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Jensen’s force and the statistical 
mechanics of cortical asynchronous 
states
Victor Buendía   1,2,3, Pablo Villegas1, Serena di Santo5, Alessandro Vezzani2,4, 
Raffaella Burioni2,3 & Miguel A. Muñoz1,2*

Cortical networks are shaped by the combined action of excitatory and inhibitory interactions. Among 
other important functions, inhibition solves the problem of the all-or-none type of response that comes 
about in purely excitatory networks, allowing the network to operate in regimes of moderate or low 
activity, between quiescent and saturated regimes. Here, we elucidate a noise-induced effect that we 
call “Jensen’s force” –stemming from the combined effect of excitation/inhibition balance and network 
sparsity– which is responsible for generating a phase of self-sustained low activity in excitation-
inhibition networks. The uncovered phase reproduces the main empirically-observed features of cortical 
networks in the so-called asynchronous state, characterized by low, un-correlated and highly-irregular 
activity. The parsimonious model analyzed here allows us to resolve a number of long-standing issues, 
such as proving that activity can be self-sustained even in the complete absence of external stimuli or 
driving. The simplicity of our approach allows for a deep understanding of asynchronous states and of 
the phase transitions to other standard phases it exhibits, opening the door to reconcile, asynchronous-
state and critical-state hypotheses, putting them within a unified framework. We argue that Jensen’s 
forces are measurable experimentally and might be relevant in contexts beyond neuroscience.

Networks of excitatory units –in which some form of “activity” propagates between connected nodes– are suc-
cessfully used as abstract representations of propagation phenomena as varied as epidemics, computer viruses, 
and memes in social networks1. Some systems of outmost biological relevance cannot be, however, modeled sim-
ply as networks of excitatory units. Nodes that inhibit (or repress) further activations are essential components of 
neuronal circuits in the cortex2, as well as of gene-regulatory, signaling, and metabolic networks3,4. Actually, these 
are an essential feature of cortical networks as synaptic excitation occurs always in concomitance with synaptic 
inhibition. What is the function of such a co-occurrence? or, quoting a recent review article on the subject, “why 
should the cortex simultaneously push on the accelerator and on the brake?”5.

Generally speaking, inhibition entails much richer sets of dynamical patterns including oscillations and other 
counterintuitive phenomena6,7. For example, in a nice and intriguing paper that triggered our curiosity, it was 
argued that inhibition induces “ceaseless” activity in excitatory/inhibitory (E/I) networks8. More in general, inhi-
bition helps solving a fundamental problem in neuroscience, namely, that of the dynamic range, defined as fol-
lows. Each neuron in the cortex is connected to many others, but individual synapses are relatively weak, so that 
each single neuron needs to integrate inputs from many others to become active.

This leads to the existence of two alternative phases, a completely quiescent and an active/saturated one 
(phases are characterized by the average value of the network activity which acts as a control parameter). In other 
words, increasing the synaptic coupling strength leads to an explosive, all-or-none type of recruitment in pop-
ulations of purely excitatory neurons when a threshold value is crossed, i.e. to a discontinuous phase transition 
between a quiescent and an active phase5. Having only two possible phases (quiescent and active/saturated) would 
severely constrain the set of possible network states, hindering the network capacity to produce diverse responses 
to differing inputs. This picture changes dramatically in the cortex, where the presence of inhibition has been 
empirically observed to allow for much larger dynamic ranges owing to a progressive (smoother) recruitment of 
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neuronal populations9,10. This is consistent with the well-known empirical fact that neurons in the cerebral cortex 
remain slightly active even in the absence of external stimuli11–13. In such a state of low self-sustained activity 
neurons fire in a steady but highly-irregular fashion at a very low rate and with little correlations among them. 
This is the so-called asynchronous state, which has been argued to play an essential role for diverse computational 
tasks14–17.

It has become widely accepted that such an asynchronous state of low spontaneous activity emerges from the 
interplay between excitation and inhibition. Models of balanced E/I networks, in which excitatory and inhibitory 
inputs largely compensate each other, constitute –as it was first theoretically proposed18–22 and then experimen-
tally confirmed23–27– the basis to rationalize asynchronous states. Indeed, balanced E/I networks are nowadays 
considered as a sort of “standard model” of cortical dynamics28.

In spite of solid theoretical and experimental advances, a full understanding of the phases of E/I networks 
remains elusive. For instance, it is still not clear if simple mathematical models can sustain highly-irregular 
low-activity phases even in the complete absence of external inputs from other brain regions. Indeed, many exist-
ing approaches to the asynchronous state assume that it requires of external inputs from other brain regions to 
be maintained29, while some others rely on endogenously firing neurons –i.e. firing even without inputs– for the 
same purpose (see e.g.30). Furthermore, it is not clear from modelling approaches whether asynchronous states 
can have very low (rather than high or moderate) levels of activity29,31,32.

All these problems can be summarized –from a broader Statistical Mechanics perspective– saying that it is not 
well-understood whether the asynchronous state constitutes an actual physical phase of self-sustained activity 
different from the standard quiescent and active ones. It is not clear either if novel non-standard types of phase 
transitions emerge at its boundaries. Such possible phase transitions might have important consequences for 
shedding light in to the so-called “criticality hypothesis”. This states that the cortex might operate close to the 
edge of a phase transition to optimize its performance. To shed light onto such a conjecture it is essential to first 
understand what the possible phases and phase transitions of cortical networks are.

