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ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is a pow-
erful tool for characterizing the cell-to-cell variation
and cellular dynamics in populations which appear
homogeneous otherwise in basic and translational
biological research. However, significant challenges
arise in the analysis of scRNA-seq data, including the
low signal-to-noise ratio with high data sparsity, po-
tential batch effects, scalability problems when hun-
dreds of thousands of cells are to be analyzed among
others. The inherent complexities of scRNA-seq data
and dynamic nature of cellular processes lead to sub-
optimal performance of many currently available al-
gorithms, even for basic tasks such as identifying
biologically meaningful heterogeneous subpopula-
tions. In this study, we developed the Latent Cellu-
lar Analysis (LCA), a machine learning–based ana-
lytical pipeline that combines cosine-similarity mea-
surement by latent cellular states with a graph-based
clustering algorithm. LCA provides heuristic solu-
tions for population number inference, dimension re-
duction, feature selection, and control of technical
variations without explicit gene filtering. We show
that LCA is robust, accurate, and powerful by com-
parison with multiple state-of-the-art computational
methods when applied to large-scale real and sim-
ulated scRNA-seq data. Importantly, the ability of
LCA to learn from representative subsets of the data
provides scalability, thereby addressing a significant
challenge posed by growing sample sizes in scRNA-
seq data analysis.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) quantifies cell-
to-cell variation in transcript abundance, leading to a deep

understanding of the diversity of cell types and the dynam-
ics of cell states at a scale of tens of thousands of single cells
(1–3). Although scRNA-seq offers enormous opportunities
and has inspired a tremendous explosion of data-analysis
methods for identifying heterogeneous subpopulations, sig-
nificant challenges arise because of the inherently high noise
associated with data sparsity and the ever-increasing num-
ber of cells sequenced. The current state-of-the-art algo-
rithms have significant limitations. The cell-to-cell similar-
ity learned by most machine learning–based tools (such as
Seurat (4), Monocle2 (5), SIMLR (6) and SC3 (7)) is not al-
ways user-friendly, and significant efforts are required for a
human scientist to interpret the results and to generate a hy-
pothesis. Several methods require the user to provide an es-
timation of the number of clusters in the data, and this may
not be readily available and many times arbitrary. Further-
more, many methods have a high computational cost that
will be prohibitive for datasets representing large numbers
of cells. Lastly, although certain technical biases (e.g., cell-
specific library complexity) have been recognized as major
confounding factors in scRNA-seq analyses (8), despite re-
cent efforts (4,9,10), other technical variations (e.g. batch
effects and systematic technical variations that are irrele-
vant to the biological hypothesis being evaluated) have not
received sufficient attention, even though they present ma-
jor challenges to the analyses (11). Most methods employ a
variation based (over-dispersed) gene-selection step before
clustering analysis, based on the assumption that a small
subset of highly variable genes is most informative for re-
vealing cellular diversity. Although this assumption may be
valid in certain scenarios, due to the overall low signal-to-
noise ratio in scRNA-seq data, many non-informative genes
(such as high-magnitude outliers and dropouts, etc.) are re-
tained as over-dispersed (12). Consequently, it potentially
introduces additional challenges for downstream analysis
when informative genes are not most variable, which hap-
pens when the difference among subpopulations is subtle,
or there is a strong batch effect, while most variable genes
differ by batch.
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We realize that text mining/information retrieval shares
many challenges with scRNA-seq, such as data sparsity, low
signal-to-noise ratio, synonymy (different genes share a sim-
ilar function), polysemy (a single gene carries multiple dif-
ferent functions) and the existence of confounding factors.
Latent semantic indexing (LSI) is a machine-learning tech-
nique successfully developed in information retrieval (13),
where semantic embedding converts the sparse word vec-
tor of a text document to a low-dimensional vector space,
which represents the underlying concepts of those docu-
ments. Inspired by LSI’s successes, we developed Latent
Cellular Analysis (LCA) for scRNA-seq analysis. LCA is
an accurate, robust, and scalable computational pipeline
that facilitates a deep understanding of the transcriptomic
states and dynamics of single cells in large-scale scRNA-seq
datasets. LCA makes a robust inference of the number of
populations directly from the data (a user can specify this
with a priori information), rigorously models the contribu-
tions from potentially confounding factors, generates a bio-
logically interpretable characterization of the cellular states,
and recovers the underlying population structures. Further-
more, LCA addresses the scalability problem by learning a
model from a subset of the sample, after which a theoreti-
cal scheme is used to assign the remaining cells to identified
populations.

MATERIALS AND METHODS

Latent cellular states

The input to LC analysis is a gene expression matrix in
a gene-cell format, where each column is a cell, and each
row is a gene/transcript. In UMI (unique molecular iden-
tifier) based platforms, the expression level of a gene in a
cell is divided by the total expression in that cell to generate
a relative expression matrix (T). In read-count based plat-
forms, T can be derived from size factor normalized expres-
sion measures. The relative expression matrix is then log-
transformed after adding a zero-correction term:

X = log (T + ε) ,

where ε is an arbitrarily small number.
We obtain the LC states from a singular value decompo-

sition (SVD) of X (with mean centering and scale normal-
ization).

X = G � ST,

where S is a cell-by-LC states matrix. We note that under
certain conditions, S is the same as the loading matrix from
the principal component analysis (PCA) result of X (14,15).

Determination of significant LC states

We apply the Tracy–Widom test to associated eigenvalues
to determine which LC states are significant (16–18). The
LC state associated with the eigenvalue λ is significant if it
is significantly different (P < 0.05) from the Tracy–Widom

distribution, with
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where n is the total number of genes and m is the total num-
ber of LC states. We then discard all the LC states that are
not significant. Significant LC states were aligned against
known technical variations (e.g. cell-specific library com-
plexity and batch information) and states strongly associ-
ated with these technical variations were removed, leading
to a cell-by-LC states matrix S with a lower-dimension of
candidate LC states that are associated with biological vari-
ations.

Distance calculation

Distances between cells in S (the cell-by-LC states matrix)
are calculated using cosine distance:

Ka,b = 1 −
∑p

i = 1 Sa,i Sb,i√∑p
i = 1 S2

a,i

√∑p
i = 1 S2

b,i

where Sa,i and Sb,i represent LC state i for cells a and b, and
p is the total number of retained LC states.

