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Abstract
Background. Indoxyl sulphate (IS) and p-cresyl sulphate
(PCS) are uraemic toxins that have similar protein bind-

ing, dialytic clearance and proinflammatory features.
However, only a few prospective studies have evaluated
possible associations between these two retained solutes
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and renal disease progression in chronic kidney disease
(CKD) patients.
Methods. This prospective observational study evaluated
independent associations between serum total IS and
PCS with renal progression in a selected cohort of pa-
tients having different stages of CKD. Baseline PCS
and IS were correlated with renal progression [defined
as decrements in estimated glomerular filtration rate
(eGFR) >50% from baseline or progression to end-stage
renal disease (ESRD)] and death during a follow-up
period of 24 months.
Results. Of 268 patients, 35 (13.1%) had renal progression
and 14 (5.2%) died after a mean follow-up of 21 ±
3 months. Univariate Cox regression analysis followed
by multivariate analysis showed that high-serum PCS le-
vels were associated with renal progression and all-cause
mortality independent of age, gender, diabetes status, albu-
min levels, serum IS, serum creatinine, Ca × P product,
intact parathyroid hormone, haemoglobin or high-sensitiv-
ity C-reactive protein level. Serum IS was only associated
with renal progression; however, the predictive power of
serum IS was weakened when serum PCS was also present
in the analytical model.
Conclusions. In addition to traditional and uraemia-related
risk factors such as renal function, serum IS and PCS le-
vels may help in predicting the risk of renal progression in
patients having different stages of CKD.

Keywords: chronic kidney disease; indoxyl sulphate; p-cresyl sulphate;
protein-bound toxins; proximal tubule

Introduction

Despite a better understanding of disease mechanisms and
improved control of important modifiable risk factors, de-
clines in renal function are still inevitable in a substantial
proportion of chronic kidney disease (CKD) patients.
Traditional and uraemia-related risk factors are not suffi-
cient in explaining renal outcomes in CKD patients.

p-Cresyl sulphate (PCS) and indoxyl sulphate (IS) are
prototypic protein-bound uraemic toxin molecules. These
two retained solutes are not only biomarkers for renal
function but also actively participate in the development
of diseases [1]. They share various similarities, including
their production by gut bacteria [2], a strong albumin bind-
ing at Sudlow II site [3], significant renal metabolism, low
dialytic clearance [4,5] and an emerging role in cardiovas-
cular disease and mortality in renal patients [6,7]. The
overloading of IS in CKD rats results in glomerular scler-
osis and interstitial fibrosis [8] via aberrant genetic expres-
sion of TGF-β1, TIMP-1 and Pro-α1 collagen [9, 10], as
well as complex redox alterations [11]. IS may also cause
endothelial and vascular dysfunction by promoting vascu-
lar smooth muscle cell proliferation [12] through activation
of platelet-derived growth factor receptors [12] and mito-
gen-activated protein kinase pathways [13]. Clinically, IS
is associated with increased aortic calcification and vascu-

lar stiffness [7]. In contrast, possible deleterious effects of
PCS on renal cells have been rarely studied. Previous stud-
ies revealed that p-cresol induces endothelial dysfunction
[14] and decreases mRNA expression of intercellular ad-
hesion molecule-1 and vascular cell adhesion molecule-1
[15]. However, it is now well known that p-cresol is an
artifact that results from PCS sample preparation [16]
and both p-cresol and PCS exert different behavioural pat-
terns on the respiratory burst activity of leucocytes [17].
Exposure of human umbilical endothelial cells to PCS re-
sults in increased shedding of endothelial microparticles
via a Rho kinase-dependent pathway [6]. A high total
PCS level is associated with aortic calcification and mortal-
ity in both CKD [18] and haemodialysis patients [19,20].
However, despite the similarities of these two molecules,
studies that compare in parallel the contribution of serum
PCS and IS levels to renal progression in patients having dif-
ferent stages of CKD are currently lacking.

In the present study, we prospectively evaluated associa-
tions between both serum PCS and IS levels and renal pro-
gression and all-cause mortality in CKD patients.