Here, we analyze the simplest possible network model of excitatory and inhibitory nodes in an attempt to 
construct a parsimonious –understood as the simplest possible yet not-trivial– approach to of E/I networks8. We 
show, by employing a combination of theoretical and computational analyses, that the introduction of inhibitory 
interactions into purely excitatory networks leads to a self-sustained low-activity phase intermediate between 
conventional quiescent and active phases. Remarkably, the novel phase stems from a noise-induced mechanism 
that we call “Jensen’s force” (or “Jensen’s drift”) –for its relationship with Jensen’s inequality in probability theory– 
and that occurs owing to the combined effect of inhibition and network sparsity. The low-activity intermediate 
phase shares all its fundamental properties with asynchronous states and thus, as we argue, our model consti-
tutes the simplest possible statistical-mechanics representation of asynchronous endogenous cortical activity. 
Moreover, continuous (critical) phase transions –separating the novel intermediate phase from the quiescent and 
active phases, respectively– are elucidated, with possible important consequences to shed light on the criticality 
hypothesis33–35, and to make an attempt to reconcile the asynchronous-state and criticality hypotheses, putting 
them together within a unified framework. Finally, we propose that the elucidated Jensen’s force might be relevant 
in other contexts such as e.g. gene regulatory networks.

Models and Results
Minimal model.  The simplest approach to capture the basic elements of E/I networks are two-state (binary) 
neuron models16,18, such as the one proposed by Larremore et al.8. The simplified version that we consider here 
consists of a random-regular directed network with N nodes and K links36. A fraction α of the nodes (typically 
α = .0 2 to mimic empirical observations27,37) are inhibitory (negative interactions) and the rest are excitatory 
(positive interactions). More specifically, we consider the network to be hyper-regular, meaning that not only all 
nodes have the same inbound and outbound connectivity =k K N/ , but also that each of them receives exactly αk 
inhibitory inbound links and α− k(1 )  of excitatory ones (see Fig. 1 and Methods).

At any given (discrete) time t the state of a single node, i, can be either active, =s t( ) 1i , or inactive =s t( ) 0i . 
The dynamics is such that each node i integrates the (weighted) activity of its k neighbors as sketched in Fig. 1. At 
time +t 1, si becomes active (resp. inactive) with probability Pi (resp. P−1 i) given by
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where f is a transfer function of the input Λi, j runs over the set of (k) nodes pointing to node i, ωij is the weight of 
the connection from node j to node i (ω = ±1ij , for simplicity), and the control parameter γ is the overall cou-
pling strength.

The model is kept purposely simple in an attempt to reveal the basic mechanisms of its collective behavior; 
more complex network architectures, transfer functions, and other realistic ingredients are implemented a poste-
riori to verify the robustness of the results.

Mean-field approach: massively connected networks.  We start considering the case of a fully con-
nected network. Let E and I be the total number of excitatory and inhibitory active nodes, respectively, at a given 
time. These evolve stochastically according to a Master equation (as described in Methods), from which –per-
forming a 1/N expansion– one readily obtains the following deterministic equations:  α= − 〈 Λ 〉 −e f e(1 ) ( )  and 
 α= 〈 Λ 〉 −i f i( )  –where the dot stands for time derivative- for =e E N/  and =i I N/ , respectively. It follows that, 
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in the steady state, excitation and inhibition are proportional to each other: α α− =e i/(1 ) / , i.e. they become 
spontaneously balanced. Moreover, the overall activity density, = +s e i, obeys

 = 〈 Λ 〉 −s f s( ) , (2)

while the difference = −q e i is simply proportional to s in the stationary state: α= −q s(1 2 ) . In the large 
network-size limit ( → ∞N ), fluctuations in the input of each node are negligible. In such a limit, all nodes 
receive the same input, and thus the mean-field approach, in which the mean of the transfer function values (out-
puts) is replaced by the transfer function of the mean input

 = 〈Λ〉 −s f s( ) , (3)

becomes exact. Equation (3) admits two trivial fixed points corresponding to the quiescent ( ⁎ =s 0) and saturated 
( ⁎ =s 1) states, respectively. The quiescent (resp. saturated) state is stable below a given value of the coupling con-
stant, γ γ α< = −1/(1 2 )c  (resp. γ γ> c), while right at γc all values of ≤ ≤s0 1 are marginally stable. Thus, as 
illustrated in Fig. 1B, the system experiences a discontinuous phase transition at γc (i.e. the all-or-none phenom-
enon described in the Introduction). Observe also (see Fig. 1C) that, in agreement with intuition, as the fraction 
of inhibitory nodes in the network is increased (i.e. as α grows), the overall level of activity tends to decrease, and 
the nature of the phase transition is not altered: it remains discontinuous even in the presence of inhibitory 
populations.

Beyond mean-field: Sparse networks.  Computational analyses of the model on sparse networks reveal 
a phenomenology much richer than the just described mean-field one. As shown in Fig. 2 the phase transition 
becomes progressively smoother (continuous) as the network connectivity k is reduced, and a novel intermediate 
phase where the overall average activity s does not saturate to either 0 or 1 emerges. Importantly, let us stress that 
such an intermediate phase does not appear in sparse networks of purely excitatory nodes.

