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Abstract: The composition and content of fatty acids are critical indicators to identify the quality
of edible oils. This study was undertaken to establish a rapid determination method for quality
detection of edible oils based on quantitative analysis of palmitic acid, stearic acid, arachidic acid,
and behenic acid. Seven kinds of oils were measured to obtain Vis-NIR spectra. Multivariate methods
combined with pretreatment methods were adopted to establish quantitative analysis models for
the four fatty acids. The model of support vector machine (SVM) with standard normal variate
(SNV) pretreatment showed the best predictive performance for the four fatty acids. For the palmitic
acid, the determination coefficient of prediction (R2

P) was 0.9504 and the root mean square error of
prediction (RMSEP) was 0.8181. For the stearic acid, R2

P and RMSEP were 0.9636 and 0.2965. In the
prediction of arachidic acid, R2

P and RMSEP were 0.9576 and 0.0577. In the prediction of behenic
acid, the R2

P and RMSEP were 0.9521 and 0.1486. Furthermore, the effective wavelengths selected
by successive projections algorithm (SPA) were useful for establishing simplified prediction models.
The results demonstrate that Vis-NIR spectroscopy combined with multivariate methods can provide
a rapid and accurate approach for fatty acids detection of edible oils.

Keywords: Vis-NIR reflectance spectroscopy; multivariate analysis; fatty acid; edible oil; quality detection

1. Introduction

The consumption of various edible oils has been increasing due to the growth of
population. Edible oil is good of taste and health properties which provides many health
beneficial substances including fatty acids, energy, and other essential trace elements [1].
The quality of edible oil is closely related to public health and food safety and the choice of
edible oils affects the nutritional balance of the human body [2]. However, the quality of
edible oils is frequently subjected to adulteration, contamination, deterioration, and re-use
problems in production process [3,4], which greatly affects their edibility. The external
features of edible oils are easily tampered by physical and chemical means, it is more
difficult to discriminate the quality of edible oils based only on color, smell, and taste [5,6].
Every kind of pure edible oil has a relatively stable composition ratio of fatty acids, and
all the above quality problems cause the significant change of the content of fatty acids in
terms of the internal composition of edible oils. Therefore, the quantitative analysis of fatty
acids would be an effective method to assess the quality of edible oils.

Some studies have been conducted to precisely measure the content of fatty acids for
quality assessment of oil products in recent years [7]. Gas chromatography was the pre-
ferred analytical method for the determination of fatty acid methyl esters (FAMEs) [8–10].
High-performance liquid chromatography was also used for the analysis of fatty acids
in biological samples [11]. The nuclear magnetic resonance technology can be used to
measure fatty acids in edible oils [12]. In addition, fluorescent spectroscopy was studied
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as a detection method in oil quality testing [13]. Except fluorescent spectroscopy, these
detection methods involve a series of time-consuming experimental preparation, such as
extraction, derivatization, and chromatography steps. Meanwhile, hazardous chemicals
are utilized in these methods; therefore, skilled analytical technicians are required. Fluo-
rescent spectroscopy is a non-destructive method for discriminating edible oils without
pretreatment steps. However, fluorescent spectroscopy depends on bulky and expensive
fluorescent devices that severely limits its application in edible oil industry. All of these
hamper the widespread applications of these methods. Therefore, a simple, rapid, and
economical method is of high demand to detect the fatty acids of edible oils. In recent
years, near-infrared spectroscopy was widely applied for oil detection. Near-infrared spec-
troscopy is an optical detection technique that measures the interaction of infrared radiation
with analytes by absorption or reflection. The characteristics of molecular vibration and
rotation of analytes can be obtained by inspecting the absorption spectra. For example, the
rapid identification of edible oil and swill-cooked dirty oil was studied by employing near-
infrared spectroscopy and the sparse representation classification method [14]. Jiang et al.,
applied a near-infrared spectroscopy system to determine acid values during edible oil
stored procedures [15]. However, the near-infrared spectroscopy was generally effective for
qualitative analysis, while quantitative analysis based on near-infrared spectroscopy was
not ideal in some studies of edible oils [16]. The wavelengths in near-infrared spectrum
range mainly reflect the molecular vibration characteristics of objects. The visible spectrum
range is a very important supplement for distinguishing the objects based on the basic
physical forms. Therefore, the integrated analysis of visible spectrum and near-infrared
spectrum can provide more comprehensive spectral information [17]. The visible and
near-infrared part of the electromagnetic spectrum includes both the visible (350–780 nm)
and near-infrared (780–2500 nm) ranges. However, the application of Vis-NIR reflectance
spectroscopy in food composition detection is still restricted to the construction of the
accurate data analysis model.