Materials and methods

Patient selection and study population

Prevalent pre-dialysis CKDpatientswho attended an outpatient clinic in the
Nephrology Department of Chang Gung Memorial Hospital at Keelung
from November 2006 to October 2007 were recruited into the study. The
inclusion criteria were adults aged >18 but <80 years old and showed no
spontaneous improvement or progression of renal disease in the past
3 months. Patients were excluded from the study if they had cardiovascular
disease (coronary artery disease, myocardial ischaemia, cerebrovascular
disease or peripheral artery disease) in the past 3 months, infections requir-
ing admission in the past 3 months, uncontrolled hypertension, serum al-
bumin level <2.5 mg/dL or unwillingness to participate in the trial. CKD
was defined as having a persistent proteinuria or a decreased estimated
glomerular filtration rate (eGFR) <90 mL/min per 1.73 m2 (determined
by abbreviated Modification of Diet in Renal Disease equation) in two sep-
arate measurements within an interval of 3 months. In accordance with the
NKF/DOQI classification system, these patients were classified into stages
I, II, III, IVor V for descriptive purposes. A total of 268 patients were en-
rolled into the study and gave their informed written consent. This study
was in adherence with the Declaration of Helsinki and was approved by
the Ethics Committee of the Institutional Review Board at Chang Gung
Memorial Hospital.

Study design

All eligible patients were carefully interviewed to identify medical disease
and concomitant medications. Twelve-hour fasting blood samples were
obtained for determination of serum levels of total PCS, IS, and for stand-
ard laboratory parameters. Medical visits and renal function measure-
ments were followed-up prospectively at 3-month, 6-month, 12-month
and 24-month intervals, until commencement of dialysis therapy or death.
All eligible patients were followed-up until 15 April 2010 for recording of
renal progression [defined as reduction of eGFR by 50% or end-stage
renal disease (ESRD) requiring dialysis] or death. Composite endpoints
of renal progression and/or death were also evaluated (Figure 1). Diabetes
mellitus (DM) was defined as a fasting glucose level ≥126 mg/dL or use
of any hypoglycaemic medication. Hypertension was considered present
if the patient received medical therapy for such a condition or if blood
pressure was >140/90 mm Hg.

Baseline measurements

Serum samples were deproteinized by addition of 3 parts methanol to 1
part serum for determination of total IS and PCS. All analyses were per-
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formed on a Waters Acquity Ultra Performance Liquid Chromatography
(UPLC) system (Milford, MA, USA), including binary solvent manager,
sampler manager, column compartment and photo diode array detector,
connected with Waters Empower 2 software. IS and PCS were detected
at 280 and 260 nm. Buffer flow was 0.4 mL/min using 10 mM
NH4H2PO4 (pH = 4.0) (A) and 100% acetonitrile (B) with a gradient from
82.5%A/17.5%B to 55%A/45%B, over 9 min. Under these conditions, IS
and PCS appeared at 1.4 and 1.7 min, respectively [21]. The limits of
detection of this assay were 0.225 mg/L for IS and 1 mg/L for PCS. Cali-
bration curves were constructed by plotting the peak areas versus the con-
centrations of each analysate and had average r2 values of 0.999 ± 0.001.
Quantitative results were obtained and calculated as concentrations (mg/
L). Intra- and inter-assay coefficients of variation relative standard devi-
ation were 0.4 and 0.05% for IS and 5.50 and 7.48% for PCS, respective-
ly. We spiked different concentrations of IS, PC and PCS in serum of
healthy individuals (n = 5). The recovery rate was calculated as [(final
concentration − initial concentration) / added concentration]. Recoveries
were 100.99 and 108.73% for IS and PCS, respectively. Furthermore, par-
allel comparisons of serum total PCS and IS levels obtained from UPLC
and mass spectrometry (MS) in 10 random selected patients did not reveal
significant disagreement from Bland–Altman plots (for serum IS, Pit-
man’s test of difference in variance showed r = −0.263, P = 0.493 and
for serum PCS, r = −0.765, P = 0.124).

In addition to the demographic and clinical data, calcium (Ca), phos-
phate (P), intact parathyroid hormone (iPTH), total cholesterol, haemoglo-
bin, high-sensitivity C-reactive protein (hs-CRP), uric acid and albumin
were also measured at baseline. Serum creatinine (sCr) was assessed at
the above-mentioned time points by spectrophotometric analysis using a
modified kinetic Jaffe reaction.