To gauge the level of network-state variability, we measured the standard deviation σs of s  (average of s 
finite-time windows for finite-size networks; see Fig. 2) over realizations. This quantity exhibits two marked peaks 
(Fig. 2) suggesting the existence of two phase transitions38,39. The (leftmost) peak, at γc

e, corresponds to a transi-
tion from the quiescent ( =s 0) to the low-activity intermediate (LAI) phase. Observe that, γc

e exhibits severe 
finite-size-scaling corrections (depending also on k) and converges to γ α= −1/(1 )c

e  as → ∞N  (see the inset 
in Fig. 2). This value of γ coincides with the mean-field transition point for the purely excitatory subnetwork with 

α−N(1 ) units (i.e. without inhibition; see Fig. 1A), justifying the superindex e in γc
e. On the other hand, the 

second peak is located at γ α= −1/(1 2 )c , i.e. the very same location of the mean-field discontinuity for the 
fully-connected network and is less sensitive to finite-connectivity effects. These two transition points delimit the 
LAI phase. There is a third relevant value, γ γ= sat (within the active phase) at which the fully-saturated solution, 

=s 1, emerges. As k increases, this third point becomes closer to γc, making the second transition progressively 
sharper and converging to the mean-field result.

Figure 1.  (A) Upper panel: Sketch of the input received by a single node, including excitatory (orange arrows) 
and inhibitory (green blunt arrows) interactions from active (colored) neighbors. The lower panel shows the 
considered transfer function for probabilistic activation of nodes as a function of the input. (B) Averaged level 
of activity in a fully-connected network consisting solely of α−N(1 ) excitatory nodes; it exhibits a 
discontinuous phase transition at γ α α= −( ) 1/(1 )c

e  separating a quiescent or Down state from an active or Up 
one. (C) As (B) but for a network consisting of α−N(1 ) excitatory and Nα inhibitory nodes. Let us remark 
that the shape of the phase transition depends on our choice for the transfer function. More plausible, non-
linear, transfer functions lead e.g. to discontinuous transitions with a region of bistability (phase coexistence) 
and hysteresis; however, the main results of this work are remain unaffected (see Supplementary Information 
(SI) 3).
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Analytical results for sparse networks.  To rationalize the novel intermediate-activity phase, it is essential 
to realize that, in the sparse-connectivity case, the input received by a given node does not necessarily take its 
mean-field value, but is a fluctuating variable, making it thus necessary to consider Eq. (2) rather than its 
mean-field counterpart Eq. (3) to correctly describe sparse networks. To make analytical progress it is necessary 
to determine the probability distribution of inputs, which is equivalent to computing the probability p s( )lj  that a 
given node has exactly l active inhibitory neighbors and j active excitatory ones, for arbitrary values of l and j. 
Larremore et al. made an attempt to solve this problem working with the actual (“quenched”) network architec-
ture, i.e. considering a specific pattern of connections between nodes. This requires analyzing the corresponding 
connectivity (adjacency) matrix and its leading eigenvalues8. Here, we propose to tackle the problem from a 
complementary angle. More specifically, we consider a random-neighbor (“annealed”) network version of the 
model, in which, at each time step, the neighbors of each node are randomly sampled from the whole network 
(keeping fixed the number of them as well as the fractions of excitatory and inhibitory ones). This annealed vari-
ant of the model greatly simplifies the analytical calculations, and –quite surprisingly– leads to results identical 
(up to numerical precision) to those for the original quenched-network problem.

For the annealed version of the model one can readily write (see SI-1):
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which is the product of two bimodal distributions, and depends on the probability for any arbitrary node to be 
active, s. From this, it follows that

∑ γ〈 Λ 〉 = −f p s f j l( ) ( ) [ ( )],
(5)l j

lj
,

where 

γ γ= k/ , as well as γ α〈Λ〉 = − s(1 2 )  and σ γΛ = −s s k( ) (1 )/2 2  for the mean and the variance of the 

input distribution, respectively. Note that all these are functions of s and 

γ , solely. Evaluating Eq. (5) is not 

straightforward owing to the non-linearity of f. However, analytical insight can be obtained by Taylor-expanding 
around either of the two trivial solutions: ⁎ =s 0 or ⁎ =s 1. Expanding around ⁎ =s 0 and keeping only leading 
order (linear in s) contributions, leads to � �γ αΛ −f f k s( ) ( (1 ) ), which plugged into Eq. (2) implies that the 
solution ⁎ =s 0 loses its stability at a critical point γ α= −1/(1 )c

e , in perfect agreement with computational 
observations (in the → ∞N  limit). Observe that, as a consequence, the LAI phase exists for all finite connectivity 
values and emerges at γc

e for all k, but –owing to finite-size corrections– larger and large networks are required to 
see it as the network connectivity is increased.

A similar analysis around ⁎ =s 1 (see SI-2) reveals that the saturated solution is stable only above
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Figure 2.  Overall steady-state averaged network activity s for the E/I model on a sparse hyper-regular network 
( =N 16, 000) in which all nodes have the same (in-)connectivity k (with either =k 15 or =k 40) and the same 
fraction of ( α− k(1 ) ) excitatory and (αk) inhibitory inputs (α = .0 2 here). (A, Bottom) Variance across (103) 
runs of the total network activity averaged in time windows of a given length ( =T 104 MonteCarlo steps) as a 
function of the coupling strength γ for two different values of the connectivity k; each curve shows two marked 
peaks, indicative of two phase transitions. The leftmost one, γ k N( , )c

e , shifts towards γc
e in the large-N limit, 

obeying finite-size scaling, as illustrated by the straight line in the double-logarithmic plot of the inset. On the 
other hand, the second peak is a remanent of the mean-field first-order transition at γ α= − = . …1/(1 2 ) 1 66c  
and is less sensitive to finite-connectivity effects (it is always located at the point where =s 1/2).
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again in perfect agreement with numerical findings (see Figs 2 and 3). As numerically observed, γ sat converges to 
the mean-field prediction α−1/(1 2 ) for → ∞k . Thus, contrarily to mean-field expectations, there exists a whole 
intermediate region, γ γ γ< <c

e sat, where activity does not vanish nor saturate for E/I networks. Such a region 
emerges as a consequence of input fluctuations and, hence, stems from network sparsity. Observe that for purely 
excitatory networks, i.e. with α = 0, γ γ=c

e sat and the intermediate region vanishes. The full phase diagram as a 
function of γ and k is depicted in Fig. 3.