Spectral clustering

We perform spectral clustering (19) on the resulted distance
matrix to derive a set of candidate clustering models with a
range of cluster numbers (i.e. 2–20 by default).

Distance measure in the PC space

The PC space is derived from the cell-gene relative expres-
sion matrix (XT , with mean centering and scale normaliza-
tion), where each cell is projected onto the significant princi-
pal components (PCs) determined using the Tracy–Widom
test. When known technical variations were strongly asso-
ciated with significant components, those PCs were further
aligned with the technical variations and discarded. Dis-
tance between cells was measured by the correlation dis-
tance of significant components. When less than three PCs
retained, Euclidean distance was used instead. We note that
while the construction of LC space and PC space is related,
the dramatic difference between the within-cell scaling in
the LC space and the within-gene scaling in the PC space
results in empirically different data presentations.

The optimal number of clusters and informative cellular states

We rank the candidate clustering solutions (with a different
number of clusters) by the silhouette score (20) measured in
the PC space. With two or more clusters, the silhouette mea-
sures the similarity of an individual to its cluster, as com-
pared to other clusters. For each cell, let db be the lowest
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dissimilarity to any other cluster and let dw be the average
dissimilarity to other cells in its cluster. We calculate the sil-
houette as

Silhouette = db − dw

max (db, dw)
.

We assign a silhouette score of zero for the default solu-
tion of one cluster. An end-user may evaluate the top candi-
date solutions to determine the optimal number of solutions
or specify it with a priori biological knowledge.

With the selected number of clusters, we retain LC states
that show significant difference among candidate clusters,
update the distance matrix, and derive the final clustering
solution.

Fast processing of large numbers of cells

We classify unknown cells X′ efficiently by projecting them
into space spanned by the informative LC states learned
from a representative sample:

S′ = �−1
l GT

l X′,

where �l is calculated from the original � by removing
those rows and columns that are not associated with the in-
formative LC states, and Gl is calculated from G by remov-
ing those columns that are not associated with the informa-
tive LC states. We can then calculate the cosine similarity
between S′ and an ‘average’ cell from each cluster and find
the cluster with the maximum similarity for each unknown
cell.

Simulation of different cell types using Splatter

We used Splatter to simulate single-cell RNAseq data
with two cell types. The baseline parameters for Splatter
were estimated using a scRNA-seq dataset for 6757 sorted
CD44high Rh41 cells with 13 368 genes. The shape parame-
ter for the mean gamma distribution is 0.393. The rate pa-
rameter for the mean gamma distribution is 1.8. The loca-
tion parameter for the library size log-normal distribution
is 9.13. The scale parameter for the library size log-normal
distribution is 0.336. The probability that a gene is an ex-
pression outlier is 0.014. The location parameter for the ex-
pression outlier factor log-normal distribution is 5.69. The
scale parameter for the expression outlier factor log-normal
distribution is 0.84. Underlying common dispersion across
all genes is 0.114. Degrees of freedom for the biological
coefficient of variation inverse chi-squared distribution is
19.5. For each simulation, we updated the baseline Splatter
parameters to generated individual simulated datasets. We
fixed the number of genes to 10,000 genes. For the sample
size of 1000 simulated cells, we simulated dataset with the
probability of minor cell type at 0.01, 0.05, 0.1, 0.2 and 0.5,
and the probability of differentially expressed genes at 0.05,
0.1 and 0.2 making a total of 15 combinations of parame-
ters. For the sample size greater than 4000 simulated cells,
we simulated dataset with the probability of minor cell type
at 0.005, 0.01, 0.05, 0.1, 0.2 and 0.5, and the probability of
differentially expressed genes at 0.05, 0.1 and 0.2 making
a total of 18 combinations of parameters. Each parameter

combination contains 100 simulations. When the probabil-
ity of minor cell type was set to 0.005, we further set the
location parameter for the differential expression factor log-
normal distribution to the default to 1. Batch effects were
simulated by setting the number of batches to 2, 3 and 4
with equal size in each batch. For sample size at 10,000,
100,000, 400,000, 1,000,000 and 2,000,000 cells, we gener-
ated 100 simulations for each sample size to test scalability.
Splatter used a maximum of 2.2 Terabyte memory on an
HP Xeon E7-8867v3 DL580 processor to simulated 10,000
genes by 2,000,000 cells; therefore, we did not simulate sam-
ples with more than 2,000,000 cells.

Normalized mutual information and adjusted Rand index

We evaluate the performance of clustering against true la-
bels of cells by using normalized mutual information (NMI)
(21) and adjusted Rand index (ARI). We use the R package
igraph to calculate these metrics (22).

Benchmarking on independently compiled datasets

We benchmarked the performance of LCA with 12–14 clus-
tering algorithms on two additional sets of data: the first is a
set of data provided by R package DuoClustering2018 (23),
including 12 experiments, ranging from ∼200 to ∼6500
cells. The R package also included the performance statis-
tics of 14 clustering algorithms, including Seurat and SC3.
We compared the performance LCA to the 14 algorithms
using the wrapper function provided DuoClustering2018.
The second compiled set of data (24) included six datasets
ranging from ∼1000 to ∼8400 cells and the performance
for 12 algorithms, including Seurat and SC3. The R Single-
CellExperiment format of datasets was downloaded from
https://github.com/bahlolab/cluster benchmark data.

Benchmarking on simulations from Splatter

We further benchmarked LCA with SC3 and Seurat in
Splatter simulated datasets. For Seurat, we used fifteen dif-
ferent resolutions from (0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5) and default setting for
remaining parameters, which produced 2–10 clusters. The
highest NMI was selected for each dataset. For SC3, we ran
multiple combinations of different parameters and picked
the results with maximum accuracy (NMI). When there
were multiple results with the same maximum accuracy, we
reported the result with the minimum running time. For the
number of clusters used by SC3, we used the number of clus-
ters inferred by SC3 and the true number of clusters. The
d region min parameter was chosen from (0.01, 0.04), the
d region max parameter was chosen from (0.07, 0.1), the
kmeans nstart parameter was chosen from (50, 500). There-
fore, we evaluated SC3 with 2 × 2 × 2 × 2 = 16 sets of pa-
rameters. For batch effect correction, we used two different
methods from Seurat: CCA and RegressOut. The perfor-
mance of batch effect correction for MNN and scmap were
tested by piping the results from or to SC3.

