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Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is undeniably the most severe global health
emergency since the 1918 Influenza outbreak. Depending on its evolutionary trajectory, the virus is expected to establish
itself as an endemic infectious respiratory disease exhibiting seasonal flare-ups. Therefore, despite the unprecedented rally
to reach a vaccine that can offer widespread immunization, it is equally important to reach effective prevention and
treatment regimens for coronavirus disease 2019 (COVID-19). Contributing to this effort, we have curated and analyzed
multi-source and multi-omics publicly available data from patients, cell lines and databases in order to fuel a multiplex
computational drug repurposing approach. We devised a network-based integration of multi-omic data to prioritize the
most important genes related to COVID-19 and subsequently re-rank the identified candidate drugs. Our approach resulted
in a highly informed integrated drug shortlist by combining structural diversity filtering along with experts’ curation and
drug–target mapping on the depicted molecular pathways. In addition to the recently proposed drugs that are already
generating promising results such as dexamethasone and remdesivir, our list includes inhibitors of Src tyrosine kinase
(bosutinib, dasatinib, cytarabine and saracatinib), which appear to be involved in multiple COVID-19 pathophysiological
mechanisms. In addition, we highlight specific immunomodulators and anti-inflammatory drugs like dactolisib and
methotrexate and inhibitors of histone deacetylase like hydroquinone and vorinostat with potential beneficial effects in
their mechanisms of action. Overall, this multiplex drug repurposing approach, developed and utilized herein specifically
for SARS-CoV-2, can offer a rapid mapping and drug prioritization against any pathogen-related disease.

Key words: multiplex drug repurposing; multi-omics integrative analysis; COVID-19

Introduction
The coronavirus disease 2019 (COVID-19) has claimed, at the
time of writing, 1.83 million lives with >83.3 million cases
worldwide [World Health Organization—Weekly Situation
Report 5 January 2021—https://www.who.int/]. Despite the
unprecedented number of ongoing independent efforts, this
global health emergency remains unanswered in terms of
effective treatment(s) against COVID-19 and the responsi-
ble virus, severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2).

The short-term challenge that needs to be addressed by the
scientific community is the realization of therapeutics that can
withhold the onslaught of SARS-CoV-2, until vaccines enable
mass immunization. The time scale required for identifying,
testing and approving new therapeutic compounds is prohibit-
ing for the urgency of the unfolding situation, albeit more rel-
evant as a medium- to long-term response. Thus, the focus is
on drug repurposing (DR) of existing therapeutics. Yet, even for
the case of existing compounds, the experimental preclinical
screening followed by human safety and efficacy trials is a
laborious and time-consuming process. Therefore, prioritization
of the candidate drugs entering the testing pipeline is neces-
sary. To this effect, computational approaches can expedite the
candidate drug prioritization process through a multitude of
methodologies [1] that can exhaustively analyze and integrate
the available information on a given drug.

Therapeutics can be categorized roughly into (a) those that
target the virus itself by blocking its replication and cell entry,
leading to the reduction of the viral load of the infected patient
or reducing transmission, (b) those aiming to reverse the effects
of the disease such as the acute immune response of the host,
leading to the well-documented cytokine storm and organ
damage [2–4] and (c) both of the above. Therefore, equally
important is the analysis of the disease itself towards decipher-
ing the mechanisms through which COVID-19 develops and
progresses.

As the amount of available data accumulates, novel avenues
of analysis and informed decisions on drug prioritization
emerge. The arsenal of high-throughput sequencing (HTS)
methodologies has already been utilized to produce a diverse
space of omics data, originating from clinical and preclinical
setups from samples derived from human, animal hosts and
cell lines. Several computational DR strategies were developed
for COVID-19. Most of these were focused on network-based
approaches by combining the viral and the human interactome
and through network-based strategies prioritized the existing
drugs [5, 6]. On the other hand, several studies adopted
transcriptomic-based in silico DR approaches, utilizing publicly
available gene expression data from SARS-CoV-2 and other
infectious viruses, to propose candidate repurposed drugs
against COVID-19 [7–9]. As over 500 structures of SARS-CoV-
2 proteins or protein complexes are available [10], more and
more structure-based DR approaches are being developed using
molecular docking and dynamic simulations to identify antiviral
compounds against COVID-19 [11–17].

The remaining challenge is on how to integrate the hetero-
geneous data and extract the critical information needed for
selecting potentially repurposable drugs against COVID-19.

In this work, we present a multiplex DR scheme against
COVID-19 via three discrete approaches, stepping on the analysis
of multi-source and multi-omics publicly available data from
patients, cell lines and databases. Following the DR approaches,
we used a network-based multi-omic data integration approach
to prioritize the most important genes related to COVID-19
and subsequently re-rank the identified candidate drugs. By
combining drug structural diversity filtering along with experts’
curation and drug–target mapping on the depicted molecular
pathways, we compiled an informed integrated shortlist of can-
didate drugs against COVID-19. The proposed candidates include
compounds that were recently found to generate promising
results in clinical trials, but also compounds that are presented
for the first time in the literature as potential COVID-19
therapeutics.

https://www.who.int/
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Figure 2. Taxonomy tree of all the pathogens used in the host–pathogen interaction drug repurposing approaches. The main taxonomic groups are highlighted with

light blue slices showing the ancestral taxonomy groups for SARS-CoV-2 (green leaf). The yellow to red colored bars represent the number of drugs obtained from

various taxa. The circular blue to yellow heat map represents the number of pathogen–host protein interactions retrieved from various databases.

Methods
Pipeline overview

The workflow of the proposed pipeline in this paper can be
described in the following main steps (as illustrated in detail in
Figure 1):

(A) Multi-omics and protein–protein interaction (PPI) data
selection and preprocessing: multi-omics datasets were selected
from various available sources in order to identify differen-
tially expressed genes (DEGs), differentially abundant metabo-
lites and proteins along with PPIs between SARS-CoV-2 and other
pathogens with the human host.

(B) DR pipelines: multiplex DR approaches were implemented
based on (i) transcriptomics analysis, (ii) GWAS–phenotype
association analysis and (iii) pathogen–host interaction network
analysis in order to generate an initial list of repurposed drugs
for COVID-19.

(C) Multi-omic data integration: we developed a ‘network-
based multi-source data integration’ methodology to integrate
multi-omic data from COVID-19 patients.

(D) Drug re-ranking: the re-ranking of drug candidates was
driven by a disease association score of the calculated from the
synthetic integration network.

(E) Drug filtering: the structural similarity of candidate drugs
was calculated to cluster the top scoring compounds. Finally,
we proposed an integrated drug list that comprises 65 drugs
out of which 16 were manually curated by experts for further
annotation.

Multi-omics and PPI data selection and preprocessing

We selected datasets from multiple sources available at the
time of conducting this research. Their description including
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Figure 1. Overview of the workflow. (A) Data sources: multi-omics datasets were selected from various sources in order to identify differentially expressed genes,

differentially abundant metabolites and proteins along with protein–protein interactions (PPIs) between SARS-CoV-2 and other pathogens with the human host. This

was followed by (B) drug repurposing approaches based on (i) transcriptomics, (ii) genomics—GWAS–phenotype association analysis and (iii) pathogen–host interaction

network analysis. (C) Multiplexing of repurposed drug lists: (i) integration of the multi-omic data from patients, (ii) functional analysis, (iii) drug re-ranking based on the

calculated target–disease association of the integration map and (iv) structural clustering and shortlisting of drug candidates. Finally, the integrated drug list comprises

65 drugs out of which 16 were manually curated by experts for further annotation.

the number of DEGs, proteins and metabolites with their cor-
responding selection criteria are shown in Table 1 and their
analysis is presented in following sections.

Transcriptomics

Transcriptomic (expression profiling by HTS) data were obtained
from Gene Expression Omnibus (GEO) accessed on 9 April 2020
with ID GSE147507 [18]. This dataset consists of transcriptional
profiling of different cell lines with SARS-CoV-2 infection and

of transcriptional profiling of COVID-19 lung biopsies. In our
study, we used independent biological triplicates of primary
human lung epithelium Normal Human Bronchial Epithelial
(NHBE) cells (Series 1), transformed lung alveolar A549 cells
(Series 2–5) and transformed lung-derived Calu-3 cells (Series-
7), which were mock treated or infected with SARS-CoV-2. We
also used independent biological copies of the transformed
alveolar lung A549 cells (Series 6) that were transported with
a carrier expressing human angiotensin I converting enzyme
2 (ACE2), which were also mock treated or were infected
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with SARS-CoV-2. Finally, we included uninfected human lung
biopsies from two patients that were used as biological replicates
and lung samples derived from a single COVID-19 deceased
patient that was treated in technical replicates (Series 15).
Differential expression analysis of the RNA sequencing (RNA-
Seq) data was performed in R programming language using
the EdgeR package [19]. We removed low-expressed genes by
retaining only those genes that are represented at least in
two samples of each group. The messenger RNA counts were
normalized using the trimmed mean of M-values method.
Finally, we used EdgeR’s negative binomial model to perform
the differential expression analysis of infected compared with
control samples. From the comparisons, we selected the DEGs
by applying selection thresholds of adjusted P-value < 0.05 and
log fold-change (logFC) ≥ 1.

In addition, we included RNA-Seq data of RNAs isolated
from bronchoalveolar lavage fluid (BALF) and peripheral blood
mononuclear cells (PBMC) specimens of COVID-19 patients
[20]. Specifically, this dataset included two BALF samples
from Zhongnan Hospital of Wuhan University and three BALF
samples from healthy controls, downloaded from the National
Center for Biotechnology Information (NCBI) Sequence Read
Archive (SRA) database with accession numbers SRR10571724,
SRR10571730 and SRR10571732. PBMC samples from three
COVID-19 patients and three healthy donors were obtained
from Zhongnan Hospital of Wuhan University (Table 1). From
these sets, DEGs were selected based on the original publication
analysis as described by Xiong et al. [20]. Specifically, DEGs had
been identified using the DESeq2 package (v1.26.0) [21]. Selection
thresholds on BALF-derived DEGs were set at FC ≥ 4, adjusted
P-value < 1e-10 and at least 10 read counts on average across
all samples. For the PBMC data, due to lower sequencing depth,
the DEGs were selected using FC ≥ 2, adjusted P-value < 0.01 and
over 100 read counts on average across all samples.