In this study, we presented an efficient and non-destructive method for the fatty acids
detection of edible oils using Vis-NIR reflectance spectroscopy. The accurate computational
models were constructed based on the Vis-NIR spectra data. The Vis-NIR spectra data
were obtained by a hyperspectral spectroradiometer system to give a comprehensive char-
acteristic information of edible oils. The palmitic acid (C16:0), stearic acid (C18:0), arachidic
acid (C20:0), and behenic acid (C22:0) were chosen as experimental objects in this paper.
Palmitic acid is a saturated long-chain fatty acid which accounts for 4.6–20.0% dominated
in edible oils [18]. Stearic acid is a kind of saturated fatty acid with health benefits. It has
no effect to increase the plasmatic levels of low-density lipoprotein [19] in contrast to other
fatty acids in edible oils. Arachidic acid is kind of a saturated fatty acid with a 20-carbon
chain. It can be a chemical messenger released by the muscle that controls the physiological
response to the exercise [20]. Behenic acid is a saturated fatty acid that can promote the
cholesterol levels in humans [21]. The four fatty acids are commonly found in various
vegetable edible oils. They have specific physiological functions for human body and the
relatively stable molecular structure resistance to temperature and other environmental
factors. Therefore, the contents of the four fatty acids can be used as important references
for the quality evaluation of edible oils. The four fatty acid contents were measured by
the gas chromatography-mass spectrometry (GC-MS) as standard references for the pur-
pose of model training and validation. The multivariate methods including partial least
squares regression (PLSR), support vector machine (SVM) and random forest (RF) were
applied with multiple pretreatments of spectra to establish prediction models for content
prediction of the four fatty acids. In addition, the successive projections algorithm (SPA),
variable importance of projection (VIP) and principal component analysis (PCA) were used
for selecting the effective wavelengths to simplify the prediction models. The accurate
quantitative analysis of the four fatty acids could provide a critical reference for quality
assessment of edible oils.
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2. Materials and Methods
2.1. Oil Samples

In this study, seven kinds of commonly consumed edible oils were randomly collected
from local Walmart stores (Hefei, China). There were 93 oils including 15 brands of sesame
oil, 15 brands of soybean oil, 11 brands of corn oil, 11 brands of sunflower oil, 13 brands of
rapeseed oil, 15 brands of peanut oil, and 13 brands of olive oil obtained in the final sample
set. All the oils were firstly stirred evenly for the separation of experimental samples. A
piece of oil sample was taken from each of brand edible oils (20 mL/piece). A total of
93 oil samples were first used for Vis-NIR reflectance spectroscopy experiments. After
spectra measurement, the four fatty acid contents in each piece of oil sample were analyzed
by GC-MS.

2.2. Measurement of Vis-NIR Reflectance Spectra of Oil Samples

The Vis-NIR spectra of the 93 oil samples were measured by a field portable spec-
troradiometer (PSR-3500, Spectral Evolutions, Lawrence, MA, USA). The field portable
spectroradiometer is a spectral remote sensing instrument that can achieve the fast and
stable measurement of Vis-NIR spectra of objects. Three array detectors (one 512Si detector
and two 256InGaAs detectors) were equipped in the hyperspectral instrument to take a
accurate measurement of oil samples. The measurement range of the Vis-NIR spectra was
350–2500 nm. The spectral acquisition lens was set to 3 cm away from the oil samples. The
optical fiber with field angle of 8 degree was used to measure the Vis-NIR spectra. Each
piece of the oil samples was placed in a separated glass beaker (25 mL), as illustrated in
Figure 1. For each piece of oil samples, ten Vis-NIR reflectance spectra were recorded with
the resolution of 1 nm. To ensure the randomness of the spectrum in each measurement,
the 93 oil samples were measured in ten different batches. To be specific, all the oil samples
were measured in an independent batch and the process was repeated 10 times. Hence, a
total of 930 Vis-NIR reflectance spectra data were measured for the following data analysis.

Black box

Probe

Halogen lamps

Field portable 

spectroradiometer

Oil sample

Data Software

Figure 1. The spectral acquisition system for edible oils.