Statistical methods

Descriptive statistics are expressed as means ± standard deviation, median,
range or percentage frequency, as appropriate. All variables were tested for
normal distribution by the Kolmogorov–Smirnov test. Student’s t-tests or
Mann–Whitney U-tests were applied to compare means of continuous
variables. Categorical data were tested using the Chi-square test. Pearson
or Spearman correlation coefficients were used to test correlations between
PCS and IS with other variables. Data were log-transformed to approxi-
mate normal distributions. Variance Inflation Factor (VIF) calculation
was performed to address the issue of collinearity by using principle com-
ponent analysis. Kaplan–Meier curves were performed to assess renal and
overall survival in patients with serum PCS and IS levels above and below
the median. Adjusted risk estimates for endpoints were calculated using
univariate, followed by multivariate, Cox proportional hazard regression
analysis. Hierarchical selection procedures were employed to construct a
powerful covariate set for adjustment in the subsequent major hypothe-
sized variables, such as PCS and IS. The inclusion criteria for model se-
lection in a covariate set were predetermined as P < 0.2 according to major

statistical packages. The set of covariates with P-values <0.2 for predicting
renal progression included albumin, Ca × P product, eGFR, DM and gen-
der. For analysis of all-cause mortality, the hierarchical selected covariates
included age, albumin, haemoglobin and hs-CRP. The assumption of pro-
portionality was checked graphically using the complementary log–log
plot and was found to be acceptable for the risk factors of interest.
Bland–Altman plots were used to test agreement between UPLC and
MS. All statistical tests were two-tailed, and a P-value of <0.05 was con-
sidered statistically significant. Data were analysed using the SPSS 13.0
software for Windows XP (SPSS Inc., Chicago, IL).

Results

Baseline characteristics of study population

Table 1 shows the baseline characteristics of the study
population. Serum total PCS levels were significantly
higher compared with those of the healthy controls (7.16
[<1.0–42.06] vs 1.93 [1–3.8] mg/L, P < 0.001), as were
serum total IS levels (4.63 [<0.225–53.58] vs 0.88
[0.59–1.26] mg/L, P < 0.001). Of all patients, 35
(13.1%) had renal progression and 14 (5.2%) patients died
(7 patients from cardiovascular cause, 6 from infection and
1 from liver cirrhosis) during a mean follow-up of 21 ±
3 months. Table 2 shows correlations between serum levels
of PCS and IS with eGFR and other important risk factors
of renal progression.

Serum PCS/IS and stage of CKD

Baseline serum PCS and IS levels were significantly high-
er in patients who had renal progression during follow-up
compared with non-progressors [serum PCS levels were
10.26 (1.69–36.24) mg/L in progressor patients and 3.97
(<1–42.06) mg/L in non-progressor patients, P < 0.001;
serum IS level, 7.62 (<0.225–53.58) mg/L vs 1.94
(0.29–39.09) mg/L, P < 0.001, respectively].

Table 3 summarizes the hazard ratios (HR) for renal pro-
gression and all-cause mortality in the entire study popu-
lation and in patient subsets divided according to baseline
eGFR level as function of serum PCS and IS levels. Higher
serum PCS levels were significantly associated with renal

Assessed for eligibility
(n=280)

Included in the study
(n= 268)

Excluded (n=12)
-Not meet inclusion criteria (n=1, albumin < 2.5 mg/dL)
-Refuse to participate (n=9)
-Lost to follow-up at first visit (n=2)

Primary endpoints
Reduction of eGFR by 50% or progression to ESRD (n = 35)
All-cause mortality (n = 14)

Composite endpoints (n = 46)

Fig. 1. Flow chart indicates patient enrollment.
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progression [HR, 1.092; 95% confidence interval (CI),
1.060–1.126; P < 0.001] and all-cause mortality (HR,
1.099; 95% CI, 1.053–1.148; P < 0.001) in all patients.
A higher serum IS level was associated with renal progres-
sion (HR, 1.063; 95% CI, 1.041–1.085; P < 0.001) but not
with all-cause mortality. In the subset analysis of patients
with different baseline renal functions, these associations
remained significant in patients with eGFR <45 mL/min.
However, there was no association between either serum
PCS or IS with the risk of renal progression or all-cause
mortality in patients with eGFR >45 mL/min.

