Furthermore, as dis-
cussed in the methodological section, analysis of cli-
matic scenarios should be carried out taking into
account that changes in air temperature and precipita-
tion in tropical climates are correlated. More specifically
temperature change results in variation in energy avail-
able for convective processes. This translates in changes
in thunderstorms activity which in its turn can give rise
to relevant feedbacks on surface energy balance and
thermal regime [53,54]. Biological response functions
may further complicate this picture. As in the cases here
analyzed, temperature and rainfall variations does not
always drive the change in the system in the same direc-
tion, and the interaction between different physical and
biological components of the landscape can give rise to
complex and nonlinear patterns of change.

b) The obtained results provide important insight into
the link between temperature change and responses of
mosquito population dynamics. The presupposition of a
linear response of the vectorial component in the
malaria system to temperature changes is excessively
simplistic. The reaction of population dynamics to tem-
perature variation is non-linear, as expected considering
the well know non-linear response to temperature of
the demographic rate functions at the basis of popula-
tion dynamics [29,55,56]. Such non-linearity also envi-
sages a negative change in the population abundance for
temperatures above the optimum temperature. This
makes the hypothesized phenomenon of biological
amplification of temperature effects [26] valid only for a
limited range of temperatures. Moreover, even for cli-
mates that are more sensitive to temperature rises, as in
the case of Nairobij, it is expected a maximum popula-
tion abundance variation of 30% for every degree of
temperature. This estimate is much smaller (one sixth)
than the variation reported, for instance, by [10] which
provide, on the basis of correlation analysis, an esti-
mated increase of 100% every + 0.5°C.

¢) The non-linearity in the temperature-dependent
response of population dynamics and the correlation
between air temperature and precipitation in tropical
climates mean that no simple extrapolations can be
done linking temperature raise and increase in distribu-
tion and abundance of An. gambiae s.s. populations.
Therefore, projections on population distribution and
productivity should be produced only in the light of the
local climate as well as the physical and biological char-
acteristics of the landscape involved in the maintenance
of suitable habitats for mosquito. Referring to eco-epide-
miological approach we also claim that population pro-
jections should take a great advantage from the
contribution of process-based model simulation instead
of relying on simple indexes and correlation analysis.
But ultimately the response pattern of the malaria
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system can not be interpreted only in the light of the
physical and biological factors because behavioural,
socio-economic, control operation and other public
health measures highly influence the spatial and tem-
poral occurrence of the disease.

d) From the model simulations we derived a general
pattern of temperature- and rainfall-dependent perfor-
mance of An. gambiae s.s. populations productivity.
This should help in defining the expected outcomes of
climate variation at fine spatial scales, as well as the
interpretation of heterogeneous distribution of mosquito
and malaria prevalence in many eco-epidemiological
contexts [57-59].

Despite the fact that the analysis is performed on a
limited time period and for four sites only, neverthe-
less the proposed scenarios can be considered realistic
and generalizable. From a meteorological point of
view, results are supported by the fact that (i) the
imposed daily air temperature variation is limited to
about 2 standard deviations (see table 1) which repre-
sent a commonly accepted limit for strong anomalies
[60], (ii) the reference stations selected represent four
different climatic regimes for the Eastern African
region, (iii) the reference period (27 years) is suffi-
ciently long to capture a great part of the inter-yearly
climatic variability that characterize the tropical
regimes as a result of geographic, astronomic and cir-
culation factors. Furthermore, the temperature-depen-
dence of the bio-demographic rate functions used in
the model, based on a literature review on this issue
[30], provides biological foundation to the obtained
population dynamics.

As a consequence of the above-mentioned elements
the space and time domain of applicability of the results
are considered relatively wide [50]. To improve consis-
tency and generality of the analyses performed, the fol-
lowing directions of development are of particular
interest:

a) Improving model parameterization allowing to
tackle morphological, pedological and hydrological char-
acteristics of the landscape. By this point of view, the
integration of ground measurements and remote-sensed
data of land use, geomorphology and presence/time
variability of small water reservoirs could be particularly
important;