Rh41 single-cell dataset

The human alveolar rhabdomyosarcoma cell line Rh41 was
grown in culture in a 5% CO2 incubator in 75-cm2 vented

https://github.com/bahlolab/cluster_benchmark_data
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flasks containing DMEM medium supplemented with 10%
FBS and 2× glutamine until the cells reached 75% con-
fluence at ∼3.6 × 106 cells. The cells were detached from
the flask with 7 ml of 1× citrate saline to which 7 ml
of DPBS was added. The cell suspension was then cen-
trifuged at 300 × g for 7 min, and the cell pellet was
resuspended in 300 �l of blocking buffer (rat IgG/PBS)
and incubated on ice for 30 min. An aliquot of 50 �l of
the cells in blocking buffer was transferred to a separate
tube for the isotype control. The cells were washed with
1 ml of staining buffer (5% BSA/PBS) and centrifuged at
300 × g for 5 min. The pellet, which contained ∼3 ×
106 cells, was then incubated with rat IgG2B anti-CD44–
Alexa Fluor 488 antibody (R&D Systems) in staining buffer
(15 �l antibody + 135 �l of staining buffer) on ice for
30 min. For the isotype control, ∼600,000 cells were incu-
bated with 5 �l of rat IgG2B–Alexa Fluor 488 (R&D Sys-
tems, Minneapolis, MN, USA) + 45 �l of staining buffer
on ice for 30 min. After the incubation, both sets of cells
were collected by centrifugation, washed with 1 ml of stain-
ing buffer as described above, and resuspended in staining
buffer. Flow cytometric analysis was then used to identify
the fractions corresponding to the CD44 high and CD44 low

populations.
For the single-cell experiment, Rh41 cells were grown in

culture, harvested, and washed in DPBS as described above.
They were then resuspended in PBS/0.2% BSA at a concen-
tration of 1 × 106 cells/ml. The 10× Genomics Single Cell
platform performs 3′ gene expression profiling by poly-A
selection of mRNA within a single cell, which uses a cell
barcode and UMIs for each transcript. Single-cell suspen-
sions were loaded onto the Chromium Controller according
to their respective cell counts to generate ∼6000 partitioned
single-cell GEMs (gel bead-in-emulsions). The library was
prepared using the Chromium Single Cell 3′ v2 Library and
Gel Bead Kit (10× Genomics) in accordance with the man-
ufacturer’s protocol. The cDNA content of each sample af-
ter cDNA amplification for 12 cycles was quantified, and
the quality was checked by high-sensitivity DNA chip anal-
ysis on an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA) at a dilution of 1:6. This quantifica-
tion was used to determine the final library amplification cy-
cles in the protocol, which were calculated out to 12 cycles.
After library quantification and a quality check by DNA
1000 chip (Agilent Technologies), samples were diluted to
3.5 nM for loading onto the HiSeq 4000 sequencer (Illu-
mina) with a 2 × 75-bp paired-end kit, using the following
read length: 26 bp Read1 (10× cell barcode and UMI), 8
bp i7 Index (sample index), and 98 bp Read2 (insert). In to-
tal, 518 million, 237 million and 154 million reads were ob-
tained for unsorted, CD44low and CD44high populations, re-
spectively. The Cell Ranger 2.0.1 Single-Cell Software Suite
(10× Genomics) was implemented to process the raw se-
quencing data from the Illumina HiSeq run. This pipeline
performed de-multiplexing, alignment (GRCh38/STAR),
and barcode processing to generate gene-cell matrices used
for downstream analysis.

After matrix generation, the ribosomal and
mitochondria-related genes were filtered out.

Rh41 bulk RNA-seq dataset

Rh41 bulk RNA-seq dataset and its analysis were described
in Chen et al. (25).

RESULTS

We started with an overview of the LCA method, followed
by a benchmark analysis with more than a dozen com-
monly used scRNA-seq clustering algorithms in datasets
compiled in (23,24). The top performers were further eval-
uated in large-scale simulation studies to compare their ac-
curacy, scalability, and batch correction. Finally, we ana-
lyzed three additional public datasets (26–28) and an Rh41
dataset to demonstrate that latent cellular states efficiently
capture hidden biological signals and LCA achieves robust,
accurate and scalable performance in real applications.

Overview of the LCA method

LCA takes a dualistic view of the single-cell gene expres-
sion data by decomposing the data matrix into the princi-
pal component space (PC space) and latent cellular space
(LC space (represented by the gene by cell matrix). In the
primary cell-centric LC space, we take the gene by cell ex-
pression matrix as input and perform the transcriptome em-
bedding approach to convert the high dimensional matrix
into a small vector space with latent cellular states. Sim-
ilar to latent semantic indexing application for informa-
tion retrieval (13), the embedding operation condenses im-
portant features in the sparse gene expression matrix into
an information-dense low-dimensional vector space of la-
tent cellular states, which uncover the underlying biologi-
cal concepts. LCA bypasses explicit gene selection and per-
forms LC state inference through singular-value decompo-
sition (SVD) of the log-transformed global gene expression
matrix (genes in row and cells in column), models known
confounding factors (e.g. cell-specific library complexity
and batch information), and measures cell-to-cell similar-
ity by the cosine of the angle between the low-dimensional
cellular-state vectors. Spectral clustering is employed to
derive a set of candidate clustering models with a range
of cluster numbers. Meanwhile, in the dual gene-centric
PC space (represented by the cell by gene matrix), we de-
compose the variation of gene expression across cells into
low-dimensional principle components, and each gene con-
tributes equally to the total variation in the PC space. By
using their expression vectors, cells were projected on to sig-
nificant components determined by the Tracy–Widom test
(16), and cell-to-cell similarity is measured by correlation
similarity in the PC space. Finally, LCA retains informa-
tive cellular states from the selected clustering model(s) and
uses these states to update the final clustering solution(s).
Although the ‘optimal model’ is not necessarily the solution
with the best numerical score, it should be among the top-
ranked models. Therefore, LCA provides users with multi-
ple top-ranked solutions for biology-based evaluations. In
summary, LCA employs a heuristic dual-space search ap-
proach with a focus on LC states (Figure 1) to provide an
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Figure 1. Overview of the workflow of LCA. LCA infers LC states from full expression matrices. Explicit gene filtering is not necessary. LCA converts the
raw transcript count data to gene fractions and then performs log transformations. The algorithm features a dual-space model search, generating candidate
clustering models based on the cosine similarity matrix in the LC space. Candidate models are then ranked based on the silhouettes measured in the PC
space.

analytical scheme for subpopulation structure identification
(including the removal of confounding factors, the inference
of the number of clusters and informative states, and a map-
ping function from the expression vector to cluster member-
ship).

