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ABSTRACT Objective: This study intends to develop an accurate, real-time tumor tracking algorithm for
the automated radiation therapy for cancer treatment using Graphics Processing Unit (GPU) computing.
Although a previous moving mesh based tumor tracking approach has been shown to be successful in
delineating the tumor regions from a sequence of magnetic resonance image, the algorithm is computationally
intensive and its computation time on standard Central Processing Unit (CPU) processors is too slow to
be used clinically especially for automated radiation therapy system. Method: A re-implementation of the
algorithm on a low-cost parallel GPU-based computing platform is utilized to accelerate this computation
at a speed that is amicable to clinical usages. Several components in the registration algorithm such as the
computation of similarity metric are inherently parallel which fits well with the GPU parallel processing
capabilities. Solving a partial differential equation numerically to generate the mesh deformation is one
of the computationally intensive components which has been accelerated by utilizing a much faster shared
memory on the GPU. Results: Implemented on an NVIDIA Tesla K40c GPU, the proposed approach yielded
a computational acceleration improvement of over 5 times its implementation on a CPU. The proposed
approach yielded an average Dice score of 0.87 evaluated over 600 images acquired from six patients.
Conclusion: This study demonstrated that the GPU computing approach can be used to accelerate tumor
tracking for automated radiation therapy for mobile lung tumors. Clinical Impact: Accurately tracking mobile
tumor boundaries in real-time is important to automate radiation therapy and the proposed study offers an
excellent option for fast tumor region tracking for cancer treatment.

INDEX TERMS Non-rigid image registration, image segmentation, tumor tracking, radiation therapy, lung
mobile tumors, GPU computing, compute unified device architecture, parallel computing.

I. INTRODUCTION
Tracking mobile tumors is crucial in the treatment of cancer
patients using radiation therapy. Recently a hybrid radio-
therapy MR-system, called Linac-MR, that allows for real-
time MRI-guided radiation therapy with excellent soft tissue
contrast for imaging tumors has been proposed [1]. The
Linac-MR system also allows for real-time adjustment of
the radiation beam and can be used for the therapy, given
the location of the tumor is tracked over time. One approach
to track mobile tumors is to find the point correspondence
over a sequence ofMR images acquired over a period of time.

Due to the nature of non-rigid deformation of lung tissues
over breathing, a diffeomorphic based non-rigid registra-
tion algorithm has been shown to be effective in accurately
tracking the tumor boundaries. The non-rigid registration
algorithm consists of several computationally intensive com-
ponents which include geometric transformations, similar-
ity metric, and optimization. Additionally, the registration
algorithm takes many iterations to reach the final solution.
Therefore, the standard Central Processing Unit (CPU) based
implementation of the algorithm is time-consuming and lim-
its its clinical application.
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A few approaches have been proposed recently in the
literature to track tumors from dynamic images. For instance,
Zachiu et al. proposed an approach to track tumors from
livers and kidneys for MR-guided radiation therapy using
an optical tracking approach [2]. Additionally, Wilms et al.
proposed a deformable registration approach to tackle the
problem of tracking tumors from thoracic/abdominal MR and
liver ultrasound data sets [3].

With the advent of NVIDIA Corporation’s Compute Uni-
fied Device Architecture (CUDA) platform, the parallel
computational capabilities of Graphics Processing Units
(GPUs) have become available for low-cost general pur-
pose scientific computing. Designed originally for graph-
ics processing, the GPUs are equipped with thousands
of processing units which allows for massively parallel
processing. CUDA programming model allows for thou-
sands of concurrent threads to be executed on numerous
arithmetic logical units (ALU) which leads to massive
parallel execution. The reader is referred to the CUDA
programming model in [4] for more detailed information
about GPU programming. Recently, GPUs have been pro-
posed to accelerate the performance of image registration
algorithms [5], [6]. In addition, parallel algorithms have
been proposed to process large number of data created
in medical and hospital environments [7]–[9]. An optimal
GPU implementation of a serial algorithm requires care-
ful utilization of shared memory and threads management
of the bottlenecks caused by memory latency and kernel
execution.

This study proposes a parallel version of the moving
mesh algorithm for lung tumor boundary tracking presented
in [10]. Utilizing shared memory and other GPU computa-
tional resource, the proposed parallel implementation offers
a speedup ofmore than 5 times than the CPU version allowing
for the real-time application necessary in adaptive radiother-
apy treatments.