Due to the heterogeneity of experimental methodologies and
samples, the selection thresholds used were different between
BALF, PBMC and Series 1, 2–5, 6, 7, 15. For BALF and PBMC,
the thresholds were chosen according to the selection criteria
applied in the corresponding published studies. For Series 1, 2–
5, 6, 7, 15, we analyzed the available raw data and we applied
uniform selection criteria.

Proteomics and metabolomics

To further enrich our study, we included proteomic and
metabolomic data from Shen et al. [22]. In this study, the authors
performed proteomic (SerumP) and metabolomic (SerumM)
profiling from sera of COVID-19 and healthy individuals. These
samples were procured from 65 patients who visited Taizhou
Hospital from January to March 2020. They were diagnosed
as COVID-19 according to the Chinese Government Diagnosis
and Treatment Guideline. From the analyzed proteomic and
metabolomic profiles, 28 severe COVID-19 patients and 28
healthy controls were used in our analysis, and more specifically,
the differentially abundant proteins and metabolites, based on
adjusted P-value < 0.05 and absolute logFC > 0.25, reported by
the authors using a two-sided unpaired Welch’s t-test.

Mapping between metabolites and genes was performed
using the Ingenuity Pathway Analysis (IPA) software by Qiagen
[23] (http://www.ingenuity.com). Human Metabolome Database
(HMDB) Identifiers (IDs), logFC and P-value were used as input
into the IPA software, which identified the upstream regulators
(Supplementary File S1) that may upregulate or downregulate

the input metabolites. The right-tailed Fisher’s exact test was
used to obtain the P-values of the identified regulatory genes.

PPI data selection

A set of 336 SARS-CoV-2 human proteins, available in the Human
Protein Atlas (HPA) repository, have been further employed in the
study. Specifically, the set involves 332 high-confidence SARS-
CoV-2–human PPIs, identified by Gordon et al. [24], who had
cloned, tagged and expressed 26 SARS-CoV-2 proteins in human
cells by means of affinity purification mass spectrometry.
Four additional proteins were included: the ACE2 receptor
used by SARS-CoVs for host cell entry [25, 26], the serine
protease TMPRSS2 involved in the S protein priming [25] and
the endosomal cysteine proteases cathepsins CTSB and CTSL
needed for viral cell entry, which have been widely expressed in
human tissues [25, 26].

PPIs between host and pathogens other than SARS-CoV-2
were downloaded from IntAct [27], PHISTO [28] and VirHostNet
[29], amounting to a total of 42 684 unique PPIs from a total of 625
organisms.

DR pipelines

Transcriptomic-based DR

The transcriptomic-based DR was performed based on human
cell lines and ex vivo (rat liver) DR tools. The 150 over- and
underexpressed genes (based on their FC value) from the BALF,
PBMC, Series 15, 1, 2, 5, 6 and 7 were used as transcriptomic
signatures. The expression data from Series 2 and 5 were pooled
and analyzed prior to the DR rans in a single set since they
were generated from the same cell lines and treatments. Next,
each set was used as an input in three different transcriptomic-
based computational DR tools: Connectivity Map [30], L1000CDS2
[31] and L1000FWD [32]. These tools use transcriptional expres-
sion data from multiple human cell lines to probe relation-
ships between diseases and therapeutic agents. Drugs are sorted
according to their ‘enrichment’ score, which characterizes if a
drug can enhance or reverse the expression levels of a disease
based on a given set of genes. Drugs with high negative scores
are those that can reverse the gene expression profile towards
the normal state.

For each input set, we obtained a candidate list of drugs
predicted by each of the three tools, ranked based on their
respective reverse enrichment score (inhibition score). Since the
output of L1000CDS2 is limited to 50 drugs, we applied the same
cutoff for all the other repurposed drug lists. Hence, the top 50
drugs from each of the three tools were combined as their union
of unique drugs and ranked by calculating the weighted sum
of normalized average rankings and the normalized number of
appearances according to Equation (1):

Scorei = w1 ∗ Ri + w2 ∗ Ai, i = 1, . . . , N drugs (1)

where Ri is the average ranking score from each of the three tools,
Ai the number of appearances of each drug in the three DR tools,
and w1 and w2 are 0.7 and 0.3, respectively.

The drug lists obtained from Series 1, 2 and 5, 6 and 7 sets
were combined and re-ranked again using Equation (1) in order
to conclude to a single drug list from all cell line-derived RNA-
Seq data.

The same gene expression sets were used as input to the
CRowd Extracted Expression of Differential Signatures (CREEDS)

http://www.ingenuity.com
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
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Table 2. Summary of the 12 drug lists generated from all repurposing pipelines

Drug list
name

Source DATA Drug DB Main pipeline methods and tools Description

Tr1 RNA-Seq—Series 1, 2 and 5, 6, 7 LINCS L1000 Connectivity Map, L1000CDS2,
L1000FWD

Drugs aiming at reversing
the gene expression
profile induced by
COVID-19

TrC1 RNA-Seq—Series 1, 2 and 5, 6, 7 Drug Matrix (GSE5992) CREEDS
Tr2 RNA-Seq—Series 15 LINCS L1000 Connectivity Map, L1000CDS2,

L1000FWD
TrC2 RNA-Seq—Series 15 Drug Matrix (GSE5992) CREEDS
Tr3 RNA-Seq—BALF LINCS L1000 Connectivity Map, L1000CDS2,

L1000FWD
TrC3 RNA-Seq—BALF Drug Matrix (GSE5992) CREEDS
Tr4 RNA-Seq—PBMC LINCS L1000 Connectivity Map, L1000CDS2,

L1000FWD
TrC4 RNA-Seq—PBMC Drug Matrix (GSE5992) CREEDS
GW GWAS DGIdb Phenoscanner Drugs targeting host

proteins from genes with
significant
SNP–phenotypic
association with
COVID-19

HPH PPI, NCBI DrugBank In-house methods Drugs targeting host
proteins found to interact
with SARS-CoV-2 proteins
and/or other pathogens

HPAV PPI, NCBI DrugBank In-house methods Drugs targeting pathogen
proteins—direct antiviral
activity

TaxAV NCBI DrugBank In-house methods

gene and drug perturbation database [33]. The CREEDS database
consists of a list of 4295 single drug perturbations and 8620 single
gene perturbations obtained using gene expression data from
different tissue types of rat, collected from GEO. The CREEDS
database was used herein to extract drugs from the DrugMatrix
[33] that are predicted to be able to reverse the disease expres-
sion profile of the gene sets of interest. The drugs are ranked by
the tool based on Fisher’s exact test-derived P-value. Like above,
the top 50 drugs based on the enrichment score returned by
CREEDS. Again, the candidate drugs obtained from Series 1, 2 and
5, 6 and 7 were combined and ranked according to Equation (1).

Table 2 shows a summary of the eight drug lists (T1–4, TC1–4)
obtained from transcriptomics data.

GWAS/phenotype-related COVID-19 DR

The 40 strong SARS-CoV-2 interactors according reported by
Gordon et al. [24] were used as an input to PhenoScanner [34, 35].
PhenoScanner returns genotype–phenotype associations across
traits and proxies that are collected from various other online
databases such as GWAS catalog [36] and CHARGE [37].

Phenotype-associated genes were extracted automatically
from PhenoScanner and were used to search for drug interactors.
More specifically, the genes were used as input to the Drug–
Gene Interaction Database (DGIdb) (www.dgidb.org) [38], which
consolidates, organizes and presents drug–gene interactions and
gene druggability information from papers, databases and web
resources.

Pathogen network-based DR

Pathogen identification and taxonomy-based distances. From the
polypeptide targets data file of DrugBank, we extracted the NCBI

taxonomy [39] IDs of all organisms other than Homo sapiens
contained in DrugBank [40, 41] and have at least one protein
that is targeted by a drug. This set was filtered to identify and
remove nonpathogens like Metazoa and plants using a custom
written script in R in combination with the taxize package
to retrieve the taxonomy classification of the organisms. The
final list of pathogens included viruses, bacteria and known
human parasites from eukaryotes. From the resulting pathogen
tax ID list, we constructed their taxonomy tree using R’s taxize
package [42]. The distance between each node was calculated
using a variable step size between taxonomy ranks propor-
tional to the loss of information at each level as previously
proposed [42–44].

DR using the taxonomy distance matrix. Our working assumption
was that drugs with a direct inhibitory effect against a given
pathogen are more likely to have a similar effect to closely
related pathogens in terms of taxonomic distance. Based on
this assumption, drugs with protein targets across a broad and
diverse range of taxonomy distances are expected to have a
less taxon-specific effect, raising the prospect that they are
repurposable against SARS-CoV-2, as opposed to drugs known
to target only a specific group of distant pathogens. This broad
spectrum antipathogenic activity can be captured by the maxi-
mum distance of organisms affected by the same drug, whereas
the diversity in the inter-taxon distances can be captured using
the Shannon Index H, i.e. entropy.

Using the above, we have scored drugs based on function (2):

Sx = max
i∈Rx

1
di

+ a · H (2)

www.dgidb.org
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where Rx is the set of n pathogens with known protein targets for
drug x, di is the taxonomy distance of the ith pathogen targeted
by drug x and α is the maximum difference of distances d across
the pathogens in set Rx, which can be written as:

a = max
i∈Rx ,j∈Rx

| di − dj | (3)

Finally, the Shannon diversity [45, 46] of distances H can be
expressed as:

H =
Dx∑

z=1

pzlnpz (4)

where Dx is the set of discrete distance values observed in Rx,
whereas pz is the ratio of the distance dz frequency over the total
number of measured distances in Rx (equal to n–1).