For each spectrum, there were 2151 data points spreading over all the 350–2500 nm
wavelengths. A black box system with fixed light source was constructed for the acquisition
Vis-NIR spectra to exclude the interference from external light. In order to eliminate some
of the disturbance factors of the black box system, a whiteboard calibration was applied
in our experiment of Vis-NIR spectra acquisition [22]. The final Vis-NIR spectra were
calibrated based on Equation (Equation (1)) as follows:

Rmi =
DNmi
DNri

∗ Rri (1)

where Rmi is the corrected result of the oil sample and Rri is reflectance the whiteboard.
DNmi and DNri are the original values for the oil samples and the whiteboard, respectively.
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2.3. Measurement of Four Fatty Acid Contents in Oil Samples

The composition of various fatty acids is an important indicator of quality for edible
oils. Therefore, the quantitative analysis of fatty acids is often used for assessing oil quality
and discrimination of edible oil adulteration. In this paper, four fatty acids (i.e., palmitic
acid, stearic acid, arachidic acid, and behenic acid) were chosen as the objects of study.
The reference values of four fatty acids in different edible oils were determined by GC-MS
method. The accurate quantification of fatty acids in different edible oil samples were
measured by the GCMS-QP2010 SE (Shimadzu Corporation, Japan) with the DB-5MS gas
chromatographic column (30 m × 0.25 mm × 0.25 um). The purity 99.99% helium with the
constant flow rate 1 mL/min was used as the carrier gas in the experiment. The fatty acid
contents of the edible oils were analyzed after derivatization to their methyl ester products.
The oil samples were preprocessed by four corresponding methyl esters (Methyl palmitate,
Methyl stearate, Methyl arachidate, and Methyl behenate) in different concentrations to
conduct the hot boiling separation because the boiling points of the derivatives from
methyl esterification varied in a long range compared to the primitive forms. The detailed
experimental process of methyl esterification was provided in Supplementary Materials,
as shown in Figures S1 and S2 and Table S1. The oil samples were processed with methyl
esterification and measured by the GC-MS to quantify the content of palmitic acid, stearic
acid, arachidic acid, and behenic acid.

2.4. Pretreatment of Vis-NIR Reflectance Spectra

Although the precautions (the black box environment and the whiteboard calibration)
had been taken in the spectral measurement system, the raw spectra are inevitable to suffer
from the system noise and disturbance from measuring environment including light scat-
tering, temperature, baseline migration and others. The multivariate scattering correction
(MSC) [23], standard normal variate (SNV) [24], savitzky-golay (SG) smoothing [25], and
wavelet transform (WT) [26] were applied for the Vis-NIR reflectance spectra to correct
spectral data. The MSC and SNV are used to eliminate the effect of surface scattering
and optical path variation in spectra data. The SG smoothing is an effective algorithm for
improving spectral signal-to-noise ratio. The WT is commonly used for spectrum filtering
and noise reduction. The four pretreatment algorithms were used to preprocess the re-
flectance spectra. Besides, the raw spectra without any pretreatments were also considered
for model establishment to evaluate the effectiveness of different pretreatments methods in
the application of Vis-NIR reflectance spectra.

2.5. Selection of Effective Wavelengths of Vis-NIR Reflectance Spectra

In addition, the obtained Vis-NIR reflectance spectra with full wavelengths were
a high-dimensional data matrix. A large amount of redundant and irrelevant spectral
information was mixed in the data. The effective wavelength selection was of important
for establishing simplified and stabilized prediction models. In this paper, the succes-
sive projections algorithm (SPA) [27], variable importance of projection (VIP) [28] and
principal component analysis (PCA) [29] were used for spectra feature extraction and
wavelength selection.

• Successive projections algorithm (SPA): SPA is a variable-selection technique that se-
lects variables with minimal redundant information and collinearity from the spectral
information. It is a forward selection method by calculating the projection of each
wavelength on the other unselected wavelengths and introducing the wavelengths
with maximum projection into the combination of wavelengths.

• Variable importance in projection (VIP): VIP is an analytical technique for estimating
the effect of individual variables in a system. The VIP score is a parameter used to
evaluate the importance of the independent variable to the dependent variable in
the model. An independent variable with a higher score is considered as significant
influence on the dependent variable. Variables with low scores are discarded to ensure
the validity of the model.
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• Principal component analysis (PCA): PCA is a statistical analysis method that can
reduce and simplify the original data. The spectra had a wide range of bands with
a certain correlation between different bands. The generated principal components
are the comprehensive indices by the linear combination of the primitive features (i.e.,
different wavelengths in this study), that can eliminate the correlation in original data.
The loading vectors of PCA can be used to select the important wavelength regions.
The higher the loading values, the more important the corresponding wavelengths.
The wavelength points with the larger absolute values in the top loading vectors were
selected as the effective wavelengths.