Jensen’s force.  To go beyond perturbative results, note that the difference between the exact equation for the 
model on a sparse network, Eq. (2), and its mean-field approximation, Eq. (3), is that 〈 Λ 〉 ≠ 〈Λ〉f f( ) ( ). In other 
words, the non-linear function f and the network average are non-commuting “operators”. The reported 
non-trivial effects for sparse networks necessarily stem from the difference between this two different quantities:


γ ≡ 〈 Λ 〉 − 〈Λ〉 .F s f f( , ) ( ) ( ) (7)

Observe that, as the terms in the r.h.s. depend on s, 

γF s( , ) can be interpreted as a state-dependent stochastic 

“force”40. As shown above the distribution of inputs to any given node is centered at 〈Λ〉 and has a standard devi-
ation that scales as k1/  (in agreement with the central limit theorem). If f was a linear function, then 
〈 Λ 〉 = 〈Λ〉f f( ) ( ), but as it is a convex function near the origin, then the Jensen’s inequality of probability theory 
(this expresses the fact that if x is a random variable and g x( ) is a convex function, then 〈 〉 ≥ 〈 〉g x g x( ) ( )) implies 
that 〈 Λ 〉 > 〈Λ〉f f( ) ( ), i.e. F is positive if 〈Λ〉 is near 0, i.e. if the level of activity s is relatively small.

Thus, we propose the term “Jensen’s force” to refer to 

γF s( , ) (see Fig. 4). This positive force is responsible for 

the destabilization of the quiescent state and the emergence of the LAI phase. Observe that if, on the other hand, 
〈Λ〉 happens to be close to 1, the function f is locally concave and, using a reverse argument, 〈 Λ 〉 < 〈Λ〉f f( ) ( ), i.e. 
there is a negative Jensen’s force F in the regime of very large activities (justifying the reduction of the saturated 
regime with respect to the mean-field case). Finally, if parameters are such that the system lies in the quiescent 
( =s 0) or in the saturated ( =s 1) phase then there are no input fluctuations –i.e. the input distribution is delta 
function– and the Jensen’s force vanishes.

The Jensen’s force, 

γF s( , ), can be analytically calculated for some particular transfer functions f (see SI-3) but, 

in general, it can only be determined numerically. For the sake of illustration, results for the function f considered 
in Eq. (1) for the particular case γ γ= c  are shown in the inset of Fig. 4. Observe that 


γF s( , ) is positive for 

<s 1/2, negative for >s 1/2 and vanishes at =s 1/2 explaining why the steady state is precisely =s 1/2 for 
γ γ= c. Similar arguments work for other values of γ. Let us emphasize that the magnitude of the force decreases 
as k grows (Fig. 4, inset) vanishing in the limit in which networks are no longer sparse.

Summing up, the sparsity-induced Jensen’s force F is responsible for the emergence of a LAI phase in E/I net-
works below the mean-field critical point, γc as well as for a reduction in the overall level of activity with respect 
to the mean-field limit in a region above γc.

Let us emphasize that the annealed-network approximation fits perfectly well all computational results 
obtained for quenched networks, with fixed neighbors and intrinsic structural disorder (we have verified that, 
indeed, the quenched and the annealed versions of the model give numerically indistinguishable results; see SI-
3). The reason for this agreement, lies in the absence of node-to-node correlations within the LAI phase in the 
large-network limit (see below), which suggests that the annealed approximation is exact in such a limit.

Figure 3.  Phase diagram as a function of the coupling-strength (γ) and the connectivity k for a finite size 
=N 16000 nodes. The color code indicates the level of averaged overall activity s; this shifts from the quiescent 

phase (reddish colors) to the active phase (blueish colors). Horizontal dashed lines correspond to the critical 
points γc

e and γc in the large-N (thermodynamic) limit. The saturation value γ k( )sat  corresponds to Eq. (6); 
results from simulations are marked as black points. The curve γ k N( , )c

e  represents an interpolation of the values 
obtained from simulations and coincides within numerical precision with the dashed line in the large-N limit.
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Importantly, we have computationally verified that the LAI phase is quite robust as it also emerges for other 
non-linear transfer functions, more random (non hyper-regular) networks as well as for heterogeneous weight 
distributions (see SI-3).

Phase transitions from and to the LAI phase.  Figure 2 reveals the existence of two phase transitions, 
one at each side of the LAI phase. Around the left-most one, at γc

e, we performed standard computational analyses 
of avalanches, by introducing a single seed of activity (one active excitatory node) in an otherwise quiescent state, 
and analyzed the statistics of the cascades of activations it triggers.

