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Protozoan parasites such as Plasmodium spp., Leishmania spp., Trypanosoma spp., 
and Toxoplasma gondii are major causes of parasitic diseases in both humans and 
animals. The immune system plays a critical role against protozoa, but their immune 
mechanism remains poorly understood. This highlights the need to investigate the 
function of immune cells involved in the process of parasite infections and the responses 
of host immune system to parasite infections. Mast cells (MCs) are known to be central 
players in allergy and anaphylaxis, and it has been demonstrated that MCs have crucial 
roles in host defense against a number of different pathogens, including parasites. To 
date, there are many studies that have examined the interaction of helminth-derived anti-
gens and MCs. As one of the major effector cells, MCs also play an important role in the 
immune response against some parasitic protozoa, but their role in protozoan infections 
is, however, less well characterized. Herein, we review the current knowledge about the 
roles of MCs and their mediators during infections involving highly pathogenic protozoa 
including Plasmodium spp., Leishmania spp., Trypanosoma spp., and T. gondii. We 
offer a general review of the data from patients and experimental animal models infected 
with the aforementioned protozoa, which correlate MCs and MC-derived mediators with 
exacerbated inflammation and disease progression as well as protection against the 
parasitic infections in different circumstances. This review updates our current under-
standing of the roles of MCs during parasitic protozoan infections, and the participation 
of MCs in parasitic protozoan infections could be of a potential therapeutic target.
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inTRODUCTiOn

Plasmodium spp., Leishmania spp., Trypanosoma spp., and Toxoplasma gondii are some of the 
most important medical protozoan parasites that cause diseases in humans. Plasmodium spp. is a 
group of mosquito-borne parasitic protozoa. After being bitten by an Anopheles mosquito, sporo-
zoites penetrate the liver cells of the host and produce thousands of free merozoites, which invade 
erythrocytes and then burst the cells to release the merozoites to invade other erythrocytes and 
cause clinical symptoms (1). Leishmania spp. comprises several species and causes leishmaniasis, 
which affects more than 300 million people worldwide (2). This parasite has a complex life cycle 
composed of two distinct stages: the promastigote form found in the female sandfly vector and the 
amastigote form replicated in the mammalian host (3). Trypanosoma brucei causes the fatal illness 
human African trypanosomiasis (4), which is adapted to parasitize the mammalian bloodstream 
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after inoculation by the tsetse fly (Glossina spp.). Trypanosoma 
cruzi causes American trypanosomiasis or Chagas disease. This 
parasite chronically infects millions of people, and up to 30% of 
the infected individuals ultimately develop chronic cardiomyo-
pathy or gastrointestinal disease. Transmission of this parasite 
occurs when trypomastigotes in vector (triatomine bug) feces 
enter bite wounds, mucous membranes of the nose, oral cavity, 
or conjunctiva of the new host. In addition, transmission can also 
occur through an oral route by ingestion of food contaminated 
with triatomine bugs or their feces (5, 6). T. gondii is spreading 
all over the world, which can infect a vast number of intermedi-
ate hosts and causes toxoplasmosis in both humans and animals 
(7). Toxoplasmic encephalitis is a subsequent risk for all severely 
immunocompromised patients (8). Moreover, infection during 
pregnancy may cause serious lesions to the fetus through con-
genital infection (9).

Mast cells (MCs) are tissue-resident, granule-containing 
cells, which participate in the regulation of innate and adap-
tive immune responses (10). In healthy individuals, MCs are 
involved in tissue homeostasis, tissue repair, and host defense 
via the release of different kind of pro-inflammatory mediators, 
proteases, and cytokines (11). Degranulation of MCs is essential 
for host defense against parasitic infections (12). It is well known 
that MCs play an important role in parasitic helminth infections 
(13). Accumulating evidences have demonstrated that MCs have 
pivotal roles in parasitic protozoan diseases (14, 15); this has led 
us to focus on the role of MCs in the immune responses against 
parasitic infections including Plasmodium spp., Leishmania spp., 
Trypanosoma spp., and T. gondii. The main function of MCs in the 
aforementioned protozoa is summarized in Table 1.

MCs in Plasmodium spp. inFeCTiOn

MCs in the Skin of Patients and Animals 
with Plasmodium infection
Mast cells are abundant in tissues exposed to the external envi-
ronment, including the skin (45). Malaria parasites may promote 
malaria pathogenesis by triggering MCs. Plasmodium berghei-
infected Anopheles gambiae mosquito saliva can trigger mouse 
dermal MC degranulation as little as 5 min after the mosquito 
bite. One hour after the bite, MCs were observed in the vicinity 
of sporozoites on skin sections from mice bitten by P. berghei-
infected An. gambiae mosquitoes (17). Saliva-induced activation 
of dermal MCs causes lymph node swelling via the recruitment of 
T cells, B cells, dendritic cells (DC), and monocytes/macrophages 
(Mφ) as well as neutrophils (46, 47). Importantly, it was shown 
that there was an increase in MC activation and degranulation 
in the skin dermis of severe Plasmodium falciparum malaria 
patients, compared to controls. The percentage of MC degranu-
lation was significantly correlated with parasitemia and disease 
severity, which are relevant to MC mediators (16).