Serum PCS/IS and progression of CKD

A crude analysis found that a serum total PCS level
>7.16 mg/L (the median) and a serum total IS level
>4.63 mg/L (the median) were associated with renal pro-
gression (log-rank P < 0.001; Figures 2A and 3A). Uni-
variate analysis (Table 4) identified that higher serum
total IS (HR, 1.063; 95% CI, 1.041–1.085; P < 0.001)
and PCS (HR, 1.092; 95% CI, 1.060–1.126; P < 0.001)
levels were significantly associated with progression of
CKD. Other significant risk factors included presence of
DM (HR, 2.618; 95% CI, 1.282–5.344; P = 0.008), eGFR
(HR, 0.96; 95% CI, 0.94–0.981; P < 0.001), calcium (HR,
0.183; 95% CI, 0.110–0.306; P < 0.001), phosphate (HR,

2.899; 95% CI, 2.136–3.934; P < 0.001), Ca/P product
(HR, 1.109; 95% CI, 1.067–1.154; P < 0.001), iPTH
(HR, 1.003; 95% CI, 1.001–1.005; P < 0.001), haemoglo-
bin (HR, 0.678; 95% CI, 0.572–0.802; P < 0.001), uric
acid (HR, 1.255; 95% CI, 1.094–1.493; P < 0.001) and al-
bumin (HR, 0.236; 95% CI, 0.141–0.392; P < 0.001).
Multivariate Cox regression analyses were constructed
with different adjustments for important risk factors for
CKD progression (Table 5). Serum PCS, analysed as a
continuous variable, was independently associated with
CKD progression after adjustment for patient demographic
characteristics (age, gender and DM, model 1). The pre-

Table 1. Baseline characteristics of all patients

All patients Progressor Non-progressor
P-valuen = 268 n = 35 n = 233

Age, years 66.9 ± 12 67 ± 14 66.8 ± 12 0.929a

Male, n, % 154 (57.5%) 13 (37.1%) 141 (60.5%) 0.009b

BMI, kg/m2 25.8 ± 3.5 26.9 ± 5.5 25.7 ± 3.1 0.200a

Diabetes, n, % 126 (47%) 24 (68.6%) 102 (43.8%) 0.006b

SBP, mm Hg 135 ± 15 142 ± 18 138 ± 14 0.093a

DBP, mm Hg 71 ± 8 72 ± 10 72 ± 7 0.709a

eGFR, mL/min/1.73 m2 44.8 ± 32 25.8 ± 22 47.58 ± 32 <0.001a

Initial CKD stage <0.001b

I, n, % 25 (9.3%) 2 (5.8%) 23 (9.9%)
II, n, % 42 (15.7%) 1 (2.8%) 41 (17.6%)
IIIa, n, % 37 (13.8%) 1 (2.8%) 36 (15.5%)
IIIb, n, % 54 (20.1%) 5 (14.3%) 49 (21%)
IV, n, % 76 (28.4%) 9 (25.7%) 67 (28.7%)
V, n, % 34 (12.7%) 17 (48.6%) 17 (7.3%)

sCr, mg/dL 1.9 ± 1.4 3.6 ± 2.3 1.7 ± 1.0 <0.001a

Ca, mg/dL 9.2 ± 0.5 8.8 ± 0.8 9.3 ± 0.4 <0.001a

P, mg/dL 3.8 ± 0.9 4.7 ± 1.4 3.8 ± 0.6 <0.001a

Ca × P, mg2/dL2 35.5 ± 7.1 40.8 ± 10.5 34.8 ± 6.1 <0.001a

iPTH, pmol/L 89.9 (1–692) 144 (25.8–333) 52.3 (1–692) <0.001c

Cholesterol, mg/dL 193 ± 60 211 ± 87 191 ± 56 0.069a

haemoglobin, g/dL 12.6 ± 2.1 11.1 ± 2.0 12.8 ± 2.0 <0.001a

hs-CRP, mg/L 3.2 (0.2–48.4) 2.1 (0.4–19.6) 1.63 (0.2–48.4) 0.564
Uric acid, mg/dL 6.9 ± 1.8 7.8 ± 1.8 6.8 ± 1.8 0.002a

Albumin, g/dL 3.9 ± 0.4 3.6 ± 0.5 4.0 ± 0.4 <0.001a

Microalbumin, mg/day 61.4 (2–16 900) 173 (2.5–3159) 41 (2–16 900) 0.07
Total PCS, mg/L 7.16 (<1–42.06) 10.26 (1.69–36.24) 3.97 (<1–42.06) <0.001c

Total IS, mg/L 4.63 (<0.225–53.58) 7.62 (<0.225–53.58) 1.94 (0.29–39.09) <0.001c

Abbreviation: BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; CKD,
chronic kidney disease; sCr, serum creatinine; Ca, calcium; P, phosphate; iPTH, intact parathyroid hormone; hs-CRP, high-sensitivity C-reactive protein;
PCS, p-cresyl sulphate; IS, indoxyl sulphate.
aStudent’s t-test P-value, progressor vs non-progressor.
bChi-square test P-value, progressor vs non-progressor.
cMann–Whiney U-test P-value, progressor vs non-progressor.

