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ABSTRACT
◥

Purpose: The molecular complexity of acute myeloid leukemia
(AML) presents a considerable challenge to implementation of clinical
genetic testing for accurate risk stratification. Identification of better
biomarkers therefore remains a high priority to enable improving
established stratification and guiding risk-adapted therapy decisions.

Experimental Design:We systematically integrated and analyzed
the genome-wide CRISPR-Cas9 data from more than 1,000 in vitro
and in vivo knockout screens to identify the AML-specific fitness
genes. A prognostic fitness score was developed using the sparse
regression analysis in a training cohort of 618 cases and validated in
five publicly available independent cohorts (n ¼ 1,570) and our
RJAMLcohort (n¼ 157)withmatchedRNAsequencing and targeted
gene sequencing performed.

Results: A total of 280 genes were identified as AML fitness
genes and a 16-gene AML fitness (AFG16) score was further

generated and displayed highly prognostic power in more than
2,300 patients with AML. The AFG16 score was able to distill
downstream consequences of several genetic abnormalities and
can substantially improve the European LeukemiaNet classifica-
tion. The multi-omics data from the RJAML cohort further
demonstrated its clinical applicability. Patients with high AFG16
scores had significantly poor response to induction chemother-
apy. Ex vivo drug screening indicated that patients with high
AFG16 scores were more sensitive to the cell-cycle inhibitors
flavopiridol and SNS-032, and exhibited strongly activated cell-
cycle signaling.

Conclusions: Our findings demonstrated the utility of the
AFG16 score as a powerful tool for better risk stratification and
selecting patients most likely to benefit from chemotherapy and
alternative experimental therapies.

Introduction
Acutemyeloid leukemia (AML) is a group of aggressive hematologic

malignancies with highly genetical and clinical heterogeneity, char-
acterized by the accumulation of immature myeloid precursors in the
bone marrow (BM) and other tissues (1, 2). Despite improvements in
the treatment of AML, most patients would succumb to this disease.
The global 5-year survival rate remains significantly lower at approx-

imately 30% resulting from common chemo-refractory disease and
high rate of relapse (3). Discovery of genes and biological processes
that participate in the pathogenesis and contribute to the therapeutic
resistance is realistically needed to improve clinical outcomes. Impor-
tantly, therapeutic advances may also arise from better risk stratifi-
cation for patients with AML.

Currently, risk stratification for AML relies on genetic testing
for mutations and cytogenetic alterations. Both the World Health
Organization (WHO; ref. 4) and European LeukemiaNet (ELN;
ref. 5) provided recommendations to stratify AML into three risk
categories: favorable, intermediate, and adverse. However, genomic
data and clinical screening are increasingly being inadequate for risk
stratification (2), highlighting the need for improved risk stratifi-
cation of patients to guide risk-adapted therapies. Accordingly,
transcriptome-based models using either gene expression (6–8) or
alternative mRNA splicing (9, 10) that represent key biological
measurements with the potential to contribute to disease progres-
sion have been extensively proposed. Especially, the core transcrip-
tional components of leukemic stem cells (LSC; refs. 11, 12) have
garnered enormous interest, partly because these self-renewing LSCs
are considered as critical players in AML initiation, resistance to
chemotherapy as well as relapse (13, 14), and therefore hold great
potential for therapy. However, more recent studies have revealed
that persistence of LSCs could not fully account for chemoresistance
and relapse in AML and leukemic-regenerating cells arise post
chemotherapy presented distinct molecular features from therapy-
naive LSCs (15, 16). Indeed, increased proliferation and inhibition of
differentiation are hallmarks of AML (2, 17). Therefore, the fitness
genes whose perturbations lead to proliferation defects of cells (18)
lie in the center of transcriptomic programs with potential prog-
nostic value.
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The CRISPR-Cas9 genome editing system has been extensively
utilized for high-throughput loss-of-function screens to identify essen-
tial genes required for the growth and proliferation of human cells in
specific genetic context (18, 19). The power of the CRISPR screen has
also been demonstrated by researches investigating synthetic lethal-
ity (19) and seeking for genes involved in cancer metastasis (20), drug
resistance (21) as well as immune response (22). With the rapid
accumulation of genome-wide screening data in a broad spectrum of
human cancer cell lines, it has been possible to systematically identify
cancer-specific fitness genes to fill the goal of precision medi-
cine (23, 24). Distinguishing a cancer’s fitness genes, and delineating
them from the constitutive genetic dependencies shared across all
tumors, holds the key to unlocking cancer-specific therapeutic
vulnerabilities (18, 23).

In this study, we comprehensively analyzed the genome-wide
CRISPR-Cas9 data from over one thousand in vitro and in vivo
screens and systematically identified the AML-specific fitness
genes, inactivation of which impairs survival and proliferation of
AML cells. We further developed and validated a novel 16-gene
fitness score that was highly prognostic in over 2,300 patients with
AML and could complement the current ELN2017 scheme. We also
investigated the mutational landscape and biological features asso-
ciated with this fitness score, demonstrating the power of the score
to predict therapeutic responses to both chemotherapy and targeted
agents.