MCs in Cerebral Malaria (CM)
Mast cells are found in the central nervous system, especially along 
the blood vessels and leptomeninges (48). Kenyan children with 
mild and severe malaria were shown to have increased plasma 

levels of Flt3 ligand (Flt3L) (15). Elevated serum Flt3L levels and 
DC expansion were found in patients infected by P. falciparum 
and mice with Plasmodium infection. MCs are an important 
source of Flt3L, a soluble cytokine that influences DC function, 
with the subsequent activation of pathogenic CD8+ T  cells, a 
critical effector of the disease (49). After infection with P. berghei 
ANKA, compared to MC-deficient WBB6F1-W/Wv mice, the con-
trol littermate WBB6F1

+/+ C57BL/6 mice had lower parasitemia 
and mortality with higher tumor necrosis factor (TNF) levels. 
Malarial antigens from P. berghei ANKA are able to stimulate Mφ 
and MCs to secrete TNF in vitro. An in vivo study further dem-
onstrated that MCs are a critical source of TNF in addition to Mφ 
and T cells in murine malaria. Therefore, MCs and MC-derived 
TNF play an important role in protection against experimental 
cerebral malaria (ECM) (18). Furthermore, P. berghei ANKA 
peroxiredoxin induces a significant amount of MC-derived TNF 
secretion from IgE-mediated protection through FcεRI on MCs 
and innate immunity by means of toll-like receptor (TLR) 4 with 
myeloid differentiation primary response gene 88 and MD-2 and 
plays a role in innate and acquired immune responses in malaria 
(50). Conversely, one study reported that malaria developed in 
MC-deficient and basophil-depleted C57BL/6 mice infected with 
P. berghei ANKA was similar to that developed in wild-type mice, 
suggesting that MCs and basophils were not involved in malaria 
pathogenesis in this model (19).

Histamine has four different receptors, namely H1R, H2R, 
H3R, and H4R, which mediate numerous different effects (51). 
Histamine is the major MC mediator in malaria, and its signal-
ing has been associated with the severity of P. falciparum malaria 
(21). In addition, the significant elevation of the blood concentra-
tions of IgE and IgE-antimalarial antibodies has also been linked 
to the disease severity in falciparum malaria patients (52). As a 
DC modulator, especially during early phases of the immune 
response, histamine causes increased vascular permeability and 
subsequent extensive vascular damage to endothelial cells dur-
ing malaria infection (47). Experiments have demonstrated that 
histamine binding to H1R and H2R increases the susceptibility of 
infection with P. berghei in H1R−/− and H2R−/− mice (21). H3R−/− 
mice infected with P. berghei ANKA have an accelerated onset of 
CM and mortality, accompanied by an earlier loss of blood–brain 
barrier integrity, earlier formation of hemorrhagic lesions, higher 
sequestration of CD4+ and CD8+ T cells in the brain, and higher 
serum histamine levels compared to C57BL/6 wild-type mice. 
The severity of CM is related to the increased plasmatic levels of 
histamine in H3R−/− mice during the infection (20). Mice geneti-
cally deficient in the histidine decarboxylase (HDC−/−) gene, thus 
lacking histamine, were highly resistant to lethal infection by  
P. berghei ANKA and P. berghei NK65, associated with decreased 
brain-infiltrating T cells and expression of adhesion molecules. 
After treatment with antihistamine drugs, mice infected with 
P. berghei had prolonged survival compared to infected mice 
without antihistamine treatment (21).

Vascular endothelial growth factor (VEGF) is both neuropro-
tective and pro-inflammatory in the brain. VEGF was shown to 
accumulate intracellularly in P. falciparum-infected red blood 
cells in vitro, and inhibition of VEGF receptor (VEGFR)-2 signal-
ing reduced intraerythrocytic growth of P. falciparum (53). VEGF 
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TABLe 1 | The function of mast cells (MCs) in Plasmodium spp., Leishmania spp., Trypanosoma spp., and Toxoplasma gondii infections.

Parasite MC/disease Animal model/patient sample Mechanism no involvement Reference

Plasmodium 
spp.