Sx is maximized as di approaches 0, but for larger distances, a
drug is favored over other equidistant drugs if it is found to have
protein targets over a broader and diverse range of pathogens.

Pathogen–host PPI network-based DR. The approach in this sec-
tion draws from the assumption that similarities between SARS-
CoV-2 and other pathogens at host–protein level may provide
the appropriate framework to identify and rank candidate drugs
to be used against COVID-19. Specifically, a database repository
was initially developed by collecting and combining all the pro-
tein and host–protein interactions from all organisms found in
IntAct [27], PHISTO [28] and VirHostNet [29] data repositories.
The pathogens were identified from the combined unique list
of NCBI taxonomy [39] IDs from the aforementioned databases
and filtered for nonpathogenic organisms like above. For the
case of SARS-CoV-2 pathogen, the 366 host–proteins found in
HPA [47] were used, where a pairwise pathogen-to-pathogen
network was developed based on common host–proteins in-
between pathogens. Herein, the node size represents the number
of host–proteins related to a specific pathogen, and the edge
weight represents the number of common host–proteins in-
between two pathogens. The underlying network revealed 189
pathogens that share common host–proteins with SARS-CoV-2,
forming a network of first-neighbors. Based on the assumption
that the relation between two pathogens cannot be approx-
imated only by their observed commonality at host–protein
level but also by the previously mentioned taxonomy distance
D in-between them, the latter network was further enriched
with an additional edge score (Sedge), according to the following
equation:

Sedge = 2NcomNmin (1 − D)

(N1 + N2) Nmax10
(

1
Ncom

) (5)

where N1, N2 are the number of host–proteins interacting
with the two pathogens forming a single edge, Ncom is the
number of common host–proteins that two pathogens share,
Nmin, Nmax are the maximum and minimum estimations of
v = {N1, N2}vector, and D is the taxonomy distance between two
pathogens.

Herein, the final ranked drug list comes from a specific
methodology that scans the edges of the underlying SARS-CoV-2
subnetwork, one by one. Specifically, for each pair of pathogens,
drugs were obtained from DrugBank, which target the common
host–proteins that form the specific edge. Each drug in the
list was ranked according to the following generalized 4-fold

equation:

Sdrug = 0.25
(

Nvtar

N1
+ Nvtar

Ndtar
+ Nxtar

N2
+ Nxtar

Ndtar

)
(6)

where Nvtar is the number of drug targets included in SARS-
CoV-2 host-proteins, Nxtar is the number of drug targets included
in the x-pathogen that forms an edge with SARS-CoV-2, Ndtar

is the total number of drug targets that derive from DrugBank
repository [40, 41], and N1, N2 are the total number of host–
proteins included in SARS-CoV-2 and the x-pathogen accord-
ingly. Combining Equations (5) and (6) yields the overall drug
score (Sd) as follows:

Sd =
[(

UNtar

2N1

)
+

(∑Napp

i=1 Sdrug(i)
2Napp

)]
×

(∑Napp

i=1 Sedge(i)
Napp

)
(7)

where Napp is the number of times a specific drug appeared
through the scanning process, UNtar is the number of unique
targets appeared in the scan process, N1 is the number of SARS-
CoV-2 host–proteins used and Sedge, Sdrug are the estimated scores
per edge obtained from Equations (5) and (6) accordingly.

Multi-omic data integration

Towards the integration of multi-source data from patient sam-
ples, we developed a ‘network-based multi-source data integra-
tion’ methodology based on the integration scheme presented
by Zachariou et al. [48].

Data preprocessing

We integrated data from multiple sources in the form of gene
lists with two columns, corresponding to gene identity and gene
score from the following sources and shown in Supplementary
File S1:

1. Ranked genes lists in terms of absolute logFC from three
serum transcriptomic (T) datasets (Series 15, BALF, PBMC)
[18];

2. Ranked genes lists in terms of absolute log fold from one
proteomics (P) dataset [22];

3. Ranked genes lists in terms of P-value from one metabolomics
(M) dataset [22];

4. Unranked list of host proteins (PPI), which interact with
SARS-CoV-2 from Gordon et al. [24];

5. Unranked unique gene list from HPA, excluding the genes
identified by Gordon et al.

The gene symbols in all the gene lists were converted to
entrez ID for consistent merging to a single gene ID using
the R package org.Hs.eg.db [49] for genome-wide annotation
for human. For the three transcriptomics and the proteomics
dataset, the gene score GSx per list was calculated based
on

GSx = Lx − (Rx − 1)

Lx
(8)

where Lx is the total number of genes per list and Rx is the rank
of each gene based on their absolute logFC for x ∈ {T, P} and for
x ∈ {M} based on their P-value. GSx is in canonical form as it
takes values GSx ∈ (0, 1) for all gene lists. For the two lists from
HPA and Gordon et al. (PPI), their gene score was assigned to 1.0
for all genes.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
org.Hs.eg
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The three transcriptomic gene lists were merged and the
final score per gene was assigned to be the average GSx, x ∈
{Series15, BALF, PBMC} across the three datasets.

Gene–gene synthetic network and gene prioritization

We calculated a characteristic score per gene, known as the
Multi-source Information Gain (MIG) comprised by two parts:

MIG = w ∗ MIGn + (1 − w) ∗ MIGe (9)

where MIGnrepresents the normalized integrated nth gene-
specific information (i.e. node characteristics) and MIGe

represents the normalised integrated gene–gene information
(based on the topology of the multi-integrated super network)
and corresponds to the weighted degree of the multi-integrated
super network. We considered equal contribution to the score
of the gene-specific information and of the topology of the
integrated gene–gene super network (w = 0.5).

The gene-specific information is given by

MIGn =
∑

i
wiVi, i ∈ {T, P, M, PPI, HPA} (10)

where VT is a vector corresponding to the average gene score
of the three transcriptomic datasets (Series 15, BALF, PBMC),
VP is a vector corresponding to the scored gene list from the
proteomics, VM is a vector corresponding to the ranked genes
from the dataset, VPPI is a list of unranked genes corresponding
to the set of proteins as identified from Gordon et al. [24] and VHPA

is a list of unranked genes corresponding to the unique proteins
annotated to be key in the HPA, excluding the VPPI ones.

The weights wn
x for the respective sources were set to ensure

that at least 20% of each gene list is included in the top 500 genes.
In addition, the weights were set so that their sum satisfies the
condition:

∑
i
wi = 1, i ∈ {T, P, N, HPA, PPI} (11)

The integrated gene list contained in total 1351 genes. We
filtered to retain only the genes which were recognizable by
the GeneMANIA tool, resulting in a list of 1118 genes. From
that, we selected the top 1000 top-scored genes based on their
integration score to build networks using the GeneMANIA tool
[50] in Cytoscape [51]. Note that 1001 genes were selected
as three genes shared the same score at the bottom of the
list. We selected four networks in GeneMANIA based on co-
expression, co-localization, genetic interaction and physical
interaction.

The Multi-source Information (MI) super network was con-
structed based on the weighted sum of the pairwise weighted
edge vectors (for each pair of genes) for these four types of
networks (the edge weight automatically calculated by GeneMA-
NIA). The total number of connected nodes out of the 1001 genes
was 995, and the total number of edges was 45 486.

We calculated the final gene score MIG based on the combi-
nation of nodal score and topological information for each gene
using equation (10), and ranked the genes with respect to their
importance and involvement in COVID-19 (Supplementary File
S4).

The igraph package [52] in R [53] was used to generate and
analyze the MI super network and to compile the MIG score.

Functional analysis and pathway community
identification

PathWalks [54], a map-driven random walk-based methodol-
ogy on a pathway-to-pathway network, was applied to reveal
communities of connected pathways. PathWalks exploits a map
that we construct in the form of a synthetic gene network,
containing integrated information regarding a disease of inter-
est. For our calculations, we used the multi-thread version of
PathWalks with 15 walkers, 10 000 steps per walker and restart
every 50 steps run in the infrastructure provided by the National
Initiatives for Open Science in Europe—NI4OS Europe (https://
ni4os.eu/ni4os-europe-vs-covid19/). Using the resulting path-
way frequencies, i.e. number of visits per pathway, we performed
an odds ratio (OR) analysis with respect to a random walk of the
pathway network using only the topology of the network without
any gene guidance. Specifically, we defined the OR between
guided to nonguided walks as:

OR =
PG

i

(1−PG
i )

PT
i

(1−PT
i )

(12)

PG/T
i = FG/T

i

FG/T
t

i ∈ {1, 2 . . . n} (13)

where index G and T denote the variables corresponding to the
guided and topology-only runs, respectively. PG/T

i is the visiting
probability of the ith pathway calculated as the frequency Fi ratio
over the total visits Ft

T on pathways. According to this analysis
pathways, with OR values >1 are the ones with higher relative
visiting frequency compared with the topology-only runs and
are thus more likely to be involved in the disease of interest. On
the other hand, OR values <1 correspond to pathways that are
less relevant.

Pathways with OR values >1 were visualized as a network
using R’s igraph package [52], highlighting specific pathways of
interest.