Materials and Methods
Patient cohorts

We collected BM specimens from a total of 157 patients with AML
of the RJAML cohort diagnosed at Ruijin Hospital affiliated to
Shanghai Jiao Tong University School of Medicine between June
2019 and September 2020. All samples were collected at diagnosis
and patients received the similar intensive induction regimens accord-
ing to national guidelines. Patients whose BM specimens were of poor
quality were excluded. The collection of the specimens was approved
by the Institutional Review Boards from Ruijin Hospital, and the
written informed consent for specimen collection and research was
obtained following the Declaration of Helsinki.

The HOVON cohort (n ¼ 618; ref. 25) was retrieved from Array
Express (Dataset ID: E-MTAB-3444) and served as the training
set. The gene expression profiles and survival information of the
GSE37642 (n ¼ 553; ref. 26), GSE106291 (n ¼ 250; ref. 27),
GSE12417 (n ¼ 240; ref. 28), and GSE71014 (n ¼ 104; ref. 29)
cohorts were obtained from Gene Expression Omnibus (GEO). The
raw RNA-sequencing (RNA-seq) data along with clinical infor-
mation and processed mutational variants of the TCGA-LAML
(n ¼ 179; ref. 1) and BeatAML (n ¼ 244; ref. 30) cohorts were
obtained from the GDC data portal. Only treatment-na€�ve samples
from adult patients with AML were retained in the BeatAML cohort
and the patients without survival information in these cohorts were
excluded.

RNA-seq and targeted gene sequencing
The genomic DNA/mRNA extraction, library preparation,

and analysis procedures for RNA-seq, targeted gene sequencing
on 100 commonly mutated genes (Supplementary Table S1), and
microarray data are listed in the Supplementary Materials and
Methods.

Generation of AML-specific dependency library
AML-enriched dependencies were first identified by analyzing

the large-scale of in vitro CRISPR-Cas9 screen dataset consisting
of 26 AML cell lines and 1028 non-AML cancer cell lines from
the Dependency Map (DepMap) portal. Genes with lower gene
effect scores (indicating greater dependency) in AML cell lines
(FDR < 0.2) compared with other cancer cell lines were determined
as candidate AML dependencies. These candidates were further
intersected to the AML-enriched dependencies in the in vitro
CRISPR-Cas9 screen dataset including 14 AML cell lines (19),
which were identified as the averaged CRISPR score < �1 across
these cell lines. Notably, sgRNA raw counts for only 12 of these 14
human AML cell lines were available and used for visualization
(Supplementary Table S2). Finally, the gene dependencies from the
above two-way overlap were also filtered to include candidate
dependencies (fold change of initial/final sgRNA abundance >
2.5) in the genome-wide in vivo CRISPR screen (31). AML-specific
gene dependencies were independently validated by the DEMETER2
RNAi screen datasets with an FDR < 0.2 using the same two-class
comparison (23 AML and 689 non-AML cell lines) (32). The in vitro
and in vivo depletion scores from a focused CRISPR screen in U937,
MV4-11 cell lines and a PDX model were obtained from the
publication (33) for validation, which performed in vitro and
in vivo CRISPR screens in parallel. Full details are provided as
Supplementary Materials and Methods.

Data availability statement
The data generated in this study are publicly available in GEO at

GSE201492. All other data generated in this study are available within
the article and its Supplementary Data files.

Results
In vitro and in vivo CRISPR screens identify a 16-gene AML
fitness (AFG16) score associated with the patient survival

To identify the specific dependency genes of AML growth, we
extensively analyzed the in vitro CRISPR-Cas9 screen dataset and
determined the genes that AML cells are specifically required for
survival by comparing data from 26 AML cell lines with 1,028 cell
lines of other cancer types (Fig. 1A). Approximately 2,000 genes

Translational Relevance

DistinguishingAML’sfitness genes from the constitutive genetic
dependencies shared across all tumors holds the key to unlocking
cancer-specific therapeutic vulnerabilities. Here, we systematically
identified a set of fitness genes using large-scale in vitro and in vivo
CRISPR-Cas9 screens, which serve as AML-enriched dependency
genes. We extracted the core molecular effectors of fitness and
developed a prognostic AFG16 score. The AFG16 score was
validated in six independent cohorts across different analysis
platforms, proving clinical applicability. The associations of the
AFG16 score and genetic abnormalities were also revealed and
corroborated by ourmuti-omics data from the RJAML cohort. The
AFG16 score was able to substantially improve the European
LeukemiaNet classification. The predictive power of the AFG16
score to chemotherapy and targeted agents further demonstrated a
great potential for its clinical applications. Its direct relation to
AML fitness rendered them as potential targets that deserved
further exploration to define their therapeutic implications.
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were identified as AML-enriched dependencies including critical
signal transducers, transcriptional factors, and cofactors that have
been revealed to participate in the pathogenesis of AML (Supple-
mentary Fig. S1A). These genes were intersected with additional
AML genetic screen datasets, including in vitro CRISPR screens in
14 AML cell lines (19) and an in vivo screen in a BCR-ABL/NUP98-
HOXA9–driven model of myeloid leukemia (Fig. 1A; ref. 31). We
defined these 280 genes in the three-way overlap as AML fitness
genes (AFG; Supplementary Fig. S1B; Supplementary Table S3). In
this study, we define an AFG as any gene whose knockout decreases
AML cell growth and proliferation in vitro and in vivo as previously
reported (18). These fitness genes are also deemed as essential genes
that are required for the survival of AML cells, consistent with prior
work (19). To independently validate these 280 AFGs, we also
analyzed the differential essentiality profile between 23 AML cells
and 689 non-AML cell lines based on the RNA interference (RNAi)
in vitro screens. This analysis identified 3,070 AFGs, which were
significantly overlapped with these 280 AFGs identified using
in vitro and in vivo CRISPR screen datasets (Supplementary
Fig. S1C and S1D).