Benchmarking of LCA and commonly used scRNA-seq clus-
tering algorithms on independently compiled datasets

We benchmarked LCA with more than a dozen commonly
used scRNA-seq clustering algorithms on two indepen-
dently compiled datasets. The first set included nine publicly
available scRNA-seq experiments and three simulations,
which is available from the R package DuoClustering2018
(23). A systematic performance evaluation of LCA against
the results of 14 included clustering algorithms suggested
that LCA, SC3, and Seurat were the top performers (Sup-
plementary Results, Supplementary Figure S1). The second
set included one ‘gold standard’ 10× Genomics data, gen-
erated from the mixture of three cell lines, and several ‘sil-
ver standard’ 10× data from peripheral blood mononuclear
cells (24). Again, LCA, Seurat and SC3 out-performed the
remaining 10 methods tested on that sets of data (Supple-
mentary Table S1).

Benchmarking of LCA, Seurat and SC3 in simulation
datasets

Because LCA, Seurat, and SC3 consistently outperformed
other algorithms in both independently compiled datasets,
we performed extensive benchmark experiments (33 300
datasets) in simulated dataset using the splatter (29) pack-
age. We also ran LCA with the 1000 most variable genes

(LCA-top1k) to evaluate the effects of gene filtering in LCA
analysis. Moreover, we attempt different parameter settings
to optimize the consistency with the ground truth for both
Seurat and SC3. Specifically, for SC3, we run eight different
parameter settings to infer the number of clusters and se-
lected the cluster number that is closest to the ground truth.
We then include an additional eight settings with the true
number of clusters specified when comparing the accuracy
in cluster membership and report the highest NMI achieved
among all 16 models. For Seurat, we ran 15 different settings
of the resolutions parameter and reported the results with
the highest NMI.

Our extensive simulations demonstrated that even with
dataset-specific, ground-truth based optimizations, LCA
outperformed LCA-top1k, Seurat and SC3 in terms of both
the number of cluster inference and accuracy in cluster
membership (Table 1, Figure 2 and Supplementary Table
S2). LCA inferred the correct number of clusters in 68.2%
of simulated datasets, significantly higher than LCA-top1k
(51.9%, P < 2.2 × 10−16 [proportion test]), Seurat (36.6%,
P < 2.2 × 10−16 [proportion test]) and SC3 (41.4%, P < 2.2
× 10−16 [proportion test], excluding SC3 runs with the true
number of clusters specified). We used normalized mutual
information (NMI [14], 1 for perfect matching) to quan-
tify the clustering accuracy. Similar to the adjusted Rand
index (ARI) used in (23,24), NMI is a commonly used mea-
sure in comparison of clustering algorithms (30,31). LCA
achieved an average NMI of 0.721 across all the simulated
scenarios, significantly higher than those from LCA-top1k
(0.623, P < 2.2 × 10−16 [Wilcoxon signed-rank test]), Seu-
rat (0.614, P < 2.2 × 10−16 [Wilcoxon signed-rank test]) and
SC3 (0.627, P < 2.2 × 10−16 [Wilcoxon signed-rank test]).
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Figure 2. Benchmarking of LCA against Seurat and SC3 on simulated datasets. (A) Clustering accuracy by LCA, Seurat, and SC3 was compared using
NMI on 1000 simulated cells by Splatter: the probability of differential expression ranges from 0.05 to 0.2, and the probability of minor group ranges from
0.01 to 0.5. Each combination of simulation parameters contained 100 randomly generated samples. (B) Clustering accuracy by LCA, Seurat, and SC3 on
4000 simulated cells.

Table 1. Overview of the performance of LCA vs. Seurat and SC3 on sim-
ulated datasets

Methods Average NMI (%) Average run-time (s)

LCA 72 203
LCA-top1k 62 41
Seurat 61 61
SC3 63 640

Importantly, in challenging but separable datasets (where
at least one algorithm achieved an NMI < 0.7 and at least
one algorithm achieved NMI > 0.8), LCA (average NMI =
0.801) significantly outperformed LCA-top1k (0.666, P <
2.2 × 10−16 [Wilcoxon signed-rank test])), Seurat (0.759, P
< 2.2 × 10−16 [Wilcoxon signed-rank test]) and SC3 (0.482,
P < 2.2 × 10−16 [Wilcoxon signed-rank test]), suggesting
that LCA have better power in revealing subtle differences
among different cell types.

Scalability to large-scale datasets

LCA’s implementation renders exceptional scalability,
which is an attractive feature for scRNA-seq analysis of
an ever-increasing number of cells. LCA can derive a cell
subpopulation structure by using a relatively small rep-
resentative set (training cells) sampled from the full data.
LCA provides mathematical formulae with which to project
the remaining cells (testing cells) directly to the inferred
low-dimensional LC space, after which individual cells
are assigned to the subpopulation with the best similarity.
Consequently, LCA runs at a low level of computational
complexity. SC3 provides similar functionality by training
on a subset of cells and project remaining cells based on the
learned model. Seurat does not support the functionality at
the moment, and it has difficulty in running large dataset
(running time jumped from 1 minute for a 1000-cell dataset

to 10.8 h for a dataset with 100,000 cells. Jobs for datasets
with 400,000 cells or more did not complete in a day.

We first compared the accuracy of clustering between the
training cells (5–25% of 4000-cell datasets) and the remain-
ing testing cells in simulated models (Supplementary Figure
S2). As expected, the accuracy of the clustering model im-
proved with the increase of training cells. Strikingly, LCA
achieved comparable accuracies between training and test-
ing cells in all models evaluated.