2.6. Models Establishment

The regression models for fatty acid contents prediction were developed by PLSR,
SVM and RF. PLSR is a linear regression method to process high-dimensional regressors of
one or several response variables [30]. A linear regression model is constructed based on a
small number of latent variables which are the projection of explanatory variables and re-
sponse variables in new space. The obtained latent variables have the maximum covariance
between the new explanatory variables and the new response variables. PLSR possesses
good performance in prediction analysis of spectrum data and has been widely used in
chemometrics. The main idea of SVM is to convert the inputs from a low-dimensional
feature space to a high-dimensional feature space [31]. The SVM applies a kernel function
to construct an optimal hyperplane for separating the samples in high-dimensional feature
space with good theoretical properties in generalization and convergence. Although the
SVM is proposed for classification, it could also be used to regression analysis and has
outstanding performance in spectral data analysis field [32]. RF is a non-linear ensemble
method for prediction analysis. A series of simple decision trees are generated based on an
injection of randomness strategy and all the prediction results are integrated as the final
result. The result of classification or regression is the mean value of a large number of the
generated decision trees [33,34].

2.7. Performance Evaluation

To assess the prediction performance of the three regression models SVM, RF, and
PLSR, the obtained spectra of different edible oil samples were divided into calibration set
and prediction set. The 70% spectra of a kind of oil were randomly split into calibration
set and the rest were taken as the prediction set. The calibration set and the prediction set
were used to train the model and evaluate model performance, respectively. The model
performance was quantitatively evaluated using coefficients of determination of calibration
set (R2

C) and prediction set (R2
P), and the root mean square errors of calibration set (RMSEC)

and prediction set (RMSEP) as follow equations (Equations (2) and (3)):

R2 = 1 − RSS
TSS

(2)

RMSE =

√
∑N

i=1(yi − yp)2

N
(3)

where R2 is the coefficient of determination, RSS = ∑N
i=1(yi − yp)2 is the residual sum of

squares and TSS = ∑N
i=1(yi − y)2 is total sum of squares. yi is the reference value of the

experimental oil sample, yp is the predicted value for the oil sample, and y is mean of the
reference values. N is the number of the oil samples.

The SVM, RF, and PLSR models were performed in MATLAB (Version: R2019b,
Mathworks, Inc., Natick, MA, USA). The experiment computer used an Intel core i7-8700
CPU with a main frequency of 3.7 GHZ.
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3. Results and Discussion
3.1. Vis-NIR Reflectance Spectra of Different Edible Oils

The spectra of the 93 samples including seven kinds of edible oils were measured by
the constructed hyperspectral spectroradiometer system. The representative spectra of the
seven kinds of edible oils were shown in Figure 2. The spectral properties of the 7 kinds
of edible oils can be classified into three categories. The spectra of soybean oil, corn oil,
sunflower oil, and peanut oil showed the similar trends in visible region with a gentle
absorption peak (around 510 nm). The spectra of rapeseed oil and olive oil showed the
multiple absorption peaks (585 nm and 631 nm) in visible region, which were markedly
different with the above four edible oils. The spectra of sesame oil had no absorption
peak in visible region which was unlike all other edible oils. On the whole, the spectra of
the seven kinds of edible oils in NIR range (780–2500 nm) performed very similar overall
trends. However, the spectra of different edible oils vary in spectral reflectance and spectral
shape in some specific narrow regions. The spectral peak at wavelength 800 nm is related
to O-H first stretching overtone. The spectral peaks at wavelengths 856 nm and 1098 nm
belong to the C-H third overtone [35], and the spectral peak in wavelength 1586 nm is for
the second overtone of N-H [36]. The peak at around wavelength 1320 nm is related to C-H
combinations, and the peak at wavelength 980 nm is related to the second overtone of O-H
bending [37,38].
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Figure 2. The representative Vis-NIR reflectance spectra of the seven kinds of edible oils.

3.2. Quantitative Determination of Fatty Acids by GC-MS

The reference values of the fatty acids in edible oils need to be accurately obtained
for model establishment and model validation. In this study, the oil sample of each brand
was measured by GC-MS. All the oil samples were methylated by four FAMEs. The
complete data of the content of the four fatty acids measured by GC-MS was provided
in Supplementary Materials (Table S2). The quantitative results of all 93 brands in seven
kinds of oils were analyzed as follows.

First, the statistical analysis of quantitative results of four fatty acids were shown
in Table 1 and Figure 3. For the palmitic acid, except rapeseed oil, the other six kinds
of edible oils were detected with high contents. The corn oil was rich in palmitic acid
(mean = 16.67%, standard deviation (sd) = 0.68) compared to other oils. The rapeseed
oil had the lowest content of palmitic acid (mean = 4.93%, sd = 0.57). For the stearic
acid, the contents in all oil samples were less than the palmitic acid. The average content
of stearic acid in seven kinds of edible oils ranged from 1.71% to 5.97%. The standard
deviations of the stearic acid content in seven kinds of edible oils were less than 0.65, which
represented that the stearic acid content varied very small in all kinds of the oils. For the
arachidic acid and behenic acid, the contents were relatively rare in all the seven kinds of
oils. Comparatively, the peanut oil was more rich in the arachidic acid and behenic acid
than other oils. The variation levels of arachidic acid and behenic acid in peanut oil were
relatively larger than other edible oils (as shown in Figure 3). The standard deviations of
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arachidic acid and behenic acid in peanut oil were 0.25 and 0.41, respectively. Moreover,
the results of Wilcoxon test of four fatty acids between the pairs of the edible oils were
shown in the Supplementary Materials (Figure S3).