We observed computationally that at the quiescent-active critical point γc
e the system displays avalanches –

whose sizes and durations are distributed as power-laws as ∼ τ−P S S( )  and ∼ α−P T T( ) , respectively (see Fig. 5)– 
thus compatible with those of the unbiased branching process41,42. This result is not surprising given the 
un-structured (mean-field like) nature of the network. Further analyses need to be done in lower dimensional 
systems to see if this transition from a quiescent to a noise-induced active phase shares the critical features of 
standard quiescent-to-active phase transitions (known to be in the so-called directed percolation universality 
class39,43) or if novel behavior emerges owing to noise-induced effects. In any case, our simple model does not 
exhibit correlations between succesive avalanches, which are often observed in experimental settings44. On the 

Figure 4.  Sketch illustrating the origin of the noise-induced Jensen’s force. Each node in a sparse network 
receives an input Λ which is a random variable extracted from some bell-shaped probability distribution 
function ΛP( ) (sketched below the x-axis) with averaged value γ α〈Λ〉 = − s(1 2 )  and standard deviation 
σ γ= −s s k( (1 ) )/s  (see SI-1). The possible outputs Λf ( ) are also distributed according to some probability 
(sketched to the left of the y-axis). Given that around Λ ≈ 0 the function Λf ( ) is locally convex then, as a 
consequence of Jensen’s inequality for convex functions, 〈 Λ 〉 ≥ 〈Λ〉f f( ) ( ) (i.e. the dotted red line is above the 
blue one). Indeed, while for positive inputs, the transformation is linear, negative ones are mapped into 0 thus 
creating a net positive Jensen’s force for small values of Λ (or s). The inset shows the Jensen’s force 

γ ≡ 〈 Λ 〉 > − 〈Λ〉F s f f( , ) ( ) ( ) computed right at the critical point γc for different connectivity values, as a 

function of s. Note, the negative values for large values of s which stem from the concavity of the function f(x) 
around x = 1. Note that F decreases as k grows and vanishes in the mean-field limit.

Figure 5.  Distribution of avalanche sizes (left) and durations (right) at the (leftmost) critical point γc
e for 

different system sizes (see legend) in a hyper-regular network with =k 15. Black dotted lines are guides to the 
eye showing the theoretical values for an unbiased branching process.
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other hand, the second phase transition, at γ α= −1/(1 2 )c  is a remanent of the original (discontinuous) 
mean-field one, and signals a (continuous) transition between states of low activity to high activity ones. This 
phase transition –which is driven by the Jensen force that changes from positive to negative, i.e. it vanishes, at the 
transition point– also needs further scrutiny to be fully elucidated. A detailed analysis of these phase transitions, 
as well as of their possible relevance in connection with the hypothesis that the cerebral cortex might operate at 
the edge of a critical point34,35,41,45,46 is left as an open challenge for future work (see Discussion).

Asynchronous-state features.  The cortical asynchronous state is characterized by a number of key fea-
tures (see also Methods) including: (i) Large variability: the coefficient of variation, CV, defined as the ratio of 
the standard deviation to the mean of the interspike intervals (i.e. periods of un-interrupted silence for a given 
neuron/node) is relatively large, i.e. CV ≥ 111. (ii) The network-averaged pairwise Pearson’s correlation coefficient 
PC is very low; actually it decays to 0 with network size reflecting a lack of synchronization or coherent behav-
ior22,29,47. (iii) There is a (short) time lag between excitation and inhibition (E-I lag) meaning that an excess in 
excitation is rapidly compensated by an increase in inhibitory activity, so that inhibition actively de-correlates 
neural populations and the network state remains stable, as theoretically predicted22,48–50 and experimentally 
confirmed14,51.

As shown in Fig. 6 the LAI phase –but not the quiescent nor the active ones– displays all these key features of 
cortical asynchronous states (see figure caption for details). In particular, the coefficient of variation CV is larger 
than unity all across the LAI phase, while it vanishes in the quiescent and saturated phases. The value of CV could 
be made even larger –so that larger levels of variability would be obtained, mimicking more closely experimental 
results (see e.g.44) by introducing more complex network topologies and/or more complex gain stochastic gain 
functions52,53. Also, there is a one-step time-lag correlation between excitation and inhibition, revealing that the 
population of inhibitory neurons lags behind following and controlling the level of excitatory activity. Finally, the 
correlation between any pair of neurons (regardless of whether each of them is excitatory or inhibitory) is very 
small all across the LAI phase and tends to vanish in the large network-size limit, implying that pairs of neurons 
become decorrelated.

Moreover, in agreement with the original claim for asynchronous states18,19, we verified that all along the LAI 
phase (and only in the LAI phase) the dynamics is chaotic (or quasi-chaotic) in the sense of damage spreading 
dynamics54. Indeed, as shown in Fig. 7a, all across the LAI phase we observe a value of the branching parameter 

>B 1 and, as a consequence, chaotic behavior, as previously suggested for asynchronous states18 (see Methods). 
Moreover, by computing the difference between states in M and M′ that differ in a few sites, and computing the 
averaged Hamming distance for sufficiently large times (Hst), one observes that such a distance takes values of the 
order of the network activity within the LAI phase (see Fig. 7b), revealing that active sites become rapidly uncor-
related in both replicas and reflecting again the chaotic nature of the LAI phase.