We then compared the scalability of LCA to SC3 in large
datasets simulated by Splatter, from 5000 cells to 2,000,000
cells. We trained both LCA and SC3 on a random subset
of 1000 cells from tested datasets, then predicted cell types
on full test datasets using trained models. LCA is more ef-
ficient than SC3 across all sample sizes tested (Supplemen-
tary Table S3). The mean running time for 400,000 cells is
37 min for LCA, compared to 63 minutes for SC3 (P < 2.2
× 10−16 [Wilcoxon signed-rank test]), with a slightly in-
creased memory footprint (29.1 Gb for LCA versus 27.2 Gb
for SC3, P = 2.6 × 10−16, [Wilcoxon signed-rank test]). In
datasets with 1,000,000/2,000,000 cells, LCA used an aver-
age of 60/118 min, respectively. SC3 runs failed for datasets
larger than 400,000 cells.

Batch-effect correction

Batch effects represent a major analytical challenge in large
scale OMICS studies. LCA addresses the challenge by align-
ing batch effects and other known technical variations (e.g.
the difference in library complexity for individual cells)
with a small set of inferred LC states, which are excluded
in further analysis (Supplementary Figure S3). We com-
pared its performance with four state-of-art algorithms:
Seurat CCA (4), Seurat RegressOut (4), MNN batch-effect
correction (9) and scmap(10) in 12,000 splatter simulated
datasets with batch effects (2–4 batches evaluated). Seurat
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provides two ways to handle batch effects by regress out the
batch effect (Seurat-RegressOut) and by aligning between
batches through canonical correlation analysis (Seurat-
CCA). Again, we applied Seurat-RegressOut and Seurat-
CCA with 15 different resolutions and reported the high-
est NMI for each test dataset. We applied MNN batch cor-
rection (implemented in the R scran package), followed by
SC3 clustering (MNN-SC3, with 16 different settings). For
scmap, we ran SC3 in one batch to infer cell types (with 16
different settings), followed by scmap to project cells from
other batches (SC3-scmap). For each simulated dataset, the
model achieving the highest NMI with the ground-truth is
reported for Seurat-RegressOut, Seurat-CCA, MNN-SC3
and SC3-scmap. LCA outperformed other pipelines in clus-
ter membership inference (Figure 3, Supplementary Table
S4).

LCA achieved an average clustering accuracy of 0.68
across all simulated datasets, significantly higher than those
from Seurat-RegressOut (0.21, P < 2.2 × 10−16 [Wilcoxon
signed-rank test]), Seurat-CCA (0.52, P < 2.2 × 10−16

[Wilcoxon signed-rank test]), MNN-SC3 (0.29, P < 2.2 ×
10−16 [Wilcoxon signed-rank test]) and SC3-scmap (0.42,
P < 2.2 × 10−16 [Wilcoxon signed-rank test]). Similar to
datasets without batch effects, LCA achieved near perfect
performance in easy-to-separate cases and substantially im-
proved the accuracy in challenging scenarios.

Application of LCA on additional publicly available datasets

By using publicly available large-scale scRNA-seq datasets
collected on various popular scRNA-seq platforms, we
demonstrated that LCA robustly identified LC states of bi-
ological importance and produced parsimonious and ac-
curate models that were highly consistent with biological
knowledge.

Using the GemCode platform (10× Genomics, Pleasan-
ton, CA), Zheng et al. generated reference scRNA-seq
transcriptomes for subpopulations of peripheral blood
mononuclear cells (PBMCs) purified via well-established
cell surface markers (26). Subsets of the data have been in-
cluded in both benchmark studies (23,24). To better under-
stand the potential intra-population heterogeneity, we gen-
erated a purified T-cell dataset (representing 55,000 cells) by
pooling the CD4+ T-helper (CD4+ helper), CD4+/CD25+
regulatory T (Treg), CD4+/CD45RO+ memory T (Tmem),
CD4+/CD45RA+/CD25- naı̈ve T (CD4+ ab T), CD8+ cy-
totoxic T (cytotoxic T) and CD8+/CD45RA+ naı̈ve cy-
totoxic T (CD8+ ab T) cell subpopulations. We inferred
the cellular states and subpopulation structure by using
10% and 25% of the full dataset, and we assigned the re-
maining cells to one of the inferred subpopulations. We
evaluated the top three models for both runs, which were
the 3-population, 4-population and 5-population models.
Despite a 9.6-fold difference in running time, both the 3-
population and 5-population models from the two runs
achieved high consistency (NMI = 0.87 and 0.84, respec-
tively). Although the 4-population models differed between
runs, they represented two different subpopulation-merging
orders from the 5-population model to the 3-population
model. We selected the 5-population model learned from
25% cells (with 19 LC states) for further biological infer-

ence. Whereas the purified Tmem, CD4+ ab T and CD8+ ab
T cells contained cells mostly from a single subpopulation
(Clusters 1, 3 and 4, respectively), different levels of hetero-
geneity were detected in the remaining purified populations
(Treg, CD4+ helper and cytotoxic T), especially the CD4+
helper, and cytotoxic T cells (Figure 4A, B). Given the single
surface-marker settings in the purification of CD4+ helper
and cytotoxic T cells, it is not surprising that we found sub-
stantial heterogeneity in them. Nevertheless, LCA inferred a
parsimonious subpopulation structure in this large dataset.
We selected representative genes encoding surface mark-
ers, transcription factors, and secreted effector molecules
for 19 usual T-cell subsets (https://docs.abcam.com/pdf/
immunology/t cells the usual subsets.pdf) and derived a
PCA projection of the six purified populations and five in-
ferred clusters based on the average population/cluster ex-
pression level of individual marker genes (Figure 4D). The
first PC largely described the differentiation status, and the
second PC represented the difference between the CD4+
subsets and CD8+ subsets. As expected, Clusters 3 and 4
were found next to the CD8+ ab T and CD4+ ab T cells.
Cluster 1 was found near the Tmem population. Cluster
2 consisted mostly of Treg cells and a smaller fraction of
CD4+ helper cells that was located adjacent to the Treg pop-
ulation. Both the CD4+ helper and cytotoxic T-cell popu-
lations were split approximately equally between naı̈ve and
differentiated cells and were spotted between their corre-
sponding naı̈ve clusters (Cluster 3 for CD8+ cells and Clus-
ter 4 for CD4+ cells) and differentiated clusters (Clusters 1
and 2 for CD4+ cells and Cluster 5 for CD8+ cells). Anal-
ysis of selected genes validated the separation of naı̈ve and
differentiated cells in the CD4+ helper and cytotoxic T cells
(Figure 4E). An evaluation of the first LC state inferred
from the full expression data revealed a striking approxi-
mation to the expected distribution of naı̈ve and differenti-
ated cells in both purified populations and inferred clusters.
Similarly, the second LC state recaptured the CD4+ and
CD8+ difference in the dataset (Figure 4C). These results
not only revealed the substantial heterogeneities among sev-
eral ‘purified’ T-cell subpopulations but also showed that
LCA identified LC states of biological importance and con-
sequently produced a parsimonious and accurate model
that was highly consistent with biological knowledge.