Table 1. The statistics of the four fatty acids in the seven kinds of edible oils (units: %).

Oil
Palmitic Acid Stearic Acid Arachidic Acid Behenic Acid

Range Mean sd Range Mean sd Range Mean sd Range Mean sd

Sesame oil 14.07–10.2 12.01 1.18 7.64–5.03 5.97 0.65 0.87–0.7 0.7 0.08 0.22–0.11 0.14 0.03
Soybean oil 17.58–12.42 15.38 1.34 6.21–4.26 5.4 0.6 0.6–0.5 0.5 0.08 0.7–0.35 0.53 0.11
Corn oil 17.76–15.66 16.67 0.68 3.02–2.38 2.63 0.19 0.58–0.54 0.54 0.02 0.34–0.14 0.19 0.06
Sunflower oil 12.54–9.23 11.17 0.86 5.98–3.88 5.16 0.54 0.44–0.37 0.37 0.04 1.2–0.73 1.02 0.12
Rapeseed oil 5.9–4.26 4.93 0.57 2–1.44 1.71 0.2 0.67–0.51 0.51 0.07 0.37–0.22 0.27 0.04
Peanut oil 14.06–7.66 11.18 1.69 4.2–2.43 3.31 0.52 1.67–1.16 1.16 0.25 2.85–1.22 1.98 0.41
Olive oil 15.78–10.3 13.83 1.58 3.92–2.86 3.3 0.33 0.46–0.42 0.42 0.02 0.16–0.09 0.12 0.02

Range: the maximum and minimum content in the oils. sd: standard deviation.
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Figure 3. The box plots of the contents of four fatty acids in different edible oils (Unit: %). The horizontal black line in each
bar box was the median value of the fatty acids in each kind of oils. The top and bottom lines of each box were the positions
of 75% and 25% of the values, respectively. The black dots represented the oil samples. Some of the dots which exceeded the
top or bottom of the vertical line of the bar box were considered as outliers from the overall level.

In addition, the quantitative data of the four fatty acids were analyzed by PCA to
give an intuitive visualization of the distribution of 93 oil samples. In the PCA analysis,
the quantitative data of the four fatty acids in 93 oil samples were normalized with mean
0 and variance 1. The top two principal components were extracted for visualizing the
distribution of different oil samples, as shown in Figure 4. Three kinds of edible oils
(rapeseed oil, peanut oil, and sunflower oil) were in their own completely independent
population. The 13 brands of rapeseed oils had a high consistency in compact category.
While different brands of peanut oils showed a degree of dispersion, they had distinct
distinguishing features with other oils. The sunflower oils also showed a clear independent
category. Three kinds of oils (corn oil, olive oil, and sesame oil) were located on their own
separate groups. However, the dispersion of 15 brands of soybean oils was relatively large
and crosslinked with three oil groups (corn oil, olive oil and sesame oil) . Overall, each kind
of oil shows distinct categorical features. This analysis demonstrated that the quantitative
analysis of the four fatty acids is effective to distinguish different kinds of edible oils.
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Figure 4. The visualization of the quantitative results of four fatty acids in seven kinds of edible oils.

3.3. Prediction of Fatty Acid Contents with Full Wavelengths Reflectance Spectra

The PLSR, SVM, and RF coupled with multiple pretreatments of oil spectra were
used to develop the prediction models for the quantitative analysis of the content of fatty
acids in different edible oils. Each of the regression methods was combined with the
four pretreatment algorithms (SNV, MSC, SG smoothing, and WT) and the raw spectra
to train the models in calibration set. The top two pretreatment methods yielded the best
performance in each regression model were shown in Table 2, and the parameter setting
of the multivariate analysis models were provided in Table S4. As seen from Table 2, as
a whole, the performance of SVM model for the four fatty acids were better than PLSR
and RF model. Therefore, the SVM regression model was suitable for the quantitative
analysis of the content of fatty acids. For palmitic acid, the best prediction result was
obtained by SVM model constructed with spectral data preprocessed by MSC pretreatment,
which had R2

C of 0.9972, RMSEC of 0.1950, R2
P of 0.9510, and RMSEP of 0.8136. The

corresponding scatter plots of prediction performance on the calibration set and prediction
set were shown in Figure 5a,b, respectively. However, the second place, the model of
SVM with SNV pretreatment had the very similar performance as the model of SVM with
MSC pretreatment. For the stearic acid, the regression model constructed by SVM model
combined with SNV pretreatment had the best prediction effect with R2