II. REGISTRATION METHOD
The objective of the registration approach is to find the
point correspondence between two arbitrary images Tk1 and
Tk2 defined over � ⊂ R2. The problem can be formu-
lated as the minimization of the L2-norm based dissimilarity
measure [11]:

φ̂k1,k2 = argmin
φ

EL2 (Tk1 ,Tk2 , φ(ξ )) (1)

where ξ ∈ � denotes the pixel location in the image domain
�, and the transformation function is denoted by φ : � →
�. The dissimilarity metric based on L2-norm is denoted
by EL2 (·). This formulation leads to an ill-defined problem
without additional constraints and may not have a unique
solution. In order to obtain a unique solution, we introduce
additional parameters, namely, a Jacobian transformation µ :
�→ R and curl of end velocity field γ : �→ R to define a
deformation field,

A. MOVING MESH GENERATION
Let us define a continuous monitor function µ(ξ ) that is
constrained by: ∫

�

µ = |�|. (2)

The objective is to find a transformation φ : �→ �, ∂�→

∂�, so that:

Jφ(ξ ) = µ(ξ ), (3)

where Jφ is the Jacobian transformation.
By solving ordinary differential equation (4) and setting

φ(ξ ) = ψ(ξ, t = 1), we could obtain a transformation
function φ that satisfies (3):

dψ(ξ, t)
dt

= νt (ψ(ξ, t)), t ∈ [0, 1], ψ(ξ, t = 0) = ξ (4)

where νt (ξ ) is given by

νt (ξ ) =
ρ(ξ )

t + (1− t)µ(ξ )
, t ∈ [0, 1], (5)

for an artificially introduced algorithmic time t , and div ρ(ξ )

div ρ(ξ ) = µ(ξ )− 1. (6)

The above optimization problem may not lead to a unique
solution. Therefore, we add additional constraints as below.{

div ρ(ξ ) = µ(ξ )− 1 (7a)

curl ρ(ξ ) = γ (ξ ) (7b)

with null boundary condition ρ(ξ ) = 0∀ ξ ∈ ∂�, where γ (ξ )
is a continuous function over �. We then solve the resulting
div-curl system under Dirichlet boundary conditions to obtain
a unique solution [12]. The derivation and CPU implementa-
tion details of the algorithm could be found in [11].

This study proposes to use a GPU with shared memory to
accelerate the registration algorithm through a parallel imple-
mentation of the transformation, optimization, and similarity
measure components of the method. The Numbapro Python
module (Continuum Analytics Inc., Austin, TX, USA) was
used for the implementation of the parallel algorithm.

1) SELECTION OF BEST FRAME FROM PRETREATMENT
IMAGES
In Linac-MR system, the images are acquired during pre-
treatment for planning the radiation therapy. We utilize the
pretreatment images to select the best image for every frame
that we acquire during the treatment stage based on L2-norm
between the images. Let Nq, typically equal to 30, be the
number of frames in the pretreatment images. The best frame
Tq (among Tj for j ∈ (1, . . . ,Nq)) for any image in the
treatment frame Tk can be found by:

Tq = argmin
Tj

EL2 (Tj,Tk ). (8)

We rely on the point correspondence between Tj and Tk to
track the tumor boundary on Tk .
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FIGURE 1. The code snippet showing the parallel implementation of the
similarity metric computation using numba and accelerate Python
modules.

TABLE 1. Details of the datasets used in evaluation of the proposed
method.

Our previous study shows that using the best image based
approach outperforms the approach using only the first frame
in terms of accuracy and convergence [10].

III. GPU ARCHITECTURE AND CUDA IMPLEMENTATION
TheGPUs are capable of executing several threads in parallel.
These threads are grouped into blocks which are executed
simultaneously on streaming multiprocessors (SM). A GPU
parallelization is achieved by executing a kernel function
composed of multiple blocks.

The device memory, the memory space corresponds to the
GPU, is physically separated from the hostmemory, themem-
ory space corresponds to the CPU. The GPU arithmetic unit
does not have direct access to the host memory, and therefore,
the data need to be transferred to the device memory for GPU
computing. At the end of the processing, the contents of the
device memory will be transferred back to the host memory
so that the CPU can access the final results.

GPU memory space is further divided into global memory,
shared memory, and registers. These memory units differ in
terms of access speed, memory size, and data accessibility.

FIGURE 2. Representative examples showing the automated (yellow) and
manual (green) boundaries of the tumor regions for the registration
techniques for all patients.

1) Global memory can be accessed by any thread running
on the GPU. It is the memory used for transferring
data from the host computer. GPU global memory has
slower access speed in comparison to shared memory
and registers. The typical access latency for global
memory is in the order of 400–600 GPU clock cycles
[13].

2) The GPU shared memory unit has much faster access
speed than the global memory (almost 100 times).
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TABLE 2. Mean and standard deviation of Dice metric, Hausdorff distance and RMSE for each patient for CPU and GPU implementations in comparison to
expert manual contours. Both methods yielded the similar level of segmentation accuracy.