We evaluated the performance of LCA in a second
dataset published by Tirosh et al. (27), who employed a
stepwise approach to analyze separately the malignant and
stromal cells of 19 melanoma tumors captured on the C1
Fluidigm platform. We applied those authors’ cell-selection
criteria (27) to generate a dataset with 1169 malignant cells
from eight tumors and 2588 nonmalignant (stromal) cells.
LCA inferred 18 clusters with 53 LC states (Figure 5). Ma-
lignant cells dominated eight clusters, which were further
separated by the patient origin of the tumors (Figure 5A).
Among the stromal cells, distinct clusters were identified for
B cells, macrophages, cancer-associated fibroblasts, and en-
dothelial cells (Figure 5B). Moreover, LCA divided tumor-
infiltrating T cells and natural killer cells into six clusters,
which was concordant with the supervised analysis of T
cells based on surface markers by Tirosh et al. (27). Using
the pre-defined marker genes for T-cell subsets and MKI67
for cell-cycle activities, we revealed the characteristics of

https://docs.abcam.com/pdf/immunology/t_cells_the_usual_subsets.pdf
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Figure 3. Benchmarking of LCA against Seurat-CCA, Seurat-RegressOut, MNN-SC3, and SC3-scmap on simulated datasets with two equal-size batches.
(A) Clustering accuracy by LCA, Seurat-CCA, Seurat-RegressOut, MNN-SC3 and SC3-scmap was compared using NMI on 1000 simulated cells by
Splatter: the probability of differential expression ranges from 0.05 to 0.2, and the probability of minor group ranges from 0.01 to 0.5. Each combination
of simulation parameters contained 100 randomly generated samples. (B) Clustering accuracy on 4000 simulated cells.

these T-cell populations (Figure 5C). Cluster 1 was enriched
for naı̈ve CD4+ cells, whereas Cluster 2 harbored mostly
Treg and TFH cells. Although Clusters 3 and 5 both had
enriched signatures for cytotoxic T and exhaustive T cells,
Cluster 3 had greater signal strength in both signatures, con-
sistent with the reported high correlation between exhaus-
tion markers and cytotoxic markers (27). Cells in active cell
cycles were grouped in Cluster 4, which showed unique en-
richment of MKI67 expression. Lastly, natural killer cells
and T cells with weak cytotoxic activity and no exhaustion
signatures were found in Cluster 6. As a comparison, we
applied SC3 to the same data, which resulted in an estima-
tion of 43 clusters. Although SC3 clustering of malignant
cells was consistent with the separation by patient, accuracy
in the stromal component was lower than with LCA (Sup-
plementary Table S5). These results demonstrate the power
of LCA to reveal subtle diversities in different subpopula-
tions of tumor-infiltrating T cells in the presence of strong
transcriptomic variations among malignant cells (from dif-
ferent patients) and various stromal cells from different lin-
eages (cancer-associated fibroblasts, macrophages, B cells,
and endothelial cells).

We further evaluated LCA’s performance in handling
large-scale datasets from heterogeneous sources by com-
bining a scRNA-seq dataset of ∼1.3 million embryonic
day 18 murine brain cells collected on the Chromium
Single Cell 3′ v2 platform (10x Genomics, Pleasan-
ton, CA) (https://support.10xgenomics.com/single-cell-
gene251expression/datasets/1.3.0/1M neurons, the 10×
E18 dataset) with a dataset of ∼5500 embryonic day
17 murine cerebellum cells collected on the GemCode
platform (the Carter E17 dataset) (28), By training on a
randomly sampled subset with 2000 cells from the 10×

E18 dataset and 2000 cells from the Carter E17 dataset,
LCA revealed a 24-cluster pattern after modeling global
differences between the experiments. The remaining cells
were projected to the 24-cluster structure. The projected
cells have a similar cluster distribution fractions with the
training dataset and share the same expression profiles
of marker genes identified for individual clusters in the
training subset (Figure 6), which supports the accura-
cies of the cluster membership projection. The entire
procedure (including data loading, model generation
on the training set and projection of the whole set) uti-
lized 4.65 CPU hours and 30.1 Gb memory on an HP
Xeon E7-8867v3 DL580 processor. The data provider
for the E18 dataset reported a 22-cluster pattern using
a random subset of 20 000 cells with ∼350 CPU hours
and ∼300 Gb memory usage (http://go.10xgenomics.
com/l/172142/2017-06-09/bsylz/172142/31729/
LIT000015 Chromium Million Brain Cells Application
Note Digital RevA.pdf, downloaded on 11 November
2018). This example demonstrated LCA’s efficiency and
scalability in large-scale scRNA-seq data.

Although glutamatergic neurons were enriched in both
datasets, there were substantial design differences between
them (i.e. mouse strain, embryonic age, tissue isolation
protocol, and single-cell library construction protocols,
etc.), which produced distinct neuron subtype enrichment.
Specifically, the 10× E18 dataset largely consisted of glu-
tamatergic cerebellar nuclei (CNs, identified by expression
of Meis2 and Lhx2) while the granule neuron progeni-
tors (GNP) and/or granule neurons (marked by Atoh1 and
Pax6) were highly enriched in the Carter E17 dataset (Fig-
ure 7). Despite these substantial differences, LCA identified
several rare cell subpopulations that were shared between

https://support.10xgenomics.com/single-cell-gene251expression/datasets/1.3.0/1M_neurons
http://go.10xgenomics.com/l/172142/2017-06-09/bsylz/172142/31729/LIT000015_Chromium_Million_Brain_Cells_Application_Note_Digital_RevA.pdf
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Figure 4. Investigation of PBMC heterogeneity by using LCA. We applied LCA to data from Zheng et al. (26) for 55 000 cells representing a combination
of six sorted T-cell populations. LCA identified five cell populations with biologically meaningful LC states. (A) Cell distance matrix, sorted by source
ID. (B) Cell distance matrix, sorted by LCA clustering results. (C) The first LC state captured the difference between the naı̈ve and differentiated T cells,
whereas the second LC state captured the difference between the CD4+ and CD8+ cells. (D) LCA further revealed heterogeneity in the CD4+ helper T
cells and CD8+ cytotoxic T cells. (E) Expression profiles of selected genes across naı̈ve and differentiated cells in the CD4+ helper and cytotoxic T cells.

the experiments: erythrocytes (C9, marked by Hba-a2, 0.33
and 0.88% of cells in the Carter E17 dataset and 10× E18
dataset, respectively), endothelial precursors (C5, marked
by Pecam1, 1.30% and 1.07%), microglia (C13, marked by
Ly86, 0.65% and 0.39%) and meninges (C16, marked by
Vtn, 1.56% and 0.91%). These results showed LCA’s power
in accounting technical differences and identifying rare cell
subpopulations in real datasets from heterozygous sources.