b) Obtaining suitable meteorological and hydrological
datasets. The selected datasets are not completely satis-
fying with reference to average distance among stations
and percentage of unavailable data. This highlights a
possible problem for model management and show the
need of a renewed attention to the quality and represen-
tativeness of observational data as crucial elements to
express founded judgments on the effect of climate state
and variability on tropical diseases;
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¢) Extending the analysis to other temporal and spatial
scales. In a temporal perspective it might be interesting
to focus on particular periods of the year to evaluate the
effects of intra-annual variability of temperature and
rainfall. Possible objectives of these studies should be,
for example, the evaluation of the influence of specific
patterns of rainfall and water resources availability on
the rates of survival of mosquitoes during dry periods
and the rates of re-colonization in areas with high seaso-
nal rainfall variability. The model would also allow to
assess the role of extreme and rare events (e.g., long
periods of drought or heavy rainfall) or periodic events
(e.g., El Nifio-La Nina, the monsoon and their interac-
tions) in conditioning mosquito population dynamics. In
a spatial perspective it might be interesting to focus on
mesoscale and macro-scale patterns.

d) Including in the model other malaria system com-
ponents. The modular organization of the adopted mod-
elling framework allows to gradually expand the model,
integrating the modules for pathogen and human host
and test their behaviour as well as the whole system
responses with respect to climate variability.

Conclusions

The sensitivity analysis of An. gambiae s.s. population
dynamics to climate variability shows a clear non-linear
temperature-dependent response, in agreement with the
non-linear patterns of temperature-response of the basic
bio-demographic processes. The dependence to rainfall
is positive and linear for the tested range of variation (+
20%), but non-linearity may appear for higher perturba-
tion. Non-linearity in temperature response of mosquito
population dynamics highlighted by our model makes
the biological amplification of temperature effects valid
only for a limited range of temperatures. As a conse-
quence, no simple extrapolations can be done linking
temperature rise with increase in mosquito distribution
and abundance. Furthermore, population projections
based on hypothesized climatic scenarios should be pro-
duced only taking into account the physical and biologi-
cal characteristics of the landscape.

Regarding the possible relevance of our results for the
debate on climate change and malaria it is useful to
consider that climate change in the inter-tropical area is
a complex phenomenon that involves macroscale circu-
lation patterns (e.g. monsoons, Hadley cell, ITCZ, QBO,
ENSO) and their relations with meso and microscale
phenomena. Whether, for example, there is a general
agreement on the fact that the strengthening of the
Hadley circulation would significantly increase the mean
precipitation on tropical areas whilst the weakening of
tropical monsoons would have the opposite effect, much
more difficult is to establish the meso and microscale
effects of such hypothesized macroscale changes. The
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consequence is that the right evaluation of the climate
change impact on the vector population system in parti-
cular, and the malaria system in general, needs a
detailed work on climatic scenarios properly validated
and evaluated in the light of time series of circulation
patterns and meteo-hydrological variables that drive the
malaria system. This is clearly beyond the aim of the
sensitivity analysis described in this paper. Nevertheless,
we hope that the process-based approach here presented
and the proved non linearity linking mosquito popula-
tion performance to temperature variability may indicate
how realistic evaluation of the effects of climate variabil-
ity on the malaria system has to be founded on right
methodological assumptions and procedures in a multi-
disciplinary perspective. To this purpose, an improve-
ment of the presented model considering the pathogen
and the human host compartments and their interaction
has been implemented by the authors and some preli-
minary tests have been carried out. The resulting eco-
epidemiological model requires an effective calibration
and validation in order to become a valid tool support-
ing a sensitivity analysis of the malaria system to meteo-
hydrological variability.

Finally, the potential use of the proposed modelling
framework is not limited to theoretical explorations. As
known, a better understanding of the association
between malaria and environmental variables has led to
increased interest for the development of early warning
systems [61]. However the role of the abundance of
infected vector is not adequately considered in many
tools proposed to support management options evalua-
tion and risk mapping [39]. Forecasting and projection
models can be useful to provide predictive capacity to
public health professionals, helping the design of epi-
demic scenarios and the assessment of impact of strate-
gies of control and adaptation [62]. In order to deal
with these objectives, the model here proposed could
profitably evolve into a powerful and flexible tool for
the comparative real-time evaluation of management
options for both vector control [63] and environmental
management [64], not only for tactical purposes but also
at strategic and policy levels.

Additional material

Additional file 1: Kenya climate outlook. The file provides information
about main meteorological features of Kenya territory.

Additional file 2: Physical models of water environment. After a
general description of water bodies relevant for this work, this file
provides the description of the hydrological model with calibration and
validation activities carried out on it and a list of parameters adopted for
the calibrated model. The description of the water temperature model is
also provided.

Additional file 3: Scale aspects. The file provides information about
space ant time scales useful for the analysis of the malaria system.
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