C and RMSEC being
0.9993 and 0.0404 on the calibration set, R2

P and RMSEP being 0.9636 and 0.2965 on the
prediction set, respectively. The prediction performance was demonstrated in Figure 5c,d.
For the arachidic acid, the highest prediction accuracy was obtained using SVM model
with SNV pretreatment which had R2

C = 0.9948, RMSEC = 0.0204 (as shown in Figure 5e),
R2

P = 0.9576, RMSEP = 0.0577 (as shown in Figure 5f). In addition, the model of SVM
with SNV pretreatment for the spectral data provided the optimal prediction result in
behenic acid group as evidenced by R2

C = 0.9992, RMSEC = 0.0187 (as shown in Figure 5g),
R2

P = 0.9521, RMSEP = 0.1486 (as shown in Figure 5h). The complete prediction results of all
the pretreatment methods are provided in the Supplementary Materials (Table S3). Overall,
the performance of the regression models constructed by SNV pretreatment were generally
better than those with MSC, WT, and SG smoothing pretreatment, and the raw spectra.
Therefore, the SNV pretreatment was adopted as the standard method for preprocessing the
original spectral data in the subsequent analysis. It was worth noting that the constructed
PLSR models were with the large number of latent variables (LVs). In our experiments, we
tested different numbers of latent variables (LVs) in PLSR and chose the model with the
best prediction performance. However, the large number of LVs could lead to overfitting
of PLSR models. It should be very careful to choose the appropriate number of LVs in
PLSR in different studies. The prediction results for the four fatty acids led by Vis-NIR
reflectance spectroscopy were in a good agreement with the quantitative results obtained
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by GS-MS but with a very significant rapid detection in a measuring time. Thus, this study
presented an effective approach for rapid detection of fatty acids of edible oils. The four
fatty acid contents in edible oils were accurately quantified using the multivariate data
processing and analysis methods on Vis-NIR reflectance spectroscopy.

Table 2. Prediction results of four fatty acids in edible oils using full wavelengths.

Fatty Acids Model Pretreatment
Calibration Set Prediction Set

R2
C RMSEC R2

P RMSEP

Palmitic acid

PLSR SNV 0.9402 0.7583 0.8807 1.5326
MSC 0.9403 0.7579 0.8733 1.6297

SVM SNV 0.9952 0.2562 0.9504 0.8181
MSC 0.9972 0.195 0.951 0.8136

RF SNV 0.9833 0.4215 0.8552 1.0355
MSC 0.9828 0.4288 0.8572 1.0418

Stearic acid

PLSR SNV 0.9257 0.4233 0.8607 0.5845
MSC 0.9258 0.4232 0.8553 0.5968

SVM SNV 0.9993 0.0404 0.9636 0.2965
MSC 0.9956 0.1035 0.9624 0.3016

RF SNV 0.9857 0.1735 0.9126 0.3954
MSC 0.9866 0.1676 0.9168 0.3847

Arachidic acid

PLSR SNV 0.9008 0.0879 0.8186 0.1203
WT 0.8838 0.0952 0.8174 0.1211

SVM SNV 0.9948 0.0204 0.9576 0.0577
MSC 0.9907 0.0276 0.9526 0.0615

RF SNV 0.9839 0.0317 0.9414 0.0548
MSC 0.9843 0.0317 0.9421 0.0562

Behenic acid

PLSR SNV 0.9324 0.176 0.8699 0.2485
SG smoothing 0.9 0.214 0.8701 0.2459

SVM SNV 0.9992 0.0187 0.9521 0.1486
MSC 0.9993 0.0184 0.9485 0.1543

RF SNV 0.9905 0.0622 0.9486 0.1359
MSC 0.9915 0.0589 0.9496 0.1347

R2
C : coefficient of determination in calibration set; RMSEC : root mean square error in calibration set; R2

P: coefficient
of determination in prediction set; RMSEP: root mean square error in prediction set; PLSR: partial least squares
regression; RF: random forest; SVM: support vector machine; SNV: standard normal variables; MSC: multivariate
scattering correction; WT: wavelet transform.