Table 2. Correlations between log-transformed serum total PCS, IS and
selected risk factors

Log PCS Log IS

r P-value r P-value

− log-eGFR 0.642 <0.001 0.720 <0.001
Potassium 0.269 <0.001 0.194 <0.001
Ca × P 0.233 <0.001 0.184 <0.001
Haemoglobin −0.513 <0.001 −0.546 <0.001
Albumin −0.317 <0.001 −0.394 <0.001
Log IS 0.655 <0.001 – –

Abbreviation: eGFR, estimated glomerular filtration rate; Ca, calcium; P,
phosphate; PCS, p-cresyl sulphate; IS, indoxyl sulphate.
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dictive role of serum PCS remained independently signifi-
cant after adjustment for its binding protein (albumin,
model 2), baseline renal function (eGFR, model 3), IS
(model 4a) and other common risk factors for CKD progres-
sion (Ca × P product, iPTH, haemoglobin and hs-CRP,
model 5). To overcome the possible effects of residual con-
founding between individual cofactors of various models, a
final model of adjustment with a set of covariates (albumin,
Ca × P product, eGFR, DM and gender) predetermined by
hierarchical selection procedure was used. The high-serum
total PCS (HR, 1.036; 95% CI, 1.003–1.083; P = 0.037)
was an independent risk factor for renal progression after
adjustment of these hierarchical selected covariates
(model 6).

The analysis of serum IS (as continuous variable) re-
sulted in significant association with CKD progression in
the above-mentioned models (model 1, 2, 3, 5 and 6), ex-
cept for the adjustment of serum PCS (model 4b, Table 5).

Collinearity was checked by using principle component
analysis with the variables: Ca × P, log iPTH, haemoglo-
bin, log hs-CRP, log PCS and log IS. The multiple correl-
ation coefficient was 0.6 with these selected variables in
the model. According to VIF calculation, the value was
found to be 2.5 less than a preset critical point for a poten-
tial collinearity problem (VIF >10). A further examination
of our presented models showed that many of the inde-
pendent variables were chosen from some of these six vari-
ables, which showed no collinearity problem after the
analyses. Therefore, there was no significant impact of col-
linearity phenomena on the instability of the regression
model.

Serum PCS/IS and all-cause mortality

Baseline serum PCS and IS levels were also significantly
increased in patients that died [serum PCS levels were
12.07 (<1–42.06) mg/L in deaths and 4.1 (<1–36.24)
mg/L in survivors, P = 0.002; serum IS levels, 4.78
(0.7–12.54) mg/L vs 2.07 (<0.225–53.58), P = 0.05, re-
spectively]. Univariate analysis showed that higher serum
total PCS (HR, 1.099; 95% CI, 1.053–1.148; P < 0.001),
age (HR, 1.102; 95% CI, 1.036–1.173; P = 0.002), haemo-
globin (HR, 0.7; 95% CI, 0.538–0.910; P = 0.008) and al-
bumin (HR, 0.277; 95% CI, 0.118–0.665; P = 0.003) were

significantly associated with all-cause mortality in CKD
patients. The serum total IS level was not associated with
all-cause mortality. Serum PCS, analysed as a continuous
variable, remained independently associated with all-
cause mortality in multivariate Cox regression analysis
with different adjustment models (Table 5, models 1–5
and 7). Figures 2 and 3 show Kaplan–Meier estimates
of all-cause mortality as a function of total PCS and IS
levels relative to the median.

Discussion

In the present study, we evaluated associations between
total PCS and IS with renal progression and all-cause mor-
tality in patients having different stages of CKD. We found
that serum total PCS was associated with renal progression
and that this was independent of baseline renal function
and other modifiable and non-modifiable risk factors, such
as age, diabetes, calcification, anaemia, malnutrition-in-
flammation and IS. Serum total IS was associated with
renal progression; however, this association was lost when
serum PCS was present in the analytical model.