To extract the coremolecular effectors offitness that relate to patient
outcomes across a wide spectrum of AML cytogenetic subtypes, we
interrogated the HOVON dataset (25), in which 230 of the 280 AFGs
were captured. We applied statistical regression algorithms based on
the univariate CPHregression and the LASSO to relateAFGs to patient
survival in this discovery cohort. This yielded an optimal signature
comprising 16 genes (AFG16 score), which were significantly depleted
in vitro (Fig. 1B) and in vivo (Fig. 1C) screens. Four of the 16 genes
were also targeted by a focused CRISPR screen (33), which further
confirmed the strong depletion of these fitness genes, especially in the
in vitro and in vivo screening performed in the MV4-11 cell line and a
PDXmodel (Fig. 1D and E) and only showed depletion in the in vitro
screening from the U937 cell line (Supplementary Fig. S1E).

We further elaborated an AFG16 score for each patient described as
the weighted sum of expression of the 16 genes to dichotomize patients
with AML (Supplementary Table S4). Kaplan–Meier analysis dem-
onstrated that high AFG16 risk score was significantly associated with
inferior overall survival (OS; Fig. 1F). In addition, patients with high
AFG16 scores were older and had higher incidences of unfavorable
cytogenetics and the FLT3 internal tandem duplication (FLT3-ITD)
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Figure 1.

Analysis of genome-wide CRISPR-Cas9 knockout screens identify an optimal 16-gene prognostic signature.A, Flowchart for the identification of AML-specific fitness
genes and development of the 16-gene AML fitness (AFG16) signature. B, Heatmap showing the fold change of normalized read counts of sgRNAs targeting AFG16
signature genes across 12 AML cells transfectedwith the CRISPR-Cas9/sgRNA library before and after population doublings. Of note, sgRNA rawcounts for only 12 of
14 human AML cell lines were available and used for visualization. C, Heatmap showing impact on the AFG16 signature genes PreSel, PostSel and in vivo. PreSel,
PostSel, and InVivo represented preselection, postselection, and in vivo samples, respectively, as previously defined in the in vivo screen strategy (31).D andE,Scatter
plots showing the in vitro and in vivo depletion scores of four out of the 16 signature genesGPX4,ARID1A,CCND3, andOGDH at a gene level in two AMLmodels. Data
points representing themedian value of all targeting sgRNAs on each gene. F,Kaplan–Meier estimates of overall survival according to the AFG16 score in the HOVON
cohort.
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mutation, as well as lower complete remission (CR) rates to standard
induction chemotherapy, reflecting a potential link between AML
fitness-associated gene expression programs and clinical outcomes
(Supplementary Table S5).

The AFG16 score demonstrates robustness across technology
platforms and patient subtypes

We next comprehensively evaluated the association of the AFG16
score with patient survival in five independent AML cohorts from
three microarray platforms and the Illumina RNA-seq platform,
consisting of 1,570 patients. In the GSE37642 cohort (n ¼ 553),
patients with higher AFG16 scores had significantly shorter OS than
patients with lower scores (Fig. 2A and B). When applied to RNA-seq
datasets for the TCGA (n¼ 179), BeatAML (n¼ 244), andGSE106291
(n ¼ 250) cohorts, the AFG16 signature remained highly associated
with clinical outcome, demonstrating superior robustness across
technology platforms (Fig. 2C–E). These survival differences were
also observed for the subsets of cytogenetically normal AML
(CN-AML; Supplementary Fig. S2A–S2C) as well as in the indepen-
dent GSE12417 cohort (n ¼ 240) of patients with CN-AML (Fig. 2F
and G). In multivariate survival analysis using CPH models, the
AFG16 score retained independent prognostic value in training and
validation cohorts independent of knownmarkers of outcome includ-
ing patient age, cytogenetic risk group, type of AML (de novo vs.
secondary), presenting white blood cell (WBC) count, and the pres-
ence of NPM1 and FLT3-ITD mutations (Supplementary Table S6).