3.4. Prediction of Fatty Acid Contents with Effective Wavelengths

A substantial proportion of redundant and irrelevant information was comprised in
the high dimension of Vis-NIR reflectance spectra data. Extracting effective wavelengths
could stabilize the prediction model and improve the computational efficiency. In order
to eliminate the redundant information in the spectra and simplify the model to develop
the real-time detection instrument for the prediction of fatty acid contents in edible oils,
the SPA, VIP, and PCA algorithms were used to extract the main information and reduce
the dimension of the spectra of edible oils. Based on the analytical results of the full
wavelengths, the SNV pretreatment was applied for preprocessing of spectra data. The
processed spectra were used to develop the regression models using RF, SVM, and PLSR.
The best models with SPA, VIP, and PCA algorithms in each of the fatty acids were shown
in Table 3, and the parameter setting of multivariate analysis models were provided in
Table S5. The effective wavelengths selected by the SPA, VIP, and PCA were shown in
Figure 6. The VIP algorithm only picked out few continuous wavelengths in visible band in
all the four fatty acid experiments with very poor prediction results (as shown in Table 3),
which demonstrated that the visible wavelengths were not enough to distinguish the
components in edible oils. The PCA inclined to select the wavelengths in peaks and
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troughs of the spectra. Similarly, the effective wavelengths selected by PCA algorithm did
not help to generate the good prediction results in all the four fatty acids (as shown in
Table 3). It indicated that the peaks and troughs of the spectra were not good indicators for
discrimination of components in edible oil based on Vis-NIR reflectance spectroscopy. In
contrast, the SPA algorithm was capable to select the finite number of discrete wavelengths
including visible and NIR bands as the effective wavelengths. Comparing with the effective
wavelengths selected by VIP and PCA, the regression models constructed with the effective
wavelengths selected by SPA yielded a significant improvement of prediction effects on the
content of all four fatty acids in edible oils.
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Figure 5. The results of palmitic acid on calibration set (a) and prediction set (b) using full wavelengths in the optimal
regression model; the prediction results of stearic acid on calibration set (c) and prediction set (d) using full wavelengths in
the optimal regression model; the prediction results of arachidic acid on calibration set (e) and prediction set (f) using full
wavelengths in the optimal regression model; the prediction results of behenic acid on calibration set (g) and prediction
set (h) using full wavelengths in the optimal regression model. (R2

C: coefficient of determination in calibration set; R2
P:

coefficient of determination in prediction set; RMSEC: root mean square error in calibration set; RMSEP: root mean square
error in prediction set).
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Table 3. Prediction results of four fatty acids in edible oils by the better model using effective wavelengths of spectra.

Fatty Acid Model Selected Wavelength (nm)
Calibration Set Prediction Set

R2
C RMSEC R2

P RMSEP

Palmitic acid
SNV + SPA + SVM

819 744 973 1159 698 664
968 1729 680 549 503 1576
1242 426 980 970 392

0.9711 0.6269 0.915 1.0731

SNV + VIP + SVM 437 418 439 416 417 438 0.4632 2.7038 0.3809 2.8959
SNV + PCA + SVM 493 605 663 922 971 1205 1409 0.8393 1.481 0.7872 1.7138

Stearic acid
SNV + SPA + SVM

1317 1811 855 2082 1276 1505
762 1012 893 1323 1029 2005
1111 1356 1044

0.9875 0.1737 0.9485 0.354

SNV + VIP + SVM 762 747 755 765 767 766 757
752 756 753 754 751 748 750 0.7987 0.6972 0.6089 0.9933

SNV + PCA + SVM 493 605 663 922 971 1205 1409 0.735 0.8044 0.6306 0.9461

Arachidic acid
SNV + SPA + SVM 499 626 455 887 522 579

1546 973 1152 974 705 0.9927 0.0239 0.936 0.0715

SNV + VIP + SVM 670 656 669 657 668 658 667
666 659 665 660 664 661 662 663 0.3978 0.2192 0.3177 0.2333

SNV + PCA + RF 493 605 663 922 971 1205 1409 0.9689 0.0424 0.8377 0.0849

Behenic acid
SNV + SPA + RF 649 455 498 1058 519 681 985

1739 426 666 406 578 974 744 0.9866 0.0735 0.9229 0.1606

SNV + VIP + SVM 669 655 668 656 667 657 666 665
658 664 659 663 662 660 661 0.4743 0.4977 0.4561 0.5097

SNV + PCA + RF 493 605 663 922 971 1205 1409 0.9716 0.1014 0.8462 0.2121

R2
C : coefficient of determination in calibration set; RMSEC : root mean square error in calibration set; R2

P: coefficient of determination
in prediction set; RMSEP: root mean square error in prediction set; SNV: Standard normal variables; VIP: variable importance in
projection; PCA: principal component analysis; SVM: support vector machine; RF: random forest.