CoDRes re-ranking and drug lists unification and
scoring

The top 50 host-targeting drugs from the 10 lists (Supplementary
File S3) were used as input to the CoDReS (Computational Drug
Repositioning Score) tool [55]. CoDReS combines an initial drug
ranking that may be the repurposing score or an a priori score
(aS), with a functional score (FS) of each drug results from the
analysis of the disease of interest, as well as with a structural
score (StS) derived from drugability violations. Specifically, the
initial ranking score of each host-targeted drug from the 10
lists divided with the absolute maximum ranking score was
used as the normalized a priori repurposing score for CoDReS.
Furthermore, for the case of FS and StS, the 1001 genes from
the integration analysis were used with their disease associ-
ation scores and the structures (SMILES format) of each drug,
respectively. A composite score (CoDRes score) was calculated,
for each drug, as the normalized-weighted sum of the initial
aS with an FS and an StS. The weights that determine the
desired influence of each part to the final score were defined
as waS = 0.45, wFS = 0.45 and wStS = 0.1. These parameters were
chosen such that the contribution of the initial ranking from
the individual approaches (aS) and the integrated disease–gene
network (FS) are equally weighted, but the influence of the
StS score, which pertains to chemical structural violations, is
significantly reduced. Although the latter score is relevant for

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
https://ni4os.eu/ni4os-europe-vs-covid19/
https://ni4os.eu/ni4os-europe-vs-covid19/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
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libraries of novel chemical compounds, the drugs of interest
in this work are approved drugs with characterized chemical
behavior.

Finally, the top 20 drugs from each re-ranked list were
selected for chemical structure diversity analysis. The top 20
cutoff was chosen arbitrarily in order to limit and focus the
downstream analyses to approximately one-third of the 600
drugs selected from all individual DR approaches.

Chemical structure diversity analysis and clustering

We searched and downloaded the structures of the 240 drugs
from PubChem [56], CLUE—The Drug Repurposing Hub [57]
(https://clue.io/repurposing#download-data) and from the
literature. We removed (i) duplicates entries (drugs found in
more than one list), (ii) drugs for which we did not find a
structure and (iii) elemental entries (i.e. copper). We then used
the OpenBabel software [58] to convert the structures of the
remaining 210 drugs to a single Structure data file (SDF) library
file, which was then used as input in the ChemBioServer 2.0 tool
[59] for calculating the distance matrix of their chemical and
structural similarity. Drugs were clustered using a minimum
Tanimoto similarity of 80%, which corresponds to a 0.2 distance
cutoff.

Rank normalization and shortlisting

The rank of each drug was normalized according to Equation
(14):

Norm Rank rN
ij = 1 −

(
rij − 1

)
(
nj − 1

) (14)

where rN
ij is the normalized rank of the ith drug of the jth drug

list, whereas nj is the total number of drugs selected. nj was set
to 20 since we selected the top 20 drugs from all lists following
the CoDReS re-ranking step.

The highest normalized rank value of a given drug across all
lists was assigned as its maximum normalized value (Max Rank).
The Max Rank of drugs introduced exclusively from one list was
set equal to the corresponding normalized rank value.

Finally, from the list of 185 unique drugs obtained after
removing duplicates and structurally redundant drugs, we short-
listed the top ∼30% (65 drugs) with respect to their Max Rank.

Comparison with running clinical trials

All listed clinical studies related to the COVID-19 were col-
lected from the ClinicalTrials.gov. Small-molecule drugs curated
through the reported clinical studies and the 2D structures of
the drugs (SDF files) were obtained from PubChem (https://pu
bchem.ncbi.nlm.nih.gov/), where available.

The SDF file containing the chemical structures of the inte-
grated list of 65 drugs and all the available structures of the drugs
reported in currently running clinical trials was used as an input
to Chembioserver 2.0 in order to obtain the corresponding Tan-
imoto distance matrix. The latter was analyzed in R to identify
which proposed drugs have the same or similar compounds in
clinical trials using a distance threshold of ≤0.2.

Results
The workflow adopted in this study outlines five mains steps
described in detail below. The overall process entails the analysis
of COVID-19-related omics datasets to identify significant genes

and PPIs of interest with the subsequent identification and
shortlisting of candidate repurposed drugs (Figure 1).

Source datasets

During the first part of the analysis, we collected publicly avail-
able multi-omics datasets released from February to May 2020.
These included proteomics and metabolomics datasets from
blood serum [22] and seven transcriptomic datasets—four from
cultured cell lines (Series 1—NHBE, Series 2–5—A549, Series 6—
A549 with a transduced ACE2 expressing vector and Series 7—
Calu-3) [18] and three patient-derived tissue samples (Series 15—
lung Biopsy, BALF and PBMC) [20]. A summary of the data along
with the source study is available in Table 1 (see Methods).

Using the logFC value and P-value thresholds (see Methods)
from the proteomic dataset, we identified an approximately
equal number of over- and underexpressed proteins, 62 and 58,
respectively. The selected metabolites from the metabolomics
dataset included 97 overabundant compounds, whereas the
underabundant were ∼3-fold higher—317. The analysis of the
RNA-Seq datasets yielded four sets of DEGs. The PBMC and
BALF sets included approximately equal numbers of ∼700 over-
and ∼300 underexpressed DEGs. On the contrary, from the Series
15 set, we obtained a relatively large number of 3838 DEGs that
were under- against 515 overexpressed DEGs. Finally, the DEG
sets from cell lines (Series 1, 2 and 5, 6 and 7) included 2588 over-
and 1036 underexpressed DEGs in total (Table 1).

In addition, we collected the available information on PPIs
between the SARS-CoV-2 and host proteins as reported by Gor-
don et al. [24] and HPA database [47]. This comprised a set of
336 human proteins found to interact with SARS-CoV-2 pro-
teins. For the host–pathogen-based approaches (see Methods—
PPI Data Selection), we collected 42.7 K PPIs across a total of 625
pathogens and human proteins. From the latter, 189 pathogens
were found to interact with at least one common host protein
with SARS-CoV-2.

DR approaches

We applied three discrete DR approaches based on (i) transcrip-
tomics, generating eight lists of candidate drugs, (ii) GWAS–
phenotype association (one list) and (iii) pathogen–host PPIs
network analysis, generating three lists. A summary of all 12
generated lists of candidate drugs is shown in Table 2, whereas
all drugs per list are reported in Supplementary File S3.

DR based on transcriptomics

Using the RNA-Seq-derived DEG sets, we performed a series of in
silico DR analyses with existing computational tools. By selecting
the top 150 over- and underexpressed genes with respect to their
logFC value (300 in total, shown in Supplementary File S1), we
obtained two lists of candidate drugs using each DEG set as an
input to:

(1) An ensemble of DR tools: connectivity map [30], L1000CDS2
[31] and L1000FWD [32], followed by a scoring process yield-
ing four lists with 50 drugs each, namely, Tr1 (from Series 1,
2 and 5, 6, 7), Tr2 (from Series 15), Tr3 (from BALF) and Tr4
(from PBMC).

(2) CREEDS [33] using the DrugMatrix-based repurposing fea-
ture of the tool, which maps the expression profile of the
DEGs of interest to the effect of various drugs as measured
in rats. By applying the same cutoff of 50 drugs per run, we
obtained four additional lists—TrC1 (from Series 1, 2 and 5,

https://clue.io/repurposing#download-data
ClinicalTrials.gov
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
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6, 7), TrC2 (from Series 15), TrC3 (from BALF) and TrC4 (from
PBMC).

DR based on GWAS–phenotype association analysis

We used 44 genes as input to the PhenoScanner database [34,
35]. These genes correspond to 40 strong SARS-CoV-2 interactors
according to the evolutionary analysis as reported by Gordon
et al. [24] and four highlighted proteins, ACE2, TMPRSS2, CTSB
and CTSL, from the HPA database [47].

PhenoScanner identified 480 genetic associations between
the input COVID-19-related genes and genes—or proxy genes—
previously associated with various phenotypes with a default P-
value ≤ 1e-05. Out of these, 186 associations were of genome-
wide significance (P-value ≤ 5e-08), with cardiovascular diseases
(CVD) being the predominant associated phenotype (Supple-
mentary File S2). Overall, the identified Single-nucleotide poly-
morphism (SNP) associations corresponded to a set of 83 genes,
which we used to search for potential drugs in the DGIdb [38].
Following this approach, we compiled a list of 58 drugs (list GW)
able to target the 83 genes of interest.

DR based on pathogen–host interaction network analysis

We worked on the assumption that genetic, functional and
morphological similarities between SARS-CoV-2 and other
pathogens can be approximated by their taxonomic classifi-
cation. Drugs with a direct inhibitory effect against a given
pathogen are more likely to have a similar effect to closely
related pathogens in terms of taxonomic distance. To repurpose
drugs based on the above assumption, we derived a taxonomy
distance matrix (see Methods), which was used to identify
antiviral compounds able to target directly a pathogen proteins
according to DrugBank’s polypeptide target file [40, 41]. This pro-
cess yielded a list of DrugBank compounds scored as a function
of (a) the taxonomic proximity of known target–pathogens to
SARS-CoV-2 and (b) a metric of the broad spectrum activity of
a given drug. This approach resulted in a ranked list (TaxAV)
of 841 antiviral drugs (Supplementary File S5) that were found
in DrugBank [40, 41] to target a total of 345 unique pathogen
NCBI taxonomy IDs. The taxonomy tree for all the pathogens
considered in this work and their associated drugs is illustrated
in Figure 2.

Building on the above approach, we included the identified
PPIs between pathogen and host proteins in an effort to obtain a
more informative scoring scheme regarding the functional inter-
actions between pathogens and human. To this effect, we con-
structed a pathogen-to-pathogen network where edges describe
the commonality of each pathogen to SARS-CoV-2 with respect
to (a) their common interactions with host proteins and (b) the
taxonomy distance (see Methods). Herein, the antiviral drugs
were scored based on the proximity of target pathogens to SARS-
CoV-2, resulting in 1178 (Supplementary File S5) scored drugs (list
HPAV).

For both TaxAV and HPAV list, we selected the top 20 drugs
for forwarding to the structural similarity analysis step (Supple-
mentary File S3).