Renal disease progression constitutes a troublesome di-
lemma in clinical practice. Despite proper control of ‘clas-
sical’ and uraemia-related risk factors, a deterioration of
renal function is still inevitable in a substantial proportion
of patients. The impact of known risk factors has not been
adequate for prediction of renal progression. Our study de-
monstrated for the first time that both PCS and IS may not
be only markers for renal function but may also predict
disease progression. Baseline renal function and protein-
uria are important predictors of subsequent renal progres-
sion in both diabetic and non-diabetic CKD patients
[22,23]. In the present study, we prospectively followed-
up patients having different stages of CKD and included
a diversity of common measurable risk factors. Our find-
ings suggest that serum IS and PCS levels are novel pre-
dictors of renal progression and that they may provide
additional information beyond baseline renal function as
well as other traditional and uraemia-related predictors.

Despite a significant association between high-serum
PCS and renal progression, the mechanisms of how it
promotes disease remain to be elucidated. In vitro,

Table 3. Univariate Cox proportional hazard regression analysis in subsets of patients according to eGFR level

Variables

All patients eGFR <45 mL/min eGFR >45 mL/min

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

For renal progression n = 35/268 n = 31/164 n = 4/104
Serum total IS, mg/L 1.063 (1.041–1.085) <0.001 1.051 (1.027–1.075) <0.001 0.553 (0.09–3.405) 0.523
Serum total PCS, mg/L 1.092 (1.060–1.126) <0.001 1.074 (1.038–1.111) <0.001 1.049 (0.821–1.340) 0.702

For all-cause mortality n = 14/164 n = 11/164 n = 3/104
Serum total IS, mg/L 1.014 (0.956–1.075) 0.647 1 (0.934–1.071) 0.993 0.248 (0.015–4.2) 0.334
Serum total PCS, mg/L 1.099 (1.053–1.148) <0.001 1.104 (1.049–1.160) <0.001 0.883 (0.468–1.668) 0.702

Abbreviation: PCS, p-cresyl sulphate; IS, indoxyl sulphate.

Fig. 2. Kaplan–Meier survival curves in all patients according to serum PCS level (above and below the median of 7.16 mg/L); (A) cumulative renal
survival (censored for death), log-rank, P < 0.001; (B) cumulative survival, log-rank, P = 0.002; (C) cumulative proportion of patients who did not reach
composite endpoints, log-rank, P < 0.001.
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PCS significantly increased the percentage of leucocytes
displaying oxidative burst activity at baseline [17]. PCS
also induces a dose-dependent shedding of endothelial
microparticles in the absence of overt endothelial dam-
age [6]. These findings indicate that PCS exerts a proin-

flammatory effect and can alter endothelial function.
Although the relationship between PCS and cardiovascu-
lar disease and mortality has been evaluated in previous
investigations [18,20,24], there is no clinical evidence
pointing to an association between PCS and renal pro-

Fig. 3. Kaplan–Meier survival curves in all patients according to serum IS level (above and below the median of 4.63 mg/L); (A) cumulative renal
survival (censored for death), log-rank, P < 0.001; (B) cumulative survival, log-rank, P = 0.062; (C) cumulative proportion of patients who did not reach
composite endpoints, log-rank, P < 0.001.

Table 4. Unadjusted HR for different endpoints

Baseline variable Units of increase

Renal progression
(event/total = 35/268)

All-cause mortality
(event/total = 14/268)

Composite endpoints
(event/total = 46/268)

Unadjusted HR
(95% CI) P

Unadjusted HR
(95% CI) P

Unadjusted HR
(95% CI) P

Age, years 1 year 1.003 (0.976–1.031) 0.828 1.102 (1.036–1.173) 0.002 1.018 (0.992–1.044) 0.184
Male (vs female) – 0.439 (0.221–0.872) 0.019 1.369 (0.459–4.086) 0.573 0.560 (0.312–1.003) 0.051
Diabetes (yes vs no) – 2.618 (1.282–5.344) 0.008 1.128 (0.396–3.216) 0.822 1.792 (0.991–3.240) 0.054
eGFR,
mL/min/1.73 m2

1 mL/min/1.73 m2 0.96 (0.940–0.981) <0.001 0.98 (0.956–1.004) 0.101 0.971 (0.955–0.987) <0.001