To be more specific, for the palmitic acid, the SPA decreased the number of wave-
lengths from 2151 to 17 ( 819, 744, 973, 1159, 698, 664, 968, 1729, 680, 549, 503, 1576, 1242,
426, 980, 970, and 392 nm). The best prediction results were R2

C = 0.9711, RMSEC = 0.6269,
R2

P = 0.915, and RMSEP = 1.0731. The prediction results were shown in Figure 7a,b. In
the prediction of stearic acid content, the discrete wavelengths (1317, 1811, 855, 2082,
1276, 1505, 762, 1012, 893, 1323, 1029, 2005, 1111, 1356, and 1044 nm) were screened by
SPA which achieved the best prediction accuracy with R2

C = 0.9875, RMSEC = 0.1737,
R2

P = 0.9485, and RMSEP = 0.3540. The corresponding prediction results were shown in
Figure 7c,d. For arachidic acid, the 11 wavelengths (499, 626, 455, 887, 522, 579, 1546, 973,
1152, 974, and 705 nm) were screened by SPA with the model performance as R2

C = 0.9927,
RMSEC = 0.0239, R2

P = 0.9360, RMSEP = 0.0715 and the prediction effects were shown in
Figure 7e,f. In the quantitative analysis of behenic acid content, the 14 wavelengths selected
by SPA were 649, 455, 498, 1058, 519, 681, 985, 1739, 426, 666, 406, 578, 974, and 744 nm. The
constructed RF regression model had the best prediction effect with R2

C and RMSEC were
0.9868 and 0.0732, respectively. The R2

P and RMSEP were 0.9214 and 0.1630, respectively.
The prediction results were shown in Figure 7g,h. In summary, the prediction results
of the simplified regression model constructed by the effective wavelengths proved that
the characteristic wavelength selection method SPA was effective to construct a useful
model for the rapid quantitative analysis of four fatty acids in edible oils. This result is in
accordance with the previous research findings [39]. In addition, the simplified regression
models can also be used to design a fast and portable Vis-NIR reflectance spectroscopy
system to detect the fatty acid contents in edible oils.
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Figure 7. The results of palmitic acid on calibration set (a) and prediction set (b) using the selected wavelengths in
the optimal regression model; the results of stearic acid on calibration set (c) and prediction set (d) using the selected
wavelengths in the optimal regression model; the results of arachidic acid on calibration set (e) and prediction set (f) using
the selected wavelengths in the optimal regression model; the results of behenic acid on calibration set (g) and prediction set
(h) using the selected wavelengths in the optimal regression model. (R2

C: coefficient of determination in calibration set; R2
P:

coefficient of determination in prediction set; RMSEC: root mean square error in calibration set; RMSEP: root mean square
error in prediction set)

4. Conclusions

In this study, an efficient and non-destructive method using Vis-NIR spectroscopy was
presented for fatty acids identification of edible oils. The GC-MS was used to determine
the content of palmitic acid, stearic acid, arachidic acid and behenic acid in 93 brands
of edible oils as the reference values. The Vis-NIR spectroscopy of the 93 oil samples in
different brands were measured by a constructed hyperspectral spectroradiometer system
for model establishment and prediction. Overall, the prediction results showed that the
SVM regression model with SNV pretreatment on full wavelengths had the best predictive
effect on the four fatty acids. For the prediction of palmitic acid, the model of SVM with
SNV pretreatment had R2

P = 0.9504 and RMSEP = 0.8181, the best model for stearic acid
was SVM with SNV pretreatment which had R2

P = 0.9636 and RMSEP = 0.2965, the best
model for arachidic acid was SVM with SNV pretreatment which had R2

P = 0.9576 and
RMSEP = 0.0577, and the best model for behenic acid was SVM with SNV pretreatment
which had R2

P = 0.9521 and RMSEP = 0.1486. In addition, three algorithms SPA, VIP,
and PCA were evaluated systematically for the effectiveness of constructing a simplified
but stabilized model by selecting the effective wavelengths. The VIP algorithm was only
capable to find the continuous wavelengths in visible region. The PCA algorithm was
also not an ideal algorithm for effective wavelengths screening in the Vis-NIR spectra of
edible oils. In contrast, the SPA algorithm extracted the effective wavelengths distributed
in visible and NIR bands. The regression model constructed with the effective wavelengths
screened by SPA had ideal performance in the prediction of all the four fatty acids. Most of
the results based on the effective wavelengths expressed a certain degree of degradation
comparing with the results from full wavelengths. Even so, the loss of prediction accuracy
was small and tolerable. Accordingly, the Vis-NIR spectroscopy with multivariate methods
led to the accurate and rapid detection of fatty acid contents in edible oils. The simplified
regression models constructed by the effective wavelengths are benefit for facilitating more
faster and convenient analysis in the fatty acids detection of edible oils. However, the
potential cause of the visible spectrum contributing to the prediction of fatty acid contents
was not discussed in this paper and should be further studied in future.
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