The AFG16 signature was initially trained using the HOVON
dataset, which included only a small subset (n ¼ 89/618, 14.4%) of
patients with CN-AML; therefore, survival differences within this
subset might not have been optimally captured by the LASSO algo-
rithm applied to the full cohort. We therefore retrained the 16 AFGs

against OS for only the patients with CN-AML in theHOVON cohort,
and derived a reweighted, optimized sub-signature in which only five
of the 16 fitness genes contributed to the gene sum-value signature
(AFG5). A high AFG5 score could identify patients with poor prog-
nosis in the independent GSE71014 (n ¼ 104) cohort of CN-AML
cases (Fig. 2H). These results demonstrated the feasibility of opti-
mizing the AFG16 score for selected patient subsets.

AFG16 score outperforms other gene expression-based
signatures

We next compared the AFG16 score with the powerful prog-
nostic signatures derived from gene expression analysis of stem cell
subsets defined phenotypically (LSC17; ref. 11) or by multiple
pairwise comparisons between AML subgroups and healthy con-
trols (CODEG22; ref. 7), or generated by capturing intratumor
heterogeneity of AML (GENE4; ref. 8). Noteworthy, theUROD gene in
our AFG16 signature was also included in the CODEG22, which has
recently been reported to be upregulated in AML and predicts poor
prognosis (34). The HOVON, TCGA, and BeatAML cohorts with
broad range of clinical annotations were used for comparisons. LSC17,
CODEG22, and GENE4 scores were prognostic in some of these three
cohorts when adjusting for common clinical covariates (Supplemen-
tary Tables S7–S9), whereas the AFG16 score displayed significantly
prognostic relevance across all these three cohorts, indicating a broader
applicability (Supplementary Table S6). The AFG16 score also showed
a slightly higher Harrell C-index across these three cohorts, despite a
lower value than the CODEG22 score in the TCGA cohort (Supple-
mentary Fig. S3). Furthermore, when the AFG16 score and other three
signatures were introduced in onemultivariatemodel, only the AFG16
score remained prognostic value in all three cohorts (Supplementary
Table S10). Overall, these results demonstrated that the AFG16 score
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The AFG16 score is robustly associated with OS in multiple independent AML cohorts across distinct analysis platforms and in patient subsets with diverse genetic
lesions. Kaplan–Meier estimates of OS according to theAFG16 score in theGSE37642 cohort quantified onGPL96 (A) andGPL570 (B)microarray platforms aswell as
in theRNA-seq–based cohorts TCGA (C), BeatAML (D), andGSE106291 (E). Kaplan–Meier estimates of OS according to theAFG16 score in the cytogenetically normal
AML cohorts quantified on GPL96 (F) and GPL570 (G) platforms.H, Kaplan–Meier estimates of OS according to the AFG5 score in the GSE71014 cohort quantified on
GPL10558 microarray platform. Red and blue lines represent OS of patients with prognostic scores above and below the median cutoff, respectively.
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was independent of other published gene expression-based signatures
and could be a robust prognostic predictor of AML survival.

The AFG16 score is able to distill downstream consequences of
specific genetic abnormalities and can complement the
ELN2017 classification scheme

Recurrent mutations and cytogenetics in AML carry independent
prognostic information, which are critical prognosticmarkers intrinsic

to the ELN scheme (5). To obtain more comprehensive insights into
the mutational landscape associated with the AFG16 score, we ana-
lyzed recurrently mutated somatic driver genes in the TCGA and
BeatAML cohorts (Fig. 3A). Notably, a high AFG16 score was
significantly associated with poor OS in this combined dataset
(Supplementary Fig. S4A). Moreover, seven molecular markers were
occurred at significantly different frequencies between patients
with AFG16high and AFG16low scores (Fig. 3B). TP53, FLT3-ITD
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Figure 3.

Differences in the incidences of genomic abnormalities between AFG16high and AFG16low patients. A, Heatmap showing somatic mutations and clinical information
between AFG16high and AFG16low patient groups. B, Forest plot showing the mutations and cytogenetic abnormalities that differ in frequencies between AFG16high

and AFG16low groups. Kaplan–Meier estimates of OS according to the status of TP53 mutation (C), complex karyotype (D), and CBFB/MYH11 fusion (E).
F, Reassignment of patient risks from the three ELN2017 schema (favorable, intermediate, and adverse risk) to the ELN plus AFG16 categories. ELN2017
favorable/AFG16high and ELN2017 adverse/AFG16low patients were reclassified to the intermediate risk, and ELN2017 intermediate/AFG16high patients were
reassigned to the adverse risk. Kaplan–Meier estimates of OS according to the risk categories of patients with AML in the ELN2017 (G) and AFG16 plus ELN2017 (H)
schema. I, Harrell C-index of risk classification by ELN2017 and AFG16 plus ELN2017 in the TCGA, BeatAML, and combined dataset.
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mutations, and complex karyotype were more frequent in the
AFG16high group of patients. In contrast, patients with a AFG16low

score more frequently harbored mutations in biallelic CEBPA andKIT
genes and core-binding factor (CBF) fusions, RUNX1/RUNX1T1 and
CBFB/MYH11, which were consistent with the findings from the
HOVON cohort (Supplementary Table S5). TP53 mutation and
complex karyotype were significantly associated with poor prognosis
while the CBFB/MYH11 fusion was suggestive of relatively better
clinical outcome as single variate (Fig. 3C–E). However, in a multi-
variate CPH regression model that included all seven of these genetic
abnormalities and well-known clinical parameters as well as the
AFG16 score, only TP53 retained prognostic significance, whereas
the AFG16 score remained a significant independent prognostic factor
(Supplementary Table S11).