Ca, mg/dL 1 mg/dL 0.183 (0.110–0.306) <0.001 0.564 (0.256–1.240) 0.154 0.239 (0.154–0.373) <0.001
P, mg/dL 1 mg/dL 2.899 (2.136–3.934) <0.001 1.132 (0.661–1.939) 0.651 2.211 (1.704–2.870) <0.001
Ca × P, mg2/dL2 1 mg2/dL2 1.109 (1.067–1.154) <0.001 1.002 (0.931–1.078) 0.96 1.076 (1.037–1.116) <0.001
iPTH, pmol/L 1 pmol/L 1.003 (1.001–1.005) 0.001 1.001 (0.997–1.006) 0.527 1.003 (1.001–1.005) 0.008
haemoglobin, g/dL 1 g/dL 0.678 (0.572–0.802) <0.001 0.70 (0.538–0.910) 0.008 0.687 (0.593–0.797) <0.001
Uric acid, mg/dL 1 mg/dL 1.255 (1.094–1.439) 0.001 1.194 (0.942–1.514) 0.143 1.188 (1.042–1.354) 0.01
Albumin, g/dL 1 g/dL 0.236 (0.141–0.392) <0.001 0.277 (0.118–0.665) 0.003 0.270 (0.173–0.420) <0.001
Total IS, mg/L 1 mg/L 1.063 (1.041–1.085) <0.001 1.014 (0.956–1.075) 0.647 1.050 (1.028–1.071) <0.001
Total PCS, mg/L 1 mg/L 1.092 (1.060–1.126) <0.001 1.099 (1.053–1.148) <0.001 1.090 (1.062–1.118) <0.001

Abbreviation: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; Ca, calcium; P, phosphate; iPTH, intact parathyroid hormone;
PCS, p-cresyl sulphate; IS, indoxyl sulphate.

Table 5. Multivariate Cox regression analysis for primary and composite endpoints

Models

Renal progression All-cause mortality Composite endpoints

HR 95% CI P HR 95% CI P HR 95% CI P

Serum p-cresyl sulphate—continuous variable
Unadjusted 1.092 1.060–1.126 <0.001 1.099 1.053–1.148 <0.001 1.09 1.062–1.118 <0.001
Model 1 1.086 1.52–1.121 <0.001 1.134 1.076–1.196 <0.001 1.089 1.059–1.119 <0.001
Model 2 1.076 1.042–1.110 <0.001 1.083 1.033–1.136 0.001 1.075 1.047–1.104 <0.001
Model 3 1.061 1.020–1.103 0.003 1.101 1.044–1.162 <0.001 1.074 1.040–1.109 <0.001
Model 4a 1.066 1.016–1.119 0.009 1.162 1.099–1.229 <0.001 1.094 1.053–1.137 <0.001
Model 5 1.057 1.019–1.098 0.003 1.119 1.058–1.184 <0.001 1.075 1.040–1.111 <0.001
Model 6 1.042 1.003–1.083 0.037 – – – 1.061 1.027–1.095 <0.001
Model 7 – – – 1.136 1.069–1.207 <0.001 1.083 0.952–1.066 <0.001

Serum indoxyl sulphate—continuous variable
Unadjusted 1.063 1.041–1.085 <0.001 1.014 0.956–1.075 0.647 1.05 1.028–1.071 <0.001
Model 1 1.058 1.035–1.081 <0.001 1.022 0.954–1.094 0.536 1.048 1.025–1.071 <0.001
Model 2 1.06 1.037–1.085 <0.001 0.997 0.929–1.070 0.932 1.045 1.022–1.069 <0.001
Model 3 1.04 1.012–1.068 0.004 0.981 0.904–1.065 0.651 1.03 1.004–1.057 0.026
Model 4b 1.025 0.988–1.062 0.188 0.903 0.812–1.004 0.059 0.995 0.964–1.028 0.769
Model 5 1.034 1.004–1.064 0.028 0.97 0.876–1.074 0.558 1.025 0.995–1.056 0.104
Model 6 1.033 1.004–1.064 0.027 – – – 1.023 0.994–1.053 0.119
Model 7 – – – 0.984 0.895–1.083 0.748 1.007 0.983–1.032 0.576

Model 1 was adjusted for age (1-year increment), male gender and diabetes status. Model 2 was adjusted for serum albumin (1 g/L increments). Model 3
was adjusted for eGFR (1 mL/min increments). Model 4a was adjusted for indoxyl sulphate (1 mg/L increments). Model 4b was adjusted for p-cresyl
sulphate (1 mg/L increments). Model 5 was adjusted for Ca × P product (1 mg2/dL2 increments), intact parathyroid hormone (log 1 pmol/L increments),
haemoglobin (1 g/dL increments) and hs-CRP (log 1 mg/L increments). Model 6 was adjusted by hierarchically selected covariates of albumin, Ca × P
product, eGFR, diabetes status and gender. Model 7 was adjusted for hierarchically selected covariates of age, hs-CRP, albumin and haemoglobin.
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gression. Further in vivo or in vitro investigations dem-
onstrating an active role of PCS in stimulating renal dis-
ease progression are eagerly awaited.