LCA revealed a less-differentiated, stem-like cancer cell sub-
population in a dataset despite strong batch effects

LCA groups cells based on orthogonal LC states aligned
with major differences among cells, which enables control
of technical variations (e.g. batch effects) without an ex-
plicit need for gene filtering. We evaluated the efficiency
of batch effect removal in a cancer cell dataset and fur-
ther experimentally validated the subpopulations revealed
by LCA. Rhabdomyosarcoma is the most common soft-
tissue tumor in children and has two major histologic
subtypes with different genomic landscapes: PAX3/PAX7-
FOXO1 fusion–positive alveolar rhabdomyosarcoma (FP-
ARMS) and fusion-negative embryonal rhabdomyosar-
coma (ERMS) (32). LCA identified two subpopulations

in a scRNA-seq dataset for Rh41 cells (a commonly used
human PAX3-FOXO1 FP-ARMS cell line). The CD44
gene, which encodes a commonly used cell surface marker
with great prognostic and therapeutic potential (33,34),
appeared at the top of the differentially expressed genes
(DEGs) of the two subpopulations (Supplementary Figure
S4A). Flow cytometry confirmed a bimodal expression pat-
tern of CD44 in Rh41 cells (Supplementary Figure S4B).
We first used bulk RNA-seq to profile unsorted popula-
tions and CD44high and CD44low subpopulations sorted
by fluorescence-activated cell sorting. In addition to the
differences among the sorted CD44high, CD44low and un-
sorted populations, the analysis revealed strong batch ef-
fects. Specifically, samples in Batch 1 and those in Batches
2 and 3 were separated on the first PC, whereas the bi-
ologically different populations (the unsorted population
and sorted subpopulations) were separated on the second
PC (Supplementary Figure S4C). We collected scRNA-seq
data for the unsorted populations in Batch 1 and the sorted
CD44high and CD44low subpopulations in Batch 2. The li-
braries were sequenced at different depths for the three sam-
ples. The median numbers of UMIs captured per cell were
8278, 6678 and 12,850 for the CD44high subpopulation,
CD44low subpopulation, and unsorted population, respec-
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Figure 5. Reanalysis of melanoma cellular data (27) with LCA. We applied LCA to 1169 malignant cells from eight tumors and to 2588 stromal cells. LCA
identified 18 clusters with a clear biological interpretation. LCA further revealed subtle diversity among the infiltrating T cells. (A) t-SNE (t-Distributed
stochastic neighbor embedding) plot of the clustering results for malignant cells, contrasting the LCA results and original results. (B) t-SNE plot of the
clustering results for stromal cells, contrasting the LCA results and original results. (C) Enrichment of gene markers in T-cell clusters.

tively (Kruskal-Wallis rank sum test, P < 2.2 × 10−308).
With both batch effects and biological difference among cell
populations, LCA inferred five clusters, with cells in Batch
1 being represented by Clusters 1 and 2 and cells in Batch
2 being grouped in Clusters 3 to 5 (Supplementary Figure
S4D). Similarly, SC3 inferred a 12-cluster structure. Consis-
tent with the strong batch effects observed in bulk RNA-seq
analysis, when required to infer a two-cluster model, both
LCA and SC3 achieved a perfect separation based on the
batch information (NMI = 1 and 0.99, respectively). Next,
we modeled batch effects through LCA, Seurat-CCA and
MNN-SC3. LCA identified that the first LC state was sig-
nificantly associated with the batch information (P < 2.2 ×
10−308) (Supplementary Figure S4E). Upon excluding this
state, LCA retrieved an optimal structure with two clusters,
where 73.4% (4961/6757) and 96.1% (6733/7005) cells pro-
filed in the sorted CD44high/CD44low subpopulations were
clustered into Clusters 1 and 2, respectively (Figure 8A). Af-
ter MNN normalization, we evaluated 16 SC3 models with
different configurations (like what we did in the simulation
studies) and selected a 2-cluster model achieving the highest
NMI between the two sorted populations. In the selected
MNN-SC3 model, 85.9% of CD44high cells were found in
Cluster 1, which also contained 51.1% of CD44low cells. For
Seurat-CCA result with highest NMI among 15 different

resolution parameters, 90.1% of CD44high cells were found
in Cluster 1, which also contained 48.9% of CD44low cells;
Cluster 2 contained 3.7% of CD44high cells and 51.5% of
CD44low cells; while a small Cluster 3 contained 2.1% of
CD44high cells and 0.09% of CD44low cells. To further vali-
date the clustering result, we evaluated the consistency of
identified DEGs between the inferred clusters with 1709
DEGs identified between sorted CD44high and CD44low

subpopulations (log2FC ≥ 1, FDR ≤ 0.05, FPKM ≥ 1 in at
least one subpopulation, Supplementary Table S6). NBID,
a single cell DE analysis (25) identified 1054/1174/604
DEGs (log2FC ≥ 1, FDR ≤ 0.05, TPM ≥ 3 in at least one
subpopulation) in the LCA, Seurat-CCA (comparing Clus-
ters 1 and 2 only), and MNN-SC3 models (with batch-
effects correction), of which 614/627/291 matched the
DEGs found between the sorted subpopulations (F1 score
= 0.4444/0.4350/0.2516), respectively. This analysis fur-
ther supported LCA’s superior performance compared to
Seurat-CCA and MNN-SC3 with knowledge-based opti-
mization.