We used the underlying network to screen further for drugs
targeting host proteins. This was based on the assumption that
drugs targeting a host protein set with wide interaction overlap
between SARS-CoV-2 and other pathogens are deemed more
likely to exhibit similar antiviral effects. Herein, drugs were
scored by means of a generalized 4-fold equation that accounts
for both the host and pathogen protein targets, resulting in a

list of 301 drugs. The top 50 drugs (list HPH) shown in Sup-
plementary File S3 were selected and forwarded to the drug
re-ranking step, similarly with the other host protein targeting
drug lists.

Multiplexing of repurposed drug lists

Integration of multi-omic data from patients

We integrated the available multi-omic data from patient sam-
ples based on a previously proposed scheme [48]. Specifically, we
integrated the following data: (1) ranked DEGs lists in terms of
absolute logFC resulting from the transcriptomics data analysis,
(2) a ranked gene list in terms of absolute logFC from the pro-
teomics data analysis, (3) a ranked gene list in terms of P-value
derived from the metabolomics data analysis, (4) an unranked
list of host-proteins relevant to viral cell entry highlighted in HPA
[47] and (5) an unranked list of host-proteins, which interact with
SARS-CoV-2 from Gordon et al. [24].

We calculated the MIG score, a characteristic score per gene
comprising the integrated gene-specific information, and the
local-weighted degree from a synthetic gene-to-gene network
based on co-expression, genetic interactions, physical interac-
tions and co-localization extracted from GeneMANIA [50], as
described in Methods. We then derived the integrated MI net-
work illustrated in Figure 3 along with the relevant score distri-
butions. The network comprises the top 1000 genes as nodes
(specifically 1001 genes due to score ties) originating from all
sources, with a total of 45 486 edges prorating the gene-to-gene
relationships.

Finally, for all downstream functional analysis and drug re-
ranking, we used the genes ranked based on their MIG score,
which represents the integrated gene–disease association.

Highlighting connected pathway communities related to COVID-19
using the generated integration map

We used the top 300 MIG-ranked genes (as described above) to
create a map of significant gene–disease associations. Under
the guidance of this integrated map, we used PathWalks [54] to
allow walkers to cross a pathway-to-pathway network derived
from Kyoto Encyclopedia of Genes and Genomes (KEGG). The
most frequent trajectories highlighted communities of pathways
predicted to be widely involved in COVID-19. Using the result-
ing pathway frequencies, i.e. number of visits per pathway, we
performed an OR analysis with respect to a random walk using
only the topology of the pathway network without any gene map
guidance. OR values >1 correspond to higher relative visiting
frequency compared with the nonguided runs and are thus more
likely to be involved in COVID-19. The network of highlighted
pathway communities is shown in Figure 4.

Re-ranking of drug candidates based on the calculated
target–disease association

The CoDReS tool [55] was used to re-rank the candidate drugs
based on (a) an FS combining the drug targets’ relevance to the
disease (as captured by the MIG score above), and the binding
affinity to its target genes, (b) an aS defined as the normalized
initial drug ranking from each list and (c) an StS representing
drugability violations.

We performed the CoDReS re-ranking on the top 50 drugs
with respect to their weighted normalized score, from each of
the 10 lists of drugs that target host proteins: eight from RNA-Seq
data, one from GWAS and one from host–pathogen interactions.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
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Table 3. Continued

Drug Max Rank Classifications Related clinical trials Expert selection

Pioglitazone 0.68 MeSH: hypoglycemic agent (antidiabetic)
TBC: peroxisome proliferator-activated
receptor-gamma activator
Chem: azole; thiazole; thiazolidinedione

Clinical trials: 2

Tegafur 0.68 MeSH: antimetabolite; antineoplastic;
immunosuppressive
TBC: thymidylate synthase inhibitor
Chem: pyrimidine; fluorouracil

Choline salicylate 0.68 MeSH: NSAID, analgesic nonnarcotic
TBC: COX inhibitor
Chem: acid; benzoate; salicylate, phenol;
hydroxybenzoic acid

Methotrexate 0.68 MeSH: antimetabolite; antineoplastic;
abortifacient; immunosuppressive;
antirheumatic
TBC: folic acid metabolism inhibitor;
nucleic acid synthesis inhibitor
Chem: acid; pterin; aminopterin

Clinical trials: 3
Structurally similar in clinical
trials:
folic acid

�

Clofibrate 0.68 MeSH: hypolipidemic; anticholesteremic
TBC: peroxisome proliferator-activated
receptor-gamma inhibitor
Chem: clofibric acid; ethyl ester

Notes: The classification of the listed drugs was based on three classification systems: MeSH (Medical Subject Headings), TBC (Target-Based Classification) and Chem
(Chemical classification). Currently, active clinical trials that invodatalve drugs in this list are noted (clinicaltrials.gov, last accessed on 24 August 2020). A group
of drugs that fulfilled specific criteria was selected by expert curation. D3F: 2-[(2,4-Dichloro-5-Methylphenyl)Sulfonyl]-1,3-Dinitro-5-(Trifluoromethyl)Benzene; F3F:
S-[5-(Trifluoromethyl)-4H-1,2,4-Triazol-3-YL] 5-(Phenylethynyl)Furan-2-Carbothioate; GRL0617: 5-amino-2-methyl-N-[(1R)-1-naphthalen-1-ylethyl]benzamide; WR1:
Nalpha-[(Benzyloxy)Carbonyl]-N-[(1R)-4-Hydroxy-1-Methyl-2-Oxobutyl]-L-Phenylalaninamide; DG8735000: 4-(Dimethylamino)benzoic acid.
aDrugs found also by using null models.

The re-ranked lists are given in Supplementary File S3. Next, we
selected the top 20 CoDReS drugs from each list (200 in total) for
further analysis.

Filtering drugs with diverse chemical structures and shortlisting

The 200 re-ranked drugs together with the top 20 candi-
date antiviral drugs originating from the two pathogen–host
interaction-based approaches, 240 in total, were screened for
chemical structure similarity. Using the ChemBioServer 2.0, we
calculated the structural distance matrix based on the Tanimoto
index [59] for all pairwise combinations of candidate drugs.

A hierarchical clustering analysis revealed that the input
drugs spanned a broad range of chemical structure diversity.
Specifically, by applying a distance threshold of <0.2 for highly
similar compounds, we obtained 185 clusters, from which 25
comprise more than one drug. We eliminated the structural
redundancy within our drug list by selecting the top scoring
drug from each cluster, yielding a list of 185 drugs. Alcohol
was manually excluded as it was deemed inappropriate for
pharmacological use against COVID-19.

Furthermore, in order to assess the contribution of each list
to the final nonredundant set of 185 drugs, we performed a
redundancy analysis given in Supplementary File S7. The analy-
sis suggests that there is a limited overlap between lists in terms
of their member drugs, but all lists are contributing a unique set
of drugs. The highest overlap was observed between TaxAV and
HPAV, while TaxAV had the lowest contribution of unique drugs
(seven drugs) and Tr4 and TrC4 the highest (18 drugs each).

Finally, we shortlisted the top one-third candidate drugs
based on their maximum normalized rank (Max Rank), amount-
ing to 65 candidate drugs shown in Table 3.

Evaluation of the integrated drug list with respect to
ongoing clinical trials

We evaluated further the list of 65 drugs by comparing it against
the drugs that are currently in clinical trials against COVID-19
as obtained from clinicaltrials.gov. Specifically, 5 out of the 11
top-scoring drugs (dexamethasone, beta-estradiol, atorvastatin,
cyclosporin A and remdesivir) are already in clinical trials. Also,
eight drugs with a lower normalized ranking score (imatinib,
hydroxychloroquine, dactolisib, ofloxacin, leflunomide, simvas-
tatin, pioglitazone and methotrexate) were also found in ongoing
clinical trials.

From the remaining drugs, we identified, through structural
similarity analysis, two more drugs, which have similar com-
pounds (Tanimoto distance <0.2) in clinical trials. In particular,
fluocinoloneacetonide and testosterone were found structurally
similar to budesonide and hydrocortisone, which are currently in
clinical trials, respectively. The integrated list is shown in Table 3.
The detailed table of the integrated list of 65 drugs is presented
in Supplementary File S6.

To assess potential biases towards particular drugs in our
lists, we repeated the transcriptomic-based DR pipeline using as
an input 10 random gene lists. We found 3 out of the 65 drugs
could potentially be randomly selected when keeping the same
number of drugs from each list as in the followed shortlisting
procedure. The three drugs are vorinostat, cyclosporin A and
cisplatin, and are marked with (∗) in Table 3. Further details on
the null models used and the corresponding results can be found
in the Supplementary File S7.