We next evaluated the prognostic value of the AFG16 score in the
context of the state-of-the-art ELN2017 classification. A multivariable
CPH regression analysis revealed that the AFG16 score was indepen-
dent of the patient age, gender, WBC count, and ELN2017 classifica-
tion (Supplementary Table S12). We also found significant differences
in the ELN2017 risk-group distribution between patients with
AFG16high and AFG16low scores. Nearly half of patients with a
AFG16high score were determined as having adverse risk, whereas
24% and 27% were classified as having favorable and intermediate
risk, respectively. In the patients with AFG16low scores, 36%, 35%, and
29% were classified in the favorable-, intermediate-, and adverse-risk
groups, respectively (Supplementary Fig. S4B). The AFG16 score was
also able to strongly discriminate patients with longer and shorter OS
in the three ELN2017 subgroups (Supplementary Fig. S4C–S4E). By
incorporating the AFG16 signature into the ELN2017 scheme, three
new risk groups were generated as follows: patients with ELN2017-
favorable/AFG16low were reclassified as the favorable-risk group,
whereas ELN2017-favorable/AFG16high, ELN2017-intermediate/
AFG16low and ELN2017-adverse/AFG16low patients were reclassified
as the intermediate-risk group, andELN2017-intermediate/AFG16high

patients were reassigned to the adverse-risk group (Fig. 3F). The
refined risk scheme contributed to an improved risk classification of
patients with AML (Fig. 3G andH), evidenced by a higher Harrell C-
index in the combined cohort or in the two cohorts, respectively
(Fig. 3I). These results demonstrated that the AFG16 score could
provide additional prognostic power to the ELN2017 classification
scheme.

The AFG16 score is a clinically applicable gene expression–
based signature

With the rapid evolution of high-throughput next-generation
sequencing (NGS) technologies, RNA-seq, and targeted gene sequenc-
ing hold expanded promise for improving diagnosis, prognosis, and
treatment of human cancer (3, 35, 36). We sought to validate the
AFG16 score retrospectively by using RNA-seq and high-depth tar-
geted gene sequencing on a de novo AML cohort from the Ruijin
Hospital, including a total of 157 patients (Supplementary Table S13).
Consistent with our findings based on public transcriptomics datasets,
patients with AFG16high scores had significantly inferior OS than
patients withAFG16low scores (Fig. 4A). Similarly, a highAFG16 score
was strongly associated with shorter EFS (Fig. 4B). In a multivariate
OS model or EFS model including established clinical factors, the
AFG16 score retained independent prognostic value (Supplementary
Table S14). The association between a high AFG16 score and shorter
OS and EFSwas also significant in the subset of patients with CN-AML
(Fig. 4C and D). We also compared the mutational landscape of
AFG16high and AFG16low patients in the RJAML cohort (Fig. 4E). In

addition toFLT3-ITDmutation and complex karyotype, a highAFG16
score was also associated with higher incidence of RUNX1 mutation.
Biallelic CEBPA mutation and RUNX1/RUNX1T1 fusion were more
frequent in the AFG16low group (Fig. 4F). Despite no statistical
significance, the TP53 and KIT mutations exhibited expected muta-
tional trends in frequency between these two patient groups. A high
AFG16 score was associated with unfavorable ELN2017 risk (Fig. 4G),
and predicted relatively poorer survival in the ELN2017 subgroups,
respectively. Despite no statistical significance in some of the sub-
groups considering OS or EFS, possibly due to the small sample size, a
clear separation of survival curves between the AFG16high and
AFG16low patients was observed (Supplementary Fig. S5A and
S5B). More importantly, addition of the AFG16 signature into the
ELN2017 scheme significantly improved the risk classification of
patients with AML (Fig. 4H and I; Supplementary Fig. S5C and
S5D). Overall, these results demonstrated the strong prognostic sig-
nificance and broad applicability of the AFG16 score on the clinically
serviceable NGS platform.