Although the inferred LCA model revealed a relatively
pure cell population in the sorted CD44low subpopulation,
26.6% cells from the CD44high subpopulation were grouped
in the same cluster with CD44low cells (Cluster 2). We evalu-
ated the transcriptomic signature of these cell groups (Clus-
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Figure 6. LCA analysis of a large combined dataset including 1.3 million embryonic day 18 murine brain cells collected on Chromium Single Cell 3′ v2
kits (10× Genomics, Pleasanton, CA), and ∼5500 embryonic day 17 murine cerebellum cells collected on the GemCode platform (the Carter E17 dataset).
Expression profiles of marker genes were shown in violin plot for each individual cluster.

Figure 7. LCA identified specific cell clusters between the 1.3 million embryonic day 18 murine brain cells collected on Chromium Single Cell 3′ v2 kits
(10× Genomics, Pleasanton, CA), and ∼5500 embryonic day 17 murine cerebellum cells collected on the GemCode platform (the Carter E17 dataset). The
10× E18 dataset largely consisted of glutamatergic cerebellar nuclei (CNs, identified by expression of Meis2 and Lhx2) while the granule neuron progenitors
(GNP) and/or granule neurons (marked by Atoh1 and Pax6) were highly enriched in the Carter E17 dataset.
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Figure 8. LCA analysis of Rh41 cells, correcting for batch effects. (A) t-SNE plots of clustering results, colored according to source ID or cluster ID. (B)
Cellular expression patterns of DEGs identified in bulk RNA-seq. (C) Violin plot of expression patterns of DEGs from bulk RNA-seq in cells classified
by source and cluster ID.

ter 1 cells from sorted CD44high subpopulation, Cluster 1
cells from sorted CD44low subpopulation, Cluster 2 cells
from sorted CD44high subpopulation and Cluster 2 cells
from sorted CD44low subpopulation) by DEGs identified
in bulk RNA-seq Of 1709 DEGs, 356 were captured in at
least 10% of the cells in one sequenced population or in-
ferred cluster. As expected, Clusters 1 and 2 had higher av-
erage expression levels of genes overexpressed in the sorted
CD44high and CD44low subpopulations, respectively (Figure
8B). Importantly, Cluster 2 cells from the sorted CD44high

subpopulation had significantly lower expression level for
those DEGs overexpressed in the bulk CD44high subpopula-
tion than did either Cluster 1 cells from the sorted CD44high

subpopulation (P < 2.2 × 10−308 [Mann–Whitney test])
or Cluster 1 cells from the sorted CD44low subpopulation (P
= 7.5 × 10−71 [Mann–Whitney test]). Analysis of DEGs
overexpressed in the bulk CD44low subpopulation showed
the same pattern (Figure 8C). These results suggested that
Cluster 2 cells in the sorted CD44high subpopulation more
closely resembled CD44low cells. Moreover, the differential
expression pattern was essentially captured by the first LC
state after modeling the batch effects (Spearman correlation
coefficient = −0.90, P < 2.2 × 10−308), confirming the bi-
ological importance of the inferred LC states.

Of the three established molecular markers (TFAP2B,
MYOG and NOS1) for FP-ARMS (35), TFAP2B and



PAGE 13 OF 14 Nucleic Acids Research, 2019, Vol. 47, No. 22 e143

MYOG were overexpressed in the sorted CD44low subpopu-
lation (Supplementary Table S6). Moreover, known PAX3-
FOXO1 target genes were significantly enriched in DEGs
overexpressed in the CD44low subpopulation (Supplemen-
tary Table S7). These results suggest that the CD44high sub-
population represents a less-differentiated, stem-like cell
subpopulation. Although the exact mechanism by which
the distinct subpopulations develop warrants further inves-
tigation, we conclude that LCA controls technical varia-
tions and reveals reliable transcriptome-based heterogene-
ity.

DISCUSSION

The rapid technological advance in scRNA-seq platforms
has inspired a tremendous explosion of data-analysis meth-
ods for identifying heterogeneous subpopulations. Most
methods employ a gene-selection step before clustering
analysis, based on the assumption that a small subset of
highly variable genes is useful for revealing cellular diver-
sity. Although this assumption is valid in most scenarios
and reduces the data dimensionality, it potentially excludes
genes that are informative for separating subpopulations
with subtle diversity. Also, in datasets with strong batch ef-
fects, it may result in a small set of retained genes being
dominated by batch effects. Moreover, several methods re-
quire the user to provide an estimation of the number of
clusters in the data, and this may not be readily available.

LCA bypasses the gene selection, learns biologically in-
formative cellular states directly from the raw gene ex-
pression matrix, reduces potential technical variations, and
measures the cell-to-cell distance by using cosine similarity
in the low-dimensional and informative cellular-state space
in a data-driven and unsupervised fashion. Cosine similar-
ity has been widely used in information retrieval and text
mining to reveal the relation between text documents, a pro-
cess that shares many similarities with scRNA-seq analysis
(36). However, when simultaneously inferring the number
of clusters and the informative LCs that support the cluster
separation, optimization in the LC space alone potentially
risks in model overfitting, a common concern in statistical
and machine learning (37). LCA addresses this challenge by
employing a dual-space search strategy from empirical ob-
servations that (i) the true cell population structure (higher
intra –cluster cell-cell similarities than inter-cluster similar-
ities) pertains in both the LC space and the PC space and
(ii) albeit presented at a higher level, the noises in the PC
space are empirically uncorrelated with those in the LC
space (Supplementary Figure S5). Therefore, LCA derives
candidate models in the LC space (where the separation
is strong), followed by model evaluation in the PC space.
Furthermore, LCA provides a mathematical solution for
assigning new cells to inferred clusters in a model learned
from a subset of cells, a capability that is urgently needed
to handle the ever-increasing sample sizes in scRNA-seq.
We have demonstrated through extensive simulation and the
use of large-scale scRNA-seq datasets that LCA is an effi-
cient, scalable, and robust clustering algorithm that outper-
forms other tools without the explicit need for gene selec-
tion or an estimation of the number of clusters in the data.

DATA AVAILABILITY

The Rh41 scRNA-seq dataset and bulk RNA-seq dataset
generated during the current study have been deposited
in the Gene Expression Omnibus (GEO) under accession
number GSE113660. The functions used for the data anal-
ysis are included in the single cell LCA package, which can
be installed from Bitbucket (https://bitbucket.org/scLCA/
single cell lca).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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