Figure 6.  (A) Time series of the excitatory (e; orange line) and inhibitory (i; green line) network activity in the 
LAI phase (network =N 16000). The zoom illustrates the small (one-time step) E-I lag present in this phase. 
(B) Coefficient of variation (CV) vs. coupling-strength γ; ≥CV 1 within the LAI phase, while it vanishes in the 
quiescent and active phases (the color code, as in Fig. 2, stands for connectivity values). (C) Time-lagged cross-
correlation (CC) between the excitation and inhibition timeseries in the LAI phase. The maximum (black 
dashed line) reflects the existence of a one-step E-I lag. (D) Pairwise Pearson’s correlation (PC) between nodes 
in the LAI phase as function of γ; it takes small values, but exhibits a marked peak at the critical point γc (dotted 
line). The inset shows that the PCs scale with system size as 1/N thus vanishing in the large-network limit (data 
for γ = .1 55, but results valid all across the LAI phase). In all cases, we considered enough simulation runs so 
that errorbars are smaller than the employed symbols. Cross-Correlation and E-I lag have been obtained from a 
raster of =N 16000 neurons for =t 104. The pairwise correlation is computed taking 500 random pairs, 
averaging over 1000 different networks.
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Thus, in synthesis, all the chief features of cortical asynchronous states are also distinctive and exclusive char-
acteristics of the LAI phase.

Tightly-balanced networks.  We now scrutinize how the region in parameter space in which the LAI phase 
emerges can be maximized, thus limiting the need for parameter fine tuning to exploit the possible functional 
advantages of such a regime. This is achieved by considering tightly-balanced networks (also called 
detailed-balanced networks)17,55 in which excitatory and inhibitory inputs are tuned to compensate mutually, so 
that the average input of individual nodes is kept close to 0. To do so, it suffices to introduce in the model defini-
tion, Eq. (1), two different strengths for excitatory and inhibitory synapses, ωe and ωi, respectively. In this way, the 
(leftmost) transition point is easily seen to shift to, γ ω α= −1/( (1 ))c

e e , while γc changes to

γ
ω α ω α

=
− −

1
( (1 ) ) (8)c e i

which diverges to infinity if ω ω α α= −/ /(1 )e i . This implies that the largest possible LAI phase is obtained when 
this latest condition is met (observe that in such a limit the level of activity varies very slowly converging to 

=s 1/2 as γ → ∞). Given that as shown above α α− =e i/(1 ) / , the above condition corresponds precisely to the 
tightly-balanced networks for which the averaged input of each single node, 


γ ω ω〈Λ〉 = −e i( )e i , vanishes. Thus, 

tightly-balanced networks have the largest possible LAI phase and the largest possible dynamic range.

Experimental measurements of the LAI phase and the Jensen’s force.  Is it possible to measure the 
Jensen’s force experimentally? We believe it is, but explicitly designed setups would be required. First of all, let us 
recall that asynchronous states (i.e. LAI phases) have been detected experimentally both in vivo and in vitro24,25,27. 
Importantly, with today’s technology, the spiking activity of more than 1000 neurons can be measured simulta-
neously56, so that much better statistics can be collected. In principle, one should be able to compute the Jensen’s 
force in this type of experiments. In SI-4 we propose a tentative experimental protocol to do so. However, we leave 
this programme for future research as well as an open challenge for experimentalists.

Conclusions and Discussion
It has been long observed that neurons in the brain cortex remain active even in the absence of stimuli11–13. 
Depending mostly on cortical region and functional state, diverse levels of synchronization across the 
asynchronous-synchronous spectrum are observed20,30. While the role of synchronization in neuronal networks 
has been long studied57, the role of the asynchronous state remained more elusive22. Presently, it has become 
widely accepted that the asynchronous state emerges from the interplay between excitation and inhibition, and 
that it is essential for network stability and to allow for high computational capabilities14–16.

Our main goal here was to investigate the origin of low-activity regimes in excitation/inhibition net-
works, determining in particular the nature of their (thermodynamic) phases. For this, we employed a 
statistical-mechanics approach and searched for a model as parsimonious as possible, i.e. a sort of Ising model of 
E/I networks. In particular, we analyzed a model which further simplifies the one proposed by Larremore et al.8 in 
a few different ways. For example, we removed network heterogeneity both in its architecture and in the allowed 
synaptic weights to allow for mathematical tractability.

Our main result is that E/I networks exhibit a non-trivial LAI phase in between standard quiescent and active 
phases, in which activity reverberates indefinitely without the need of external driving, nor of intrinsically firing 
neurons (in contradictions to previous beliefs). Two key ingredients are necessary for the LAI phase to emerge: a 
spontaneously generated dynamical balance between excitation and inhibition and network sparsity. The result-
ing phase has all the statistical properties usually ascribed to asynchronous states.

Figure 7.  (a) Branching function B in damage spreading experiments (averaged over 104 runs). Black dotted 
lines represent marginal propagation of activity, i.e. critical dynamics. All across the LAI phase, the dynamics 
propagates in a chaotic way, B > 1, while in the quiescent and active phases, the Hamming distance is smaller 
than 1. (b) Average over runs for the time-averaged Hamming distance in the steady state 〈 〉Hst , over =T 104 
MonteCarlo steps; two initial replicas are different in a small number (10) of nodes. In this case, all across the 
LAI phase the difference between the two replicas 〈 〉Hst  is very close to the steady state density, indicating that 
activity becomes uncorrelated between them (node states coincide only by chance). Simulations run for hyper-
regular networks with =N 16, 000, =k 40 and α = .0 2.
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The LAI phase stems from network sparsity, i.e. from fluctuations in input values and appear even in extremely 
homogeneous, hyper-regular, networks. This observation disproved an initial conjecture of us suggesting that 
intermediate levels of activity could be related to so-called Griffiths phases. Such phases have remarkable fea-
tures58 and have been claimed to be relevant for cortical dynamics59; they also emerge in between quiescent and 
active phases, but only in systems characterized by structural heterogeneity and, thus, are unrelated to the novel 
LAI phase uncovered here. Nevertheless, an important research line left for future work, is to analyze how the 
properties of the LAI phase are altered in more structured and realistic networks including e.g. broad degree dis-
tributions, clustered structure and modular-hierarchical organization, which might lead to novel phenomena59–62.