However, the shared memory is only accessible with
the threads of a block, and the threads from a different
block cannot access the data stored in the memory.
Additionally, the data to the shared memory cannot be
transferred directly from the host memory and need to
be transferred first to the GPU global memory.

Further details about the GPU architecture could be found
in the CUDA Programming Guide [14]. In this study, we uti-
lize the improved access speed of the shared memory of the
GPU to accelerate the numerical computations of the partial
differential equation, (4), where the data is accessed multiple
times by the GPU ALUs.

IV. PARALLEL IMPLEMENTATION OF THE MESH
ALGORITHM
The proposed nonrigid registration approach consists of mov-
ing mesh generation, L2-norm based dissimilarity metric
computation, optimization and transformation. All of the
individual components of the registration approach are par-
allelized and performed on the GPU [15]. An example code
snippet to compute the dissimilarity metric is given in Fig. 1.
A similar parallelization approach is pursued for other com-
putational components of the registration algorithm. The
GPU hardware allows for executing a large number of par-
allel threads simultaneously. In GPU computing, a group of
threads that are executed together are called blocks and a
group of blocks are called grid. The optimum number of
blocks per thread was computed based on the size of the
movingmesh. The transformation computation for each point
on the moving mesh is computed in parallel. The data transfer
from host to device memories and device to host memories
were performed only once to reduce data transfer overhead.
A single-precision floating point data type was used for the
GPU implementation.

An NVIDIA Tesla K40c based on the KeplerTM Architec-
ture was used to test our implementation [16]. The Tesla K40c
is a professional grade graphics card which supports double
precision computing. It has been built on the 28 nm process
and based on the GK110B graphics processor architecture
which has a large chip with a die area of 561 mm2 and

7,080 million transistors. The Tesla K40c consist of 15 SMs
each featuring 192 single-precision CUDA cores, totaling
2880 CUDA cores. Each SM uses four warp schedulers and
eight instruction dispatch units and equipped with 1.5 MB of
L2 cache, 64 KB of constant memory and 48 KB of shared
memory. The graphics card has 12,288 MB GDDR5 memory
which is connected using a 384-bit memory interface with
a maximum clock speed of 3.00 GHz and 288 GB/sec of
memory bandwidth. The transfer of data between host (CPU)
and device (GPU) is achieved through a PCIe-3 Bus.

V. EXPERIMENTAL PROTOCOL
The experimental protocol was approved by the University of
Alberta Health Research Ethics Board. The data was acquired
from six lung cancer patients with free breathing using a 3T
MRI scanner. In order to simulate the actual scanning quality
reduction due to the 0.5T MRI used in adaptive radiation
therapy, additional noise is added to the MR image data.
Each patient data consists of 30 pretreatment images and
100 images correspond to the treatment stage. The pretreat-
ment and treatment stages will be performed using the same
MR protocol using the linac-MR [17] in real-time scanning
and radiation treatment. The selection of the MR imaging
plane is based on the view of the maximum tumor dimension
for the beam’s eye view. The acquisition rate of the MRI is
4 frames per second. Table 1 reports the details of the data
sets used in this study. The ground truth manual segmentation
of the tumor region is performed by an expert radiation
oncologist. The CPU version of the algorithm uses a single-
thread implementation which was evaluated on a 2.6 GHz
Intel Core i7 processor. The CPU implementation primarily
relied on the Numpy Python module for the computation
of similarity metric, transformation, optimization and other
operations. One of the computationally intensive task related
to the tri-linear interpolation was implemented using Cython
to accelerate the computational performance.

A. EVALUATION CRITERIA
Quantitative evaluations to measure the similarities between
manual delineation and automated segmentation by GPU
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FIGURE 3. Mean of Dice metric, Hausdorff distance and RMSE for segmentation results by CPU and GPU implementation for each patient, S1 to S6,
in comparison to expert manual contours. The error bar indicates the standard deviation.

TABLE 3. Mean and standard deviation of centroid difference in superior–inferior and anterior–posterior directions as well as 2-dimensional centroid
difference. The GPU and CPU implementations yielded similar level of accuracy.

FIGURE 4. Mean centroid differences in anterior-posterior and superior-inferior directions as well as 2-dimensional centroid difference for the CPU and
GPU implementation results in comparison to expert manual contours. The error bar indicates the standard deviation.

and CPU approaches were performed using Dice Metric
(DM) [10], Hausdorff Distance (HD) [10] and Root Mean
Square Error (RMSE) [10].

VI. RESULTS
A. QUANTITATIVE EVALUATION
The performance of the best frame approach in terms of DM,
HD and RMSE for the CPU and GPU implementation is
reported Table 2. The corresponding results are also displayed
in Fig. 3. Both GPU and CPU based methods yielded an

average DM of 0.87 and average RMSE of 1.48 mm. Table 3
shows mean and standard deviation of centroid difference in
superior–inferior (S–I) and anterior–posterior (A–P) direc-
tions as well as 2-dimensional centroid difference for each
subject in the GPU and CPU implementation. The corre-
sponding results are also displayed in Fig. 4.