AFG16 score improves the prediction of chemotherapy
resistance in AML

We next evaluated the ability of the AFG16 score to predict
therapeutic resistance, which were defined as failure to achieve mor-
phological CR after initial induction chemotherapy as previously
reported (11). In the HOVON and RJAML cohorts, the AFG16 score
and cytogenetic risk had comparable predictive ability for chemother-
apy resistance in single-variable models [Supplementary Fig. S6A
and S6B; HOVON cohort: area under the receiver operating charac-
teristic curve (AUROC) ¼ 0.695 vs. 0.657, P ¼ 0.194; RJAML cohort:
AUROC ¼ 0.692 vs. 0.635, P ¼ 0.137]. In multivariate logistic
regression model that included common clinical parameters (age,
NPM1 and FLT3-ITD mutations or WBC count), further adding the
AFG16 score into the model had better predictive power for
chemotherapy resistance than that including the cytogenetic risk
in the HOVON cohort (Supplementary Fig. S6C, AUROC ¼
0.737 vs. 0.690, P ¼ 0.011), whereas the finding did not reach
statistical significance in the RJAML cohort (Supplementary Fig. S6D,
AUROC¼ 0.774 vs. 0.729, P¼ 0.166). Multivariate logistic regression
models that included common clinical parameters and cytogenetic
risk, inclusion of the AFG16 score significantly improved the predic-
tive power (Fig. 5A andB; HOVONcohort: AUROC¼ 0.738 vs. 0.690,
P¼ 0.007; RJAML cohort: AUROC¼ 0.771 vs. 0.701, P¼ 0.038). The
AFG16 score ranked the most significant covariate in multivariate
logistic regression models as measured by theWald x2 statistic in both
cohorts (Fig. 5C and D). Together, these results indicated that the
AFG16 score can assist the prediction of chemotherapy resistance in
patients with AML.

The AFG16 score captures specific transcriptomic properties
and confers promising therapeutic strategies to AML

Given the significant associations between a high AFG16 score and
lower CR rate to induction chemotherapy as well as inferior patient
outcome, we further investigated whether the patients with AFG16high

score could benefit from alternative therapeutic strategies in addition
to chemotherapy. We then analyzed the ex vivo drug sensitivity profile
of patients with AML to a panel of small-molecule inhibitors in
the BeatAML cohort (Fig. 6A). To test the reliability of this analysis,
we used the agent quizartinib as a positive control, which is a
clinically effective drug known to markedly improve the prognosis
of relapsed/refractory AML patients with FLT3-ITD mutation (37).
Consistent with previous study, we found that mononuclear cells
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from FLT3-ITD–mutated AML patients were more sensitive to the
quizartinib-mediated killing than those from patients without
FLT3-ITD mutation, evidenced by relatively lower AUC values
(Fig. 6B). The receiver operating characteristic (ROC) curve also
suggested that patients with FLT3-ITD mutation will have lower
drug sensitivity values than patients without FLT3 mutations
(Fig. 6C). We next compared the drug sensitivity profile of the
upper quartile of patients with the highest AFG16 scores to those of
the bottom quartile of patients with the lowest AFG16 scores. This

identified two drugs, flavopiridol and SNS-032, both of which
significantly affected cell viability of the AFG16high patient group,
showing with lower AUC values than that of the AFG16low patient
group (Fig. 6D and E; Supplementary Table S15).

Interestingly, flavopiridol and SNS-032 are both novel potent
cell-cycle inhibitors of CDK family members, and showed encour-
aging clinical activities in AML (38, 39). We reasoned that a high
AFG16 score probably reflected biological properties of AML blasts
that confer higher sensitivity to these two targeted therapeutic
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Figure 4.

Validation of the prognostic value of the AFG16 score and its associated mutational landscape in the RJAML cohort. Kaplan–Meier estimates of OS (A) and EFS (B)
according to the AFG16 score in the full RJAML cohort and in the subset of patients with cytogenetically normal AML (C andD). E, Heatmap showing somatic mutations
and clinical information between AFG16high and AFG16low patient groups in the RJAML cohort. F, Forest plot showing the mutations and cytogenetic abnormalities that
differs in frequenciesbetweenAFG16high andAFG16lowgroups.G,Bar plot showing thedistributionofELN2017 risks inAFG16high andAFG16lowpatientswithAML.Kaplan–
Meier estimates of OS (H) and EFS (I) according to the risk categories of patients with AML in the ELN2017 and AFG16 plus ELN2017 schema.
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agents. To find evidence in support of this, we carried out differ-
ential gene expression analysis between the AFG16high and
AFG16low patient groups. This identified 1,194 genes as upregulated
and 642 genes as downregulated in the AFG16high group (Fig. 6F;
Supplementary Table S16). Gene set enrichment analysis (GSEA)
using the canonical gene sets from the Molecular Signatures
Database (MSigDB) further revealed significantly elevated cell-
cycle signaling (Fig. 6G) and associated genes (Fig. 6H), which
explained the stronger inhibitory effect of flavopiridol and SNS-032
agents for the AFG16high patients. Collectively, these findings
suggested that the AFG16 score could be employed to facilitate
more rational use of potent drug candidates like flavopiridol and
SNS-032, not only used for patients with relapsed/refractory AML
but also in newly diagnosed AML with a high probability to poorly
respond to conventional induction chemotherapy.