The 65 drugs included in the produced integrated list
(Table 3) present a diverse group of compounds from a chemical,
pharmacological and clinical perspective. We used three major
classification systems to categorize these compounds: the

clinicaltrials.gov
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
clinicaltrials.gov
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
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Table 3. The integrated list of 65 drugs sorted by their maximum normalized rank (Max Rank)

Drug Max Rank Classifications Related clinical trials Expert selection

Dexamethasone 1.00 MeSH: anti-inflammatory; corticosteroid
TBC: steroid hormone receptor agonist
Chem: steroid

Clinical trials: 26
Structurally similar in clinical
trials:
methylprednisolone

Atorvastatin 1.00 MeSH: anticholesteremic
TBC: cholesterol synthesis inhibitor
Chem: pyrrole

Clinical trials: 4

Beta-estradiol 1.00 MeSH: estrogen
TBC: estrogen receptor agonist
Chem: steroid

Clinical trial: 1

Vorinostata 1.00 MeSH: antineoplastic
TBC: histone deacetylase inhibitor
Chem: anilide

�

Olanzapine 1.00 MeSH: atypical antipsychotic
TBC: 5-HT ligand; D2 dopamine receptor
ligand; histamine receptor ligand
Chem: heterocyclic; benzodiazepine

Cyclosporin-aa 1.00 MeSH: immunosuppressive
TBC: calcineurin inhibitor
Chem: cyclic peptide

Clinical trials: 6

Rosiglitazone 1.00 MeSH: hypoglycemic agent
TBC: peroxisome proliferator-activated
receptor
Chem: thiazole; thiazolidinedione

Bosutinib 1.00 MeSH: antineoplastic agent
TBC: Src tyrosine kinase inhibitor
Chem: aromatic amine; aniline
aminoquinoline

�

Zinc acetate 1.00 MeSH: antibacterial agent
TBC: –
Chem: acetate

Benzyl (2-oxopropyl)
carbamate

1.00 MeSH: –
TBC: SARS-CoV replicase polyprotein 1ab
inhibitor; 3 clpro protease inhibitor
Chem: benzyloxycarbonyl; ketone

�

Remdesivir 1.00 MeSH: antiviral
TBC: adenine nucleotide analog
Chem: aromatic amine

Clinical trials: 48 �

Dasatinib 0.95 MeSH: antineoplastic
TBC: Src tyrosine kinase inhibitor
Chem: aromatic amine; thiazoles,
aminopyrimidine

�

Mercaptopurine 0.95 MeSH: antineoplastic; immunomodulatory
agent; antimetabolite
TBC: purine analog; enzyme inhibitor
Chem: sulfhydryl compound; aryl thiol;
purine analog

D3F 0.95 MeSH: enzyme inhibitor
TBC: SARS replicase polyprotein 1a inhibitor
Chem: nitrobenzene; toluene;
trifluoromethylbenzene

�

Raloxifene 0.95 MeSH: antineoplastic; bone density
conservation agent
TBC: hormone; selective estrogen receptor
modulator; estrogen antagonist
Chem: aromatic cyclic amino compound;
benzylidene

Cytarabine 0.95 MeSH: antineoplastic; immunosuppressive;
antimetabolite; antiviral
TBC: pyrimidine analog; tyrosine protein
kinase Src inhibitor; protease inhibitor
Chem: heterocycle; pyrimidine;
arabinonucleoside

�

(Continued)
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Table 3. Continued

Drug Max Rank Classifications Related clinical trials Expert selection

Imatinib 0.95 MeSH: antineoplastic
TBC: tyrosine kinase inhibitor
Chem: benzamides; aromatic amine

Clinical trials: 5 �

Selumetinib 0.89 MeSH: antineurofibromatosis type 1
TBC: MAP kinase inhibitor; MEK inhibitor
Chem: aecondary amino; benzimidazole

Azd-8055 0.89 MeSH: experimental antiproliferative
TBC: phosphatidyl inositol 3′

kinase-related kinase inhibitor;
voltage-gated potassium channel ligand;
rapamycin kinase inhibitor
Chem: oxazine; morpholine

Avrainvillamide-
analog-3

0.89 MeSH: antiproliferative
TBC: nuclear chaperone nucleophosmin
ligand
Chem: alkaloid

Linsitinib 0.89 MeSH: antineoplastic
TBC: insulin receptor inhibitor; insulin-like
growth factor-I receptor inhibitor; Type II
receptor tyrosine kinase inhibitor
Chem: pyrazines; quinoline

Fluocinoloneacetonide 0.89 MeSH: anti-inflammatory
TBC: steroid hormone receptor agonist
Chem: steroid; alcohol; ketone

Structurally similar in clinical
trials:
budesonide

Dobutamine 0.89 MeSH: sympathomimetic; cardiac
stimulant
TBC: adrenergic beta-1 receptor agonist
Chem: catecholamine; secondary amine

Bromfenac 0.89 MeSH: NSAID
TBC: COX inhibitor
Chem: ketone; benzophenones; aromatic
amine; anilines

Testosterone 0.89 MeSH: hormone, androgen, anabolic
TBC: sex hormone receptor agonist
Chem: steroid; androgen

Structurally similar in clinical
trials:
hydrocortisone

Hydroxychloroquine 0.89 MeSH: antiparasitic agent, antimalarial,
antirheumatic agent
TBC: enzyme inhibitor, heme polymerase
inhibitor, endosomes modulator, toll-like
receptors inhibitor
Chem: aromatic amine; aminoquinoline

Clinical trials: 250
Structurally similar in clinical
trials:
hydroxychloroquine sulfate,
chloroquine, chloroquine
phosphate

Hydroxyurea 0.89 MeSH: antineoplastic agent,
antimetabolite, antisickling agent
TBC: nucleic acid synthesis inhibitor;
ribonucleoside-diphosphate reductase
inhibitor
Chem: urea

F3F 0.89 MeSH: –
TBC: SARS-CoV replicase polyprotein 1ab
inhibitor
Chem: furan; triazole

�

Daunorubicin 0.84 MeSH: antineoplastic; antibacterial
TBC: topoisomerase II inhibitor
Chem: aminoglycosides; anthracyclines;
cyclic ketone, acenoquinone

PD-0325901 0.84 MeSH: experimental antineoplastic
TBC: MAPK inhibitor
Chem: benzamide

Zidovudine 0.84 MeSH: antiviral agent, antimetabolite
TBC: nucleoside and nucleotide reverse
transcriptase inhibitor
Chem: glycoside; pyrimidine;
dideoxynucleosides

(Continued)
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Table 3. Continued

Drug Max Rank Classifications Related clinical trials Expert selection

GRL0617 0.84 MeSH: –
TBC: SARS-CoV replicase polyprotein 1ab
inhibitor
Chem: carboxylic acid nitrile; cyano
compound; peptide

�

AG-14361 0.84 MeSH: –
TBC: poly ADP-ribose polymerase 1
inhibitor
Chem: benzodiazepine; benzimidazole

Dactolisib
(nvp-bez235)

0.84 MeSH: antineoplastic
TBC: phosphatidyl inositol 3′

kinase-related kinase inhibitor; lipid
modifying kinase inhibitor
Chem: imidazole; imidazoquinoline

Clinical trial: 1 �

Carboplatin 0.84 MeSH: antineoplastic
TBC: aquation agent
Chem: coordination complex; platinum
compound

Zileuton 0.84 MeSH: NSAID
TBC: leukotriene antagonist; lipoxygenase
inhibitor
Chem: urea; benzothiophene

Staurosporine 0.84 MeSH: multi-enzyme inhibitor
TBC: protein kinase C inhibitor; CAMK2
inhibitor; death-associated kinase
inhibitor; phosphorylase kinase inhibitor;
tyrosine-(Y)-phosphorylation-regulated
kinase inhibitor; acetylcholine receptor
ligand
Chem: indole; indolocarbazole alkaloid

Fasudil 0.79 MeSH: peripheral vasodilators
TBC: ROCK inhibitor; DMPK kinase
inhibitor; calcium channel blocker
Chem: sulfonamides

GSK-1059615 0.79 MeSH: –
TBC: enzyme inhibitor, PI3K inhibitor
Chem: pyridine; quinoline; thiazolidinone

PI 103 hydrochloride 0.79 MeSH: –
TBC: AGC protein kinase inhibitor; PKC
inhibitor; CMGC protein kinase inhibitor;
tyrosine protein kinase inhibitor
Chem: pyrimidine

Hexachlorophene 0.79 MeSH: anti-infective agent, antiseptic
TBC: –
Chem: chlorobenzene; chlorophenol

Ofloxacin 0.79 MeSH: antibacterial; antineoplastic
TBC: topoisomerase IV inhibitor
Chem: aromatic amine; N-arylpiperazine;
quinolone

Clinical trial: 1

Leflunomide 0.79 MeSH: antirheumatic agent
TBC: nucleoside synthesis inhibitor;
oxidoreductase inhibitor
Chem: isoxazole

Clinical trials: 2

Prasterone 0.79 MeSH: anabolic steroid, hormone
TBC: estrogen receptor agonist; androgen
receptor agonist; GABAa antagonist, NMDA
agonist
Chem: steroid

(Continued)
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Table 3. Continued

Drug Max Rank Classifications Related clinical trials Expert selection

N-(2-aminoethyl)-1-
aziridineethanamine

0.79 MeSH: experimental antiviral agent
TBC: ACE2 inhibitor
Chem: aziridine

�

Triptolide 0.79 MeSH: antineoplastic alkylating agent;
antispermatogenic agent;
immunosuppressive agent,
TBC: multi-protein inhibitor
Chem: terpene; phenanthrenes; diterpenes;
diterpenoid

WR1 0.79 MeSH: –
TBC: inhibitor for the major protease of the
SARS coronavirus
Chem: benzyloxycarbonyl; benzyloxycarbonyl

�

Y-27632 0.74 MeSH: neuromuscular; muscle relaxant;
antihypertensive agent; enzyme inhibitor
TBC: rho kinase inhibitor, protein kinase N
inhibitor
Chem: pyridine; aromatic amide

DG8735000 0.74 MeSH: –
TBC: inhibitor of ultraviolet-mediated damage
Chem: aminobenzoate

Saracatinib 0.74 MeSH: antineoplastic agent; enzyme inhibitor
TBC: Src inhibitor; tyrosine kinase inhibitor
Chem: benzodioxoles; quinazoline

�

LY-255283 0.74 MeSH: antiasthmatic agent
TBC: leukotriene antagonists
Chem: tetrazoles; aromatic ketone

Rofecoxib 0.74 MeSH: NSAID; analgesic nonnarcotic agent
TBC: COX2 inhibitor
Chem: lactone; furan; butanolide

Simvastatin 0.74 MeSH: antimetabolite; anticholesteremic;
hypolipidemic
TBC: hydroxymethylglutaryl-CoA reductase
inhibitor
Chem: polycyclic aromatic; naphthalene; fatty
acid ester

Clinical trials: 4

Ebastine 0.74 MeSH: antihistamine
TBC: H1 antagonist
Chem: piperidine; ketone; butyrophenone

Cisplatina 0.74 MeSH: antineoplastic; radiation-sensitizing
agent
TBC: DNA replication inhibition
Chem: platinum compound