B. COMPUTATIONAL EFFICIENCY
Table 4 shows the runtime of the CPU implementation of the
algorithm for different grid sizes of the mesh deformation
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TABLE 4. The runtime of the CPU implementation of the mesh deformation based registration algorithm for different grid sizes.

FIGURE 5. Mean computational times for GPU and CPU implementation
of the algorithm over different grid sizes.

based registration algorithms for each subject. The shared
memory based GPU implementation of the algorithm is eval-
uated over different grid sizes and the corresponding runtimes
are reported in Table 5. The NVIDIA Visual Profiler was
used for obtaining the precise computational times for the
GPU implementation. The computational times include the
data transfer between device and host memory locations.
The results demonstrate that the GPU based implementation
yielded an acceleration of more than 5 times in comparison
to the implementation using CPU. The speedup of the GPU
algorithm in comparison to the CPU version is given Table 6
and Fig. 7.

Fig. 5 shows the mean computational times over the entire
subject set for different grid sizes by the GPU and CPU
versions of the proposed algorithm. The curves for individual
subjects are give in Fig. 6.

VII. DISCUSSION
The usage of GPUs have been shown to be an important factor
for the real-time clinical applications of the image registra-
tion algorithms [18]–[24]. Computing joint histograms on
the GPU is reported in [25]–[27]. Haghighi et al. proposed
a framework for an intensity-based symmetric registration
method where the GPU implementation leads to an improved
computational performance [28]. In [29], authors proposed a

FIGURE 6. Computational times for GPU and CPU algorithms in each
subject.

GPU accelerated the computation of an affine-linear transfor-
mation in a derivative-based optimization framework where
the GPU approach outperformed the CPU version by more
than 2 times. For more information about image registration
and GPU, the reader is referred to two survey articles by
Shams et al., [30] and Fluck et al., [5].
The parallel implementation approach proposed in this

study allows for the computation of the entire registration
algorithm on the GPU. In contrast, only one or more individ-
ual components were parallelized in several previous algo-
rithms. For instance, only the dis-similarity measure was
computed in the method proposed by Kubias et al. [18].
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TABLE 5. The results of GPU implementation of the mesh deformation with shared memory on different grid sizes and on a Nvidia Tesla K40c.

TABLE 6. GPU speedup results for each patient for different grid sizes.

Ruiz et al. proposed computation of only the cross-correlation
component using GPU computing [19]. The method by
Huang et al. relied on CPU for the histogram and dis-
similarity metric computations, and only the transformation
was performed using a GPU.

The results for the CPU version of the proposed non-
rigid registration algorithms on the same dataset is presented
in [10]. The proposed nonrigid registration based algorithm
does not utilize shape or distance priors in the segmentation
process as in [31], [32].

In this study, we have shown that the same level of accuracy
can be achieved for the segmentation of tumor regions using
the GPU version of the algorithm. TheGPU version generates
nearly identical moving mesh correspondences produced by
the CPU version. One of the main advantages of the GPU
approach is that the computational time does not linearly
increase with the size of the grid as shown in Fig. 5. Due to the
large number of computing units available in GPUs such as
Tesla K40c, the computational time required for the parallel
execution of the data points on the grid largely depends on
the number of iterations required to obtain the final solution
rather than the size of the grid [33].

Beyond accelerating image processing applications, GPUs
have also been applied to image reconstruction algorithms
for faster processing. The accelerated computing of graphics
hardware was exploited for the computed tomography (CT)
imaging modality earlier than the MRI. MR images can
often be reconstructed with fast Fourier transform algorithm
whereas CT requires a more computationally demanding

FIGURE 7. GPU speedup for different grid sizes for each patient.

reconstruction approach [5]. One application of the GPU
acceleration of MRI reconstruction is to increase the spatial
and temporal resolution with compressed sensing [34].

Although the underlying anatomical motion is in three-
dimensional space, the Linac-MR [1] radiotherapy system
generates two-dimensional slices acquired at a planar loca-
tion. Therefore, registration in two-dimensional space is ade-
quate for the proposed problem.

VIII. CONCLUSION
The study proposes an application of GPUs to accelerate the
tracking of lung tumors for using non-rigid image registration
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algorithm. The study compares the parallel GPU implemen-
tation with shared memory optimization version of the algo-
rithms with the traditional CPU implementation. Quantitative
performance evaluations show that the GPU implementation
of the algorithm yielded a computational acceleration of
5 times over the CPU implementation while retaining a sim-
ilar level of segmentation accuracy.
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