Discussion
The state-of-the-art risk stratification system, such as the ELN2017

scheme, provides a broadly accepted and reliable classification of
patients with AML (5), which rely heavily on cytogenetic screening
and mutational profiling on specific genes (NPM1, FLT3, CEBPA,
TP53, RUNX1, and ASXL1). However, the molecular complexity of
AML presents a considerable barrier to clinical implementation of
such approaches (1, 3). Clinically serviceable transcriptomics tech-
nologies with the reproducibility and analytic validity hold the
great potential to uncover prognostic transcriptome information for

AML (6–11, 35). Such an approach will allow rapid risk assessment for
all patients indiscriminately, including those not bearing mutations
intrinsic to the ELN classification and with a normal karyotype, and
therefore it could provide additional prognostic value and complement
the ELN guidelines.

Because the implementation of CRISPR-Cas9–based genome edit-
ing system in cancer research, numerous candidate AML targets have
been revealed largely by in vitro CRISPR screens (19, 40). Recent
studies further developed an in vivo screening strategy to not only
identify leukemia dependencies that are essential for cancer progres-
sion but also define themicroenvironment-responsive signals required
for leukemogenesis (31, 33). Here, we carried out an integrated analysis
of large-scale in vitro and genome-wide in vivo CRISPR screens to
comprehensively identify the fitness genes for AML. Given the critical
importance offitness genes for functional phenotypes ofAMLcells and
the direct link between leukemia cell survival and disease progression,
we speculated that these AML-specific fitness genes may also harbor
key prognostic information. We thus devised a powerful prognostic
signature composed of 16 fitness genes (AFG16) and subsequently
validated the prognostic impact in six independent validation sets
across the spectrum of AML genotypes and distinct analysis platforms
employed in data generation. Therefore, our study also indicated that a
common prognostic signature can be derived, regardless of the under-
lying genetic lesions found in AML. The dysregulated expression of
these fitness genes contained in the signature likely perturb survival
signals and lead to distinct clinical outcomes among various subgroups
of AML.
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The AFG16 score predicts chemother-
apy response. ROC curves for predic-
tion of initial chemotherapy resistance
utilizing multivariate logistic regres-
sion models that include patient age,
cytogenetic risk as well as NPM1 and
FLT3-ITD mutations or WBC count as
covariates, with or without AFG16
score in the HOVON cohort (A) and
the RJAML cohort (B). P values are
generated by DeLong’s test. Wald
c2 statistic of each covariate for pre-
diction of chemotherapy resistance in
the multivariate regression models
that include the AFG16 score in the
HOVON cohort (C) and RJAML cohort
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Figure 6.

Ex vivo drug sensitivity landscape of AFG16high and AFG16low AML. A, Schematic diagram for analyzing ex vivo drug sensitivity data in AML. The freshly isolated
mononuclear cells from patients were exposed to 122 small-molecule inhibitors with 7-point drug dilution treatment, respectively. The drug sensitivity of these
patient-derived cells was further determined. B, Boxplot showing treatment response between samples of FLT3-ITD and FLT3wild-type (WT) AML patients against
quizartinib (AC220). C, The ROC curve indicates the significance of the quizartinib effect on cells isolated from FLT3-ITD and FLT3-WT patient samples. D and E,
Boxplot and ROC curve showing treatment response between samples of AFG16high and AFG16low patients against flavopiridol (D) and SNS-032 (E). F, Volcano plot
of differentially expressed genes between the AFG16high and AFG16low patients. Significant geneswere determined using the threshold of |log2(fold change) | ≥ 1 and
FDR < 0.05. G, GSEA showing upregulation of cell-cycle signaling in AFG16high patients. H, Heatmap showing the expression level of the cell-cycle signaling genes
with core enrichment from the GSEA.
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The AFG16 score mainly captured the cell fitness of leukemic
blasts that were intrinsically related to molecular and clinical
features of AML. A greater understanding of the established risk
factors associated with fitness could contribute to better clinical
assessment and improved outcomes. At a basic level, unfavorable-
risk AML cells are commonly more malignant or more likely to
evade chemotherapeutics with enhanced fitness. Consistent with
this, the high AFG16 score was associated with adverse-risk factors
including older age (41), presence of TP53 and FLT3-ITD muta-
tions (1, 3) as well as complex karyotype (42). These adverse-risk
factors may confer a fitness advantage to leukemia cells, accompa-
nied by enhanced stress adaptation (43) and competitive strength
over other cells (44), to fully engage in oncogenic transformation
and therapy resistance. Conversely, patients with a AFG16low score
more frequently harbored biallelic CEBPA and KIT mutations as
well as CBF fusions. As previously reported, patients with biallelic
CEBPA mutation (45) and CBF-AML (46) had relatively favorable
clinical outcome compared with patients with other genetic lesions.
The elevated frequency of KIT mutations in AFG16low patients can
be explained, at least in part, by the higher incidence of CBF-AML,
since KIT mutations are frequently associated with CBF-AML (47).
The strong prognostic impact of the AFG16 score was independent
of these prognostic molecular abnormalities, which suggested that
perturbations introduced by these driver mutations coalesced on
changes in fitness properties, and that the AFG16 score had the
ability to distill these downstream consequences.