Hydroquinone 0.74 MeSH: antioxidant; radiation protective agent
TBC: melanin synthesis inhibitor; HDAC
inhibitor
Chem: phenol; benzenediol

�

Calcium citrate 0.74 MeSH: anticoagulant
TBC: calcium chelating agent
Chem: tricarboxylic acid derivative

JAK3-IN-1 0.68 MeSH: –
TBC: AGC protein kinase inhibitor; tyrosine
kinase inhibitor
Chem: heterocyclic compound

Pracinostat 0.68 MeSH: experimental antineoplastic
TBC: histone deacetylase inhibitor
Chem: benzimidazole

Blebbistatin 0.68 MeSH: –
TBC: myosin inhibitor
Chem: tertiary alcohol; ketone;
pyrroloquinoline

(Continued)
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Medical Subject Headings classification (MeSH), the Target-
Based Classification (TBC) and the general Chemical classifi-
cation system (Chem). Although the integrated list contains a
versatile group of drugs from a wide range of therapeutic areas
(such as anticoagulants, antihistamines and hypolipidemics),
the majority of these are antineoplastic agents, followed
by immunosuppressive drugs, antivirals and antibacterials.
Nevertheless, 16 drugs from the integrated list are experimental
drugs, which either are in clinical trials for a number of
conditions or are still under preclinical investigation. The
majority of the drugs in the integrated list are enzyme or
protein inhibitors, in terms of their established mechanism
of action. Regarding their chemistry, the list is inclusive
of important chemical classes of drug molecules such as
triazoles, pyrimidines, platinum-containing compounds and
benzimidazoles. However, the most prominent general chemical
groups in the integrated list were aromatic amines (nine
drugs), drugs with at least one piperazine ring (seven drugs),
steroids (five drugs), thiazoles (four drugs) and quinolines
(four drugs).

A characteristic representation of the drug candidates’ clas-
sification can be found within the top 5% of their maximum
ranking score (between 0.95 and 1), from which 11 (65%) are
protein inhibitors, seven (41%) are antineoplastic agents, five
(30%) are aromatic amines and four (24%) include a piperazine
ring.

Expert curation and annotation of the integrated
drug shortlist

From the integrated list of 65 drugs, a thorough expert curation
has highlighted a set of 16 drugs (Table 3 and Figure 5). The
curation was based on following three main criteria: (a) drugs
that have exhibited evidence of efficacy against COVID-19 in
Phase 3 clinical trials, (b) drugs that bear pharmacological evi-
dence of direct targeting of SARS-CoVs molecular components
and (c) clinically approved drugs that have activity in molecular
pathways that have been shown in the literature to be implicated
in SARS-CoV-2 biology.

The first criterion was fulfilled by two drugs from the inte-
grated list, dexamethasone and remdesivir, which are the only
drugs that have shown to be effective against COVID-19. Nev-
ertheless, from these two, only remdesivir has shown a direct
effect against SARS-CoV-2, whereas dexamethasone showed an
effect in the reduction of the associated inflammation of the
disease rather than the biology of the virus.

The second criterion of the curation was fulfilled by six
experimental drugs from the integrated list, which have shown
a direct effect on SARS-CoVs in various assays (mostly in vitro).
Benzyl (2-oxopropyl) carbamate, D3F, F3F, GRL0617 and WR1 have
shown direct inhibition of the coronavirus replicase polypro-
tein 1ab [60–64] (https://pubchem.ncbi.nlm.nih.gov/bioassa
y/[Bioassay Number], Bioassay Numbers: 977608, 1811, 977608,
977610), which is a major viral protein for the viral replication
machinery [24]. N-(2-aminoethyl)-1-aziridineethanamine has
shown direct inhibition of the human ACE2 receptor [65, 66].

The third criterion was fulfilled by nine clinical drugs from
the integrated list. These drugs were shown to be effective in
targeting SARS-CoV-2 replication cycle and more specifically
processes implicated in the generation of virally encoded non-
structural proteins (NSPs), which are essential for the assembly
of the viral replicase complex. Vorinostat and hydroquinone are
histone deacetylase (HDAC) inhibitors; it has been proposed that
the main viral protease (Nsp5) may inhibit HDAC2 transport

into the nucleus, and therefore HDAC2 inhibitors may be able
to disrupt this interaction and suppress the HDAC2-mediated
inflammation and interferon activation [24].

Some HDAC inhibitors have been shown to have antiviral
activity (such as HDAC6 inhibitors against Influenza A Virus) [67],
and there is considerable literature that links HDAC inhibitors
with T-cell biology and the immune response [68, 69]. Bosu-
tinib, dasatinib, imatinib and saracatinib are tyrosine kinase
inhibitors; tyrosine kinase-linked pathways have been impli-
cated in SARS-CoV-2 biology and activation [70], with various
inhibitors having a potential anti-SARS-CoV-2 efficacy. Interest-
ingly, dasatinib and imatinib have previously shown inhibitory
effects against the Middle East respiratory syndrome (MERS) and
SARS-CoV viruses in vitro at micromolar concentrations [71], as
well as against SARS-CoV-2 [72, 73]. Their wide antiviral efficacy
has also been showcased against human immunodeficiency
virus (HIV) [74]. Methotrexate is a drug with a strong effect
in nucleic acid synthesis and a multi-facet role as antineo-
plastic, antimetabolite and antirheumatic drug. Interestingly, it
was recently shown to present a submicromolar activity against
SARS-CoV-2, in vitro [73]. Finally, dactolisib is a drug with a dual
activity as a PI3K/mTOR inhibitor, a pathway that we know
is important in SARS-CoV biology [75, 76]. Although there is
evidence of the antiviral activity of the above drugs against
HIV [77], their potential efficacy against SARS-CoVs is yet to be
determined.

Discussion
Mounting evidence indicate that the clinical manifestations of
COVID-19 are systemic, affecting mainly the respiratory and
digestive tract, the cardiovascular but also the central nervous
system (CNS) [78–82]. Thus, we pursued an approach that inte-
grates multi-omics data from different types of tissue (BALF,
PBMC, alveolar, NHBE, Calu-2 cell lines and blood serum) aimed
to build a comprehensive molecular profile of the disease to
obtain a more informative basis for DR.

Across the most significant DEG sets selected for the integra-
tion step, we observed minimal overlap (24 out of 1 K selected—
2.4%), indicating a complex perturbation scheme involving a
broad range of biological pathways across different tissues and
further supporting the need of a multi-source approach.

Coming from patients with severe COVID-19, the identified
DEG sets were as expected enriched with genes that are involved
in acute immunoresponse and inflammation. Specifically, the
top MIG scoring inflammation factors SAA1/2 and CRP were pre-
viously proposed as severity biomarkers for the disease [83] and
as indicators of inflammatory tissue damage. Cytokine release-
related factors, such as CCL3/4, CXCL10, CLC, IL2R and IL10, were
also highly ranked along with p53 apoptosis pathway-related
genes NTRK1, CTSL, CTSB and IGFB [20]. Genes involved in com-
plement activation and coagulation cascades such as C4a and C5
were also highly perturbed likewise with past Betacoronaviruses-
related outbreaks (SARS and MERS) [84].The FDCSP, KCNJ2 and
ST20 reported to be highly dysregulated from lung biopsies [85]
along with FLNA and EGFR point to significant effects of COVID-
19 in lung and gastrointestinal epithelia cell proliferation signal-
ing. Specifically the latter (EGFR) has sparked a wider discussion
on the involvement of growth factor receptors in viral infections
and potential DR avenues of related antineoplastic compounds
[86, 87].

The composition of the identified DEG sets and the functional
analysis performed in PathWalks highlighted several pathways
related to immune and inflammatory response pathways.

https://pubchem.ncbi.nlm.nih.gov/bioassay/
https://pubchem.ncbi.nlm.nih.gov/bioassay/


18 Tomazou et al.

Figure 3. The integrated multi-source information (MI) network along with the distributions of the weighted degree, weighted gene-specific information and the

combined MIG scores. Node size represents the MIG score bin for each gene, whereas colors indicate the originating omics dataset. Nodes with mixed colors show

genes commonly identified from different datasets. The bar plot shows the MIG score for each gene as the weighted sum of Edge (yellow) and Nodal (blue) scores. The

subplots show the corresponding distributions.

Figure 4. Connected pathway communities related to COVID-19 on a pathway-to-pathway network as highlighted by PathWalks. The bar plot shows the odds ratio

value for the top 30 KEGG pathways, found to be involved in COVID-19. The bar plot color scale represents the visit counts from less (dark blue) to more (light) frequently

visited pathways.

Namely, in the top 30 scoring KEGG pathways (Figure 4) with
respect to their OR values, we highlighted the ‘Complement
and coagulation cascades, IL-17 signaling pathway, Chemokine
signaling pathway, Cytokine-cytokine receptor interaction’

and ‘Fc epsilon RI signaling pathway’. The ‘Renin-angiotensin
system’ and ‘Renin secretion’ pathways were also highlighted
as a result of the central role of ACE2 in viral entry along with
the genes involved in the coagulation cascades [25]. In addition,
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Figure 5. Sankey plots of the drugs highlighted after expert curation of integrated list in Table 3. Drugs are ordered based on their normalized ranking and pathways

based on their OR value obtained from PathWalks. (A) Drugs targeting human pathways, their originating list, their target genes and corresponding pathways. (B)

Antiviral drugs targeting viral proteins, their originating list and known target pathogens.

we found a number of mechanisms involved in more generic
KEGG disease terms that are related to infections and respiratory
conditions like in ‘Pertussis, Asthma, Staphylococcus aureus
infection, Prion diseases, Malaria, Systemic lupus erythematosus
and African trypanosomiasis’.