An issue worth discussing is the dependence of the presented phenomena on network connectivity and the 
connection of our work with the standard view of balanced networks as originally proposed in the seminal work 
of van Vreeswijk and Sompolinski18. As we showed, the LAI phase emerges out of input fluctuations and –as the 
input standard deviation scales with γ k/ – it relies crucially on the finiteness of k, i.e. on network sparsity. 
However, it is important to underline that, as we showed, the LAI phase survives even for arbitrarily large values 
of k, but larger and larger network sizes N are required for it to be evident. Interestingly, it is also possible to adopt 
the original scaling proposed in18, where it was argued that if the strength of individual synapses is of order k1/  
(rather than constant as here), it compensates fluctuations in the number of actual inputs (order k ), leading a 
total input fluctuations of the same order of the neuron firing threshold (order unity), and thus to 
fluctuation-controlled activations. This type of scaling can be easily accommodated within our approach just by 
replacing γ/k in Eq. 1 by γ′ k/ ; with this scaling, the critical points in terms of the new coupling constant γ′ are 
shifted as k grows, and the noise-induced phase persists even in the limit of dense networks. Note also that, as 
illustrated here, having a sharp threshold is not a necessary ingredient for the phenomenon to occur: the LAI 
phase also emerges when considering, e.g. a transfer function such as the hyperbolic-tangent without a hard dis-
continuity. In other words: the Jensen’s force is more general than a hard threshold, noise-filtering, mechanism.

In order to verify whether more realistic neuronal networks models exhibit also an intermediate phase, in 
between quiescent and standard active ones, we first scrutinized the recent literature. We found that there are (at 
least) two recent computational analyses of E/I networks of integrate-and-fire neurons with (current-based or 
conductance-based) synapses confirming the emergence of a similar self-sustained intermediate regime with high 
variability31,32. This confirms that the very general mechanism put forward here also applies to more detailed/
complicated neuron models. Observe, however, that these studies use integrate-and-fire neurons with an activa-
tion threshold, meaning that low inputs are suppressed. As a consequence, they require the use of strong synapses 
to trigger the Jensen’s force and induce a stable LAI. Let us, thus, emphasize that the concept of Jensen’s force 
sheds new light on the computational findings of these recent works.

We have proposed a tentative protocol to challenge experimentalist to empirically measure Jensen’s forces in 
actual neuronal networks, either in vivo or in vitro. Even if technical difficulties are likely to emerge, we strongly 
believe that Jensen’s forces are susceptible to be observed and quantified in the lab. This research programme, if 
completed, would strongly contribute to shedding light on the noisy dynamics of cortical networks, as well as on 
the way it helps processing information.

Let us also comment on the relationship between the so called “criticality hypothesis” –i.e. the idea that the 
cortex, as well as some other biological systems, might extract important functional advantages from operating 
near the critical point of a continuous phase transition33–35,41,45,63– and the findings in this work. Let us empha-
size that asynchronous states and critical states have almost opposite features: the first is characterized by active 
de-correlation of nodes and the second exhibits strong system-spanning correlations. Thus, clarifying the inter-
play between these two antagonistic interpretations/phenomena –and analyzing them together within a unified 
framework– is a challenging goal64,65. We believe that our simple model (probably improved with further impor-
tant ingredients such as some for of synaptic plasticity (as e.g. in35)) is a good candidate to constitute a unified 
framework to put together asynchronous and synchronous states and the critical phase transition in between, and 
to analyze these fundamental questions. Observe in particular that the LAI phase is separated from the quiescent 
and active phases, respectively, by continuous phase transitions –including critical points– whose specific details 
still need to be further elucidated. As a matter of fact, having a good understanding of the main phase transitions 
of E/I networks is a fundamental preliminary step to make solid progress to contribute to the criticality hypothe-
sis. It is also worth mentioning that some recent papers66 claim that critical dynamics occurs at the network level 
in concomitance with the strongest detailed E/I balance at the neuronal level; indeed, as our work shows, at the 
limiting points of the LAI phase there is E/I balance and criticality.

Finally, let us mention that we are presently exploring the possibility of observing similar LAI phases in other 
biological networks such as gene regulatory ones, where gene repression plays a role equivalent to synaptic inhibi-
tion in neural networks where opposite conflicting influences may mutually compensate to each other, leading to 
noise-induced phenomena. We hope that the novel stochastic force and phase elucidated here foster new research 
along and this and similar lines.

Methods
Some of the most relevant methods have been sketched in the main text. Here we detail some important method-
ological aspects. Further details are provided in the Supplementary Information (SI).