Detrimental effects of IS on renal progression have been
extensively evaluated in experimental and in vivo studies
[8,25]. The present longitudinal study confirmed an asso-
ciation between serum IS and renal progression in CKD
patients. However, the predictive power of IS was reduced
at high-serum PCS levels. Serum PCS and IS are competi-
tive binding inhibitors for the same albumin binding site
(Sudlow site II) [3]. It is unknown whether high-serum le-
vels of PCS and IS also behave as competitive inhibitors at
the cellular level. Our findings offer new insights into the
different pathogenic mechanisms that link PCS and IS with
the genesis of renal disease progression. Further experi-
mental models capable of clarifying the biological role
of PCS (in conjunction with IS) should be constructed to
confirm our findings.

Our finding of a significant association between serum
PCS and all-cause mortality was similar to that of earlier
studies [18,19,26]. Barreto et al. [7] demonstrated that
high-serum IS was associated with vascular disease and
mortality in CKD patients. However, this later association
was not observed in our patients. We speculate that the
number of deaths in our study was not sufficient to form
a firm conclusion about mortality.

Both the temporal relationship between serum IS/PCS
and renal progression and the prospective design of our
study suggest that this association is causal. However,
causality cannot be inferred from these data for a number
of reasons. Although our small scale study suggested a
role for serum PCS and IS in CKD progression, there were
limitations of generalizability which included different eth-
nic groups, observation times, single-centre experiences
and unavailability of the free form of toxins. Associations
between free solute concentrations and mortality [19] and
cardiovascular disease [20] have been well established in
haemodialysis patients but these are less clear in CKD pa-
tients who have not yet started dialysis. Recently, Liabeuf
et al. [18] demonstrated that free PCS is a predictor of
mortality in patients at different stages of CKD. However,
65.5% of their patients were in stage 4, 5 or 5D, and one-
third of the study population were on dialysis. Previous in-
vestigations showed that unconjugated p-cresol is not de-
tectable in normal or pre-dialysis CKD human plasma, and
almost 99% of circulating toxins are in their sulphated
form [16], which is the main culprit of tissue damage
[17,18]. Our colleagues recently revealed that the free
forms of IS and PCS represent a small fraction (~10%)
of the total forms found in the blood of peritoneal dialysis
patients. In addition, residual kidney function significantly
affects the levels of free and total IS [21]. Since all of our
participants were pre-dialysis CKD patients with a mean
eGFR of 44.8 ± 32 mL/min, the free forms of IS and
PCS were below our detection limit in a large proportion
of patients. In spite of good agreement between HPLC and
MS as demonstrated by Meijers et al. [24] and by our
study, it is still unknown whether MS had a greater ability
to detect the free forms in our patients.

Several small interventional studies have demonstrated
that AST-120, an orally ingested charcoal adsorbent, re-

duces IS levels [27], slows renal progression [28,29]
and delays the initiation of dialysis [30]. Recently, a mul-
ti-centre randomized controlled trial having a follow-up
time of 1-year found that administration of AST-120
did not delay the occurrence of serious clinical events,
such as the doubling of sCr levels, increases in sCr levels
>6.0 mg/dL, the need for dialysis or transplantation or
death [31]. However, AST-120 slowed the decrease in es-
timated creatinine clearance during the 1-year trial period.
An effect of AST-120 on slowing renal disease progres-
sion remains to be demonstrated.

In conclusion, serum IS and PCS levels may help in pre-
dicting the risk of renal progression in patients having dif-
ferent stages of CKD beyond traditional and uraemia-
related risk factors including renal function. Additional
studies are warranted to elucidate the mechanisms of how
IS and PCS affect renal progression and to further develop
therapeutic strategies aimed at lowering protein-bound
toxins.
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