In line with the above COVID-19 molecular profile, nine
candidate drugs in our proposed integrated list are classified
(MeSH) as anti-inflammatory and immunosuppressors such
as dexamethasone, cyclosporin A, mercaptopurine, cytara-
bine, fluocinoloneacetonide, triptolide, LY-255283, tegafur and
methotrexate. These were complemented by the nonsteroid
anti-inflamatory drugs, bromfenac, zileuton, rofecoxib and
choline salicylate. The anticoagulants, renin–angiotensin sys-
tem targeting drugs in the list were Y-27632, calcium citrate and
the ACE2 targeting N-(2-aminoethyl)-1-aziridineethanamine
and hydroxychloroquine. Several drugs from the integrated
shortlist are classified as antineoplastic/antiproliferative agents
(20 in total) including vorinostat, bosutinib, dasatinib and others.
Although the antineoplastic drugs are expected to arise from
such repurposing approaches, which inevitably identify key
genes in proliferation signaling (e.g. EGFR) and apoptosis (p53
signaling pathway), there is a growing interest in the use of this
class against viral infections [86, 87].

Focusing on the experts’ curated shortlist from a pathophys-
iological perspective, a group of four drugs, bosutinib, dasatinib,
cytarabine and saracatinibare, are of particular interest as their
primary mechanism of action is mediated by the inhibition of
Src tyrosine kinase. Inhibiting the latter could help COVID-19
patients who enter a severe clinical trajectory through a number
of pathophysiological mechanisms recognized to be involved
from preclinical and clinical studies either directly involving
COVID-19 or based on previous observations and experiments:

(a) Bruton’s tyrosine kinase signaling has been associated
with the production of pro-inflammatory cytokines that can
contribute to COVID-19 immunopathology, T-cell differentiation,
function and survival; hence, it might be beneficial in treating
COVID-19-related immunopathology and lymphopenia [88]. This

has been already tested in clinical trials [89], and for dasa-
tinib, it has been confirmed from seminal studies in chronic
myelogenous leukemia [90].

(b) Tyrosine kinase inhibitors have been used to inhibit
platelet function (antithrombotic activity) through several
mechanisms including novel mechanisms like GAS6/TAM signal
inhibition, targeting the MERTK tyrosine kinase active site with
a highly potent and bioavailable MERTK inhibitor, UNC2025 [91].

(c) Mechanical ventilation (MV) has been extensively used to
support patients with COVID-19 pneumonia who are developing
respiratory failure; however, mortality is unexpectedly high,
higher than current Acute respiratory distress syndrome
(ARDS) mortality from other etiologies. It has been confirmed
from in vitro, ex vivo and in vivo studies that MV itself
can induce lung injury through inflammatory Src tyrosine
kinase signaling, ICAM-1 expression, leukocyte infiltration and
vascular hyperpermeability [92]. Pulmonary vascular endothelial
barrier function is indeed partially regulated by Src kinase-
dependent phosphorylation of caveolin-1 and intercellular
adhesion molecule-1. Blocking these mechanisms with Src
tyrosine inhibition (i.e. nintedanib [93]) has proved effective in
preventing acute lung injury (ALI) in animal studies including
the potentiation of bleomycin-induced ALI [94].

(d) Pulmonary ischemia–reperfusion, which is associated
with a wide range of clinical events [95], including lung
transplantation, cardiopulmonary bypass, trauma, resuscitation
for circulatory arrest, atherosclerosis and pulmonary embolism,
the latter being widely recognized as a detrimental complication
of severe COVID-19 [96].

(e) A final mechanism by which tyrosine kinase inhibitors
could possibly exert anti-COVID-19 action is by eliminating
excess soluble fms-like tyrosine kinase (in blood), which has
been correlated with endothelial dysfunction and organ failure
in critically ill COVID-19 patients [97, 98].

Complementary to the Src tyrosine kinase inhibitors, the
interest on hydroquinone and vorinostat stems from the
fact that melanin synthesis inhibition (e.g. by hydroquinone)
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involves similar pathways with tyrosine kinase. Both drugs
are inhibitors of HDAC and have been used to treat pediatric
brain cancers [99] and might exert a beneficial effect through
inhibition of the pro-inflammatory cytokine storm progression.
Although vorinostat has been used against HPV [100], we have
not found any specific references in the current literature linking
this drug category to COVID-19.

Inhibitors of class IA phosphatidyl inositol-3 kinases, such as
dactolisib, are targeting immune responses, particularly through
co-stimulation by CD28 and ICOS and have been reported to
suppress clinical symptoms in ongoing experimental autoim-
mune encephalomyelitis and inhibited MOG-specific responses
in vitro [101]. Hence, the latter class of drugs can be beneficial
in treating COVID-19 effects to the CNS, albeit the underlying
mechanisms and the pathology are not well understood. On the
other hand, activation of PI3K/Akt pathway has been reported to
cause attenuation of Endoplasmic reticulum (ER) stress-induced
myocardial apoptosis, facilitating the NGF-induced heart pro-
tection [102]. Given that myocardial involvement in COVID-19
was observed in a subset of patients and has detrimental conse-
quences, there might be a reason to be cautious how we interpret
this finding.

Despite being less studied, the identified compounds that
target directly the viral entry and replication mechanisms and
related proteins are of interest. Through our pathogen network-
based approaches, the integrated list of antivirals comprises
remdesivir, the first drug to obtain Food and Drug Administra-
tion (FDA) approval for emergency use in patients with severe
COVID-19 [103], along with a number of experimental com-
pounds developed during the SARS and MERS outbreaks with
promising in vitro results such as benzyl (2-oxopropyl) carbamate
[104, 105], D3F, F3F, GRL0617 and WR1. This list is also com-
plemented by N-(2-aminoethyl)-1-aziridineethanamine that can
be effective via its inhibition of ACE2, which is being used by
SARS-CoVs for cell entry in order to initiate membrane fusion
and cell infection [106]. As expected, the top scoring repurposed
antivirals based on commonality and available information from
other pathogens were the ones known to be effective against the
closest taxa, e.g. members of the SARS-CoV species. However, our
full lists of antiviral drug rankings (HPAV and TaxAV available in
Supplementary File S5) not only identified and re-ranked drugs
nearly from all main phyla of viruses, but also from bacteria that
may share interactions with the same host proteins or share
genetic similarity. In fact, this approach that was developed and
utilized herein specifically for SARS-CoV-2 introduces a rapid
mapping and prioritization method of all the known antiviral
compounds against any pathogen of interest.

Naturally a multi-source approach like the one proposed in
this work comes with certain limitations such as (a) the lack
of harmonization across selection criteria applied for the DEGs
across several datasets. Ideally data selection should be based
on identical criteria/thresholds. This was possible for the cases
where raw data were available and the data were produced
from the same or similar experimental methodology (e.g. in
Series 1, 2–5, 6, 7, 15) as opposed to BALF, PBMC, proteomics
and metabolomics datasets; (b) another limitation was the fact
that selection biases among drugs might exist as observed in
our null model analysis. Although we detected this possible bias
for a limited number of drugs, we deemed more appropriate
to keep them and highlight them as potential biased results,
rather than excluding them from the final list; (c) finally, the
redundancy analysis revealed some overlap between specific
drug lists, mainly between HPAV and TaxAV. The small size of
the initial pool of this category of drugs (compared with the

other approaches) and common components (i.e. the taxonomy
distance) in the scoring functions of these approaches expec-
tantly yielded a higher degree of overlap. However, since both
lists introduced unique drugs, we deemed appropriate to keep
both methods in our workflow. It is also worth noting that as the
number of known viral–host protein interactions in the literature
increases, in a future application of this workflow (for SARS-
CoV-2 or other pathogens), the lists are likely to diverge even
more since TaxAV is insensitive to these interactions while the
opposite applies for HPAV.

Concluding, we have identified a shortlist of drugs generated
from multi-source, multi-omics data utilizing a multiplex DR
approach. Note that, we do not anticipate that a single drug can
lead to a sufficiently effective treatment of severe COVID-19 and
especially in patients with comorbidities. Based on the multi-
faceted nature of COVID-19, an effective treatment will require
combination(s) of drugs, allowing to target multiple pathways
to provide (a) anti-inflammatory effects to prevent collateral
tissue damage, (b) inhibition of the viral replication mechanisms
and (c) where required, protective effects, which account for
other underlying conditions like CVD. We anticipate that the
proposed integrated list of drugs will enhance the underlying
rational and provide insights from a molecular point of view
for the compounds that have already entered clinical trials and
more importantly will point towards novel therapeutic avenues
involving the newly proposed ones.

Key Points
• We proposed a protocol for multiplex DR approach

against COVID-19 based on the molecular profile of
patients, extracted from a multi-source multi-omics
integrative analysis.

• We have focused on utilizing the publicly avail-
able multi-source and multi-omics datasets towards
devising a multiplex DR approach yielding a highly
informed shortlist of drug candidates against COVID-
19 and its causative virus.

• We initially extracted all the available drugs relevant
to the molecular profile observed in COVID-19 through
an ensemble of existing computational tools as well
as newly tailored methods. Through a network-based
integration approach, we have generated a gene–
disease association map, which we exploited further
for (a) re-ranking the initial identified therapeutics
and (b) identifying the biological mechanisms and
pathway communities that are involved in the onset
and progression of the disease.

• The proposed drug list not only comprises both drugs
aiming to reverse COVID-19-induced perturbations
(such as immunomodulatory and anti-inflammatory
drugs), but also compounds with a direct antiviral
activity. Several of these drugs are already in clinical
trials.

• Through the functional analysis of the identified
molecular profiles, we found the Src tyrosine kinase
to be involved in multiple COVID-19-related patho-
physiological mechanisms. Hence, Src tyrosine kinase
inhibitors such as bosutinib, dasatinib, cytarabine and
saracatinib could hold a promising potential against
COVID-19.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab114#supplementary-data
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Supplementary data are available online at Briefings in Bioin-
formatics.

Data Availability

All the R scripts developed and used in this work along with
their input files and details on the use of other computa-
tional tools are available for academic use at https://github.
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