Hyper-regular networks.  For the sake of mathematical tractability, we consider hyper-regular networks in 
which each node has exactly α= −k k(1 )exc  excitatory neighbors and α=k kinh  inhibitory ones pointing to it 
(where α is the fraction of inhibitory nodes); a sketch is shown in Fig. 8. For this, we follow these steps: (i) two 
random regular networks, one of excitatory nodes with connectivity kexc and one of inhibitory units with connec-
tivity kinh are generated; (ii) α= −k k(1 )e  links (avoiding node repetitions) are randomly chosen to point to each 
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inhibitory node. This process got sometimes stuck due to a topological conflict, so we re-started the process after 
106 unsuccessful attempts to include new links. Each link of the so constructed networks is taken with positive 
weight for interactions from a excitatory nodes j to a inhibitory neuron i (ω > 0ij ) and negative for the opposite 
interaction (ω < 0ji ). On the other hand, all weights with the excitatory (resp. inhibitory) subnetwork are positive 
(resp. negative).

Mean field approach.  The excitatory and inhibitory populations (E,I) evolve stochastically according to a 
Master equation40 described by the following transition rates for large networks:

α Λ
Λ

α Λ
Λ

Ω → + = − − 〈 〉
Ω → − = − 〈 〉
Ω → + = − 〈 〉
Ω → − = − 〈 〉

E I E I N E f
E I E I E f
E I E I N I f
E I E I I f

( , 1, ) [ (1 ) ] ( )
( , 1, ) [1 ( ) ]
( , , 1) [ ] ( )
( , , 1) [1 ( ) ] (9)

where the timescale has been set to unity, 〈 Λ 〉f ( )  is the average probability for any given node to become active (〈·〉 
stands for network average), and factors such as α− −N E(1 )  (resp. α −N I( )) describe the number of inactive 
excitatory (resp. inhibitory) nodes. Performing a 1/N expansion of the corresponding Master equation40 and 
keeping terms up to leading-order, one readily obtains the following deterministic equations:





α
α

= − 〈 Λ 〉 −

= 〈 Λ 〉 −

e f e
i f i

(1 ) ( )
( ) (10)

where the dot stands for time derivative for =e E N/  and =i I N/ , respectively. In particular, considering a 
fully-connected system in the large size limit (i.e. → ∞N ), fluctuations in the input of each node are negligible. 
Thus, all nodes receive the same input, and the mean of the transfer function values is replaced by the transfer 
function of the mean input, i.e. the mean-field approach implies

〈 Λ 〉 = 〈Λ〉f f( ) ( ) (11)

The detailed procedure to compute these averages is presented in SI-1 and SI-2.

Asynchronous-state features.  Coefficient of variation (CV).  This is defined as the quotient of the stand-
ard deviation σISI to the mean μISI of the inter-spike interval (ISI) on individual units:

σ
μ

= .CV
(12)

ISI

ISI

Excitatory/inhibitory cross-correlation.  Given two time series x(t) and y(t), the Pearson correlation coefficient of 
x(t) and τ+y t( )

∑τ
σ σ

τ= + .
=−∞

+∞
CC x t y t( ) 1 ( ) ( )

(13)x y t

Figure 8.  Sketch of a hyper-regular network with =N 20 nodes and connectivity =k 5. Orange nodes stand 
for excitation and green nodes for inhibition. For the zoomed node, the difference between out-activity and in-
activity is also shown (i.e. each node has =k 5 excitatory (or inhibitory) outbound links as well as α−k(1 ) 
excitatory and kα inhibitory inbound links). In particular, in this example, each node has 5 inbound inputs of 
which 4 are excitatory and 1 inhibitory, as well as 5 outbound links: all of them positive for excitatory units and 
negative for inhibitory ones.
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where σx and σy are the standard deviations of the time series x(t) and y(t), respectively and τ is a time delay. Since 
we are interested in the E/I lag, we subtract the mean from the time series, i.e. we take μ= −x t e t( ) ( ) e and 

μ= −y t i t( ) ( ) i. This procedure ensure us a correct normalization, so τ ∈ −CC( ) [ 1, 1]. In this way, if τCC( ) has 
a peak for τ < 0, we conclude that the activity of the inhibitory population resembles the activity of the excitatory 
one, but it is shifted to the left: excitatory population spikes first and it is followed by the inhibitory one.

Pairwise correlation.  The Pearson’s correlation coefficient between a randomly selected pair of network nodes, 
xi and xj, is defined as

=
〈 〉 − 〈 〉〈 〉

〈 〉 − 〈 〉 〈 〉 − 〈 〉
PC

x x x x

x x x x (14)
x x

i j i j

i i j j
, 2 2 2 2i j

where 〈·〉 represents a temporal average. The total Pearson’s correlation coefficient (PC) is computed by averaging 
PCx x,i j

 over 500 pairs of nodes for different realizations.

Chaotic behavior.  In order to scrutinize the possible chaotic nature of the LAI phase18, we employ the standard 
method consisting in analyzing the dynamics of damage spreading54. It involves the next steps: (1) take a specific 
state of a network, M, and a construct an identical replica of it, M′, in which the state of only a randomly-chosen 
node is changed; (2) the Hamming distance, H –defined as the difference of states between M and M′– is com-
puted after one time step (i.e. an update of all the nodes of the two networks) and finally, (3) H is averaged over 
many realizations (i.e. over different locations of the initial damage and stochastic trajectories) obtaining the 
branching parameter, B. If <B 1 perturbations tend to shrink and the network is in a ordered phase, while if 

>B 1 perturbations growth on average and the network exhibit chaotic-like behavior. For marginal propagation 
of perturbations, =B 1, the network is critical.
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