More importantly, we demonstrated that the AFG16 score
captured additional prognostic information and could substan-
tially complement the ELN2017 risk classification system. The new
integrated risk classification schema after incorporating the AFG16
score provided a better stratification and prognosis prediction,
which would facilitate the reassign of patient risk at diagnosis and
adopt a more appropriate consolidation of therapy regimen. A
high AFG16 score also probably reflected part of the biological
properties of LSCs that drive chemoresistance in AML (14), evi-
denced by the significant depletion of these 16 genes in this
signature using the in vivo CRISPR screen, which was performed
in a physiologically relevant context using LSCs (31). We indeed
found that the AFG16 score was a strong prognosticator that
can significantly assist the prediction of chemotherapy resistance
in patients with AML. The AFG16 RNA-seq assay will allow rapid
risk assessment for newly diagnosed patients, enabling recom-
mendation of more pioneering investigational treatments to be
directed to AFG16high patients with a high predicted likelihood to
have resistant disease, while avoiding unnecessary added toxicity
for AFG16low patients.

Several powerful prognostic signatures including LSC17 (11),
CODEG22 (7), and GENE4 (8) scores have recently been proposed
to predict outcome in patients with AML. The relatively better
performance of the AFG16 score compared to these signatures indi-
cated that molecular markers conferring fitness defects in cells contain
potential valuable prognostic information that underpin the predic-
tion of patient outcome and should not be underestimated. A few
possible reasons could explain the better performance of AFG16
signature. Most importantly, the genome-wide CRISPR screens, espe-
cially the in vivo screens offer a strategy for identifying critical
dependencies of AML cells within the physiologically relevant micro-
environment, allowing for the capture of core transcriptional pro-
grams associated with survival. Furthermore, the fitness genes were
screened out across a broad spectrum of AML cell lines and AFG16
score was trained using a large scale of patient cohort consisting

of multiple cytogenetic/genotype subgroups, reflecting the common
transcriptional dependencies among various subsets of AML. In line
with previous reports (7, 11), the AFG16 genes were implicated in a
multi-layer and coordinated biological program important for AML
cells, which render not only their prognostic relevance but also
promising therapeutic targets for patients with AML. For example,
the shared gene with the CODEG22 signature, UROD, has been
reported to mediate the oncogenicity of MYCN by increasing activity
of the heme/porphyrin pathway, endowing leukemia cells with sur-
vival advantages (34). The AFG16 genes were also involved in fun-
damental leukemia biology including alternative splicing, ferroptosis,
chromatin remodeling, myeloid differentiation, and transcription
regulation. Perturbations mediated by these biological processes coa-
lesced on changes in fitness properties, contributing to the functional
phenotypes of AML cells, thus informing the prognosis for patients.
We also demonstrated the prognostic impact and clinical applicability
of our signature through a retrospective cohort using clinically ser-
viceable RNA-seq and targeted gene sequencing. With the emergence
of NGS technologies in clinical routine (35, 36), the expression level of
signature genes can be easily evaluated, the AFG16 score thus can be
rapidly calculated for individual patient for risk assessment in clinical
practice.

Furthermore, our study also serves as a proof-of-concept for the
utility of the AFG16 score to identify associated biological processes
activated or inactivated, potentially enabling determination of
therapeutic susceptibility for patients with AML to specific targeted
agents. We carried out an ex vivo drug sensitivity analysis based on a
small panel of small-molecule inhibitors, and suggested that the
AFG16high patients exhibited higher sensitivity to cell-cycle inhi-
bitors, flavopiridol (48) and SNS-032 (38). Further pathway enrich-
ment analysis confirmed the significant activation of cell-cycle
signaling in high-score patients. Despite an ex vivo study, our
results indicated the potential use of flavopiridol and SNS-032 to
effectively treat AFG16high patients. In fact, flavopiridol has shown
encouraging clinical activity in both newly diagnosed and relapsed/
refractory patients with AML as single agent (49) or combinational
therapies (50). These findings suggested that the AFG16 score may
be utilized to facilitate the more rational use of flavopiridol in
patients most likely to benefit, such as AFG16high patients, while
sparing low-score patients who derive little benefit any unnecessary
potential toxicities.

In summary, using large-scale in vitro and in vivo CRISPR screens,
we identified a set of fitness genes for AML, which serve as critical
candidates of leukemia that deserve further explorations to define their
therapeutic implications. Importantly, we derived a 16-gene fitness
score for rapid risk assessment for newly diagnosed patientswithAML.
Incorporation of the AFG16 score into the ELN2017 classification
schema could significantly improve AML risk stratification, thus
guiding risk-adapted therapy decisions. The predictive power of the
AFG16 score to therapeutic responses further demonstrated a great
potential for its clinical applications.
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