In the skin of 
patients or 
animals with 
Plasmodium 
infection

Patients with Plasmodium falciparum malaria Significantly increased MC degranulation was correlated with parasitemia 
and disease severity

Wilainam et al. (16)

Swiss mice exposed to Anopheles gambiae 
mosquitoes infected with Plasmodium berghei 
NK65

MCs were observed in the vicinity of sporozoites at 1 h after mosquito bite Choumet et al. (17)

In the brains 
of mice with 
Plasmodium 
infection

C57BL/6-WBB6F1-W/Wv (W/Wv) and wild-type 
WBB6F1

+/+ (+/+) mice infected with P. berghei 
ANKA

+/+ mice had lower parasitemia and mortality, with higher tumor necrosis 
factor levels compared to W/Wv mice

Furuta et al. (18)

MC-deficient and basophil-depleted C57BL/6 
mice infected with P. berghei ANKA

MCs and basophils were not 
involved in the development of 
experimental cerebral malaria

Porcherie et al. (19)

H3R−/− mice infected with P. berghei ANKA The severity of cerebral malaria was correlated with the increased plasmatic 
levels of histamine in H3R−/− mice

Beghdadi et al. (20)

Histidine decarboxylase-deficient (HDC−/−) 
C57BL/6 mice infected with P. berghei

HDC−/− mice were highly resistant to P. berghei infection, with a drastic 
reduction of brain-infiltrating T cells and decreased expression of adhesion 
molecules

Beghdadi et al. (21)

Infected wild-type C57BL/6 mice showed prolonged survival after treatment 
with antihistamine drugs

In the 
intestines of 
animals with 
Plasmodium 
infection

Mice infected with Plasmodium yoelii Increased ileal mucosal MCs was positively correlated with elevated 
parasitemia and ileal interleukin (IL)-4 levels

Chau et al. (22)

Rhesus macaques infected with Plasmodium 
fragile

Ileal mastocytosis and increased plasma histamine levels were exhibited Potts et al. (23)

Antihistamine treatment of P. yoelii-infected CBA/J 
mice

MCs and histamine were involved in increased intestinal permeability during 
Plasmodium infection

Leishmania 
spp.

In the skin of 
patients and 
animals with 
Leishmania 
infection

Patients with cutaneous leishmaniasis caused by 
Leishmania braziliensis

There was a positive association between the disease duration and MCs 
count in the skin biopsy

Tuon et al. (24)

Susceptible (BALB/c) and resistant (C57BL/6 and 
CBA/T6T6) mice infected with Leishmania major

MC numbers were significantly increased in the upper dermis of BALB/c but 
not in those of C57BL/6 and CBA/T6T6 mice after L. major infection

Saha et al. (25)

MC-deficient KitW-sh/KitW-sh mice infected with L. 
major

Significantly enhanced lesion progression and lesional parasite burdens 
were observed, accompanied by significantly decreased levels of IFN-γ and 
IL-17A

Dudeck et al. (26)

Dogs infected with Leishmania infantum/chagasi Dermic inflammatory reaction with many degranulated MCs was observed Calabrese et al. (27)
Skin samples from dogs naturally infected with L. 
infantum

Increased number of MCs in the skin was correlated with clinical progression 
of canine visceral leishmaniasis

Menezes-Souza 
et al. (28)

MC-deficient KitW/KitW-v mice and normal Kit+/+ 
mice infected with L. major

Increased lesion sizes and lesional parasitic loads and reduced locally 
infiltrating cells were observed in KitW/KitW-v mice

Maurer et al. (29)

C57BL/6 or BALB/c mice infected with L. major MCs had no role on lesion size 
development, parasitic load, 
and immune cell phenotypes 
during murine cutaneous 
leishmaniasis

Paul et al. (30)

In visceral 
leishmaniasis

Dogs naturally infected with L. infantum Lower number of MCs was observed in the lamina propria of gastrointestinal 
tract of the infected dogs

Pinto et al. (31)

(Continued )
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Parasite MC/disease Animal model/patient sample Mechanism no involvement Reference

In ocular 
leishmaniasis

C57BL/10 and BALB/c mice, both susceptible 
to leishmaniasis, infected with Leishmania 
amazonensis by intravitreal injection and 
instillation, respectively

Many intact MCs were presented in the conjunctiva of both strains of mice 
at 30 days after infection, while degranulated MCs were observed in the 
conjunctiva of BALB/c mice at 60 days after infection

Calabrese et al. (32)

Trypanosoma 
spp.

In chagasic 
megacolon

Patients with Chagas disease caused by 
Trypanosoma cruzi

The number of tryptase-positive MCs was significantly increased in the 
lamina propria, muscle layer, or myenteric plexus region

Martins et al. (33)

A greater MC count and more fibrosis were found in the colon musculature 
with megacolon compared to that without megacolon

Pinheiro et al. (34)

Patients with megaesophagus had increased numbers of tryptase-positive 
MCs

Martins et al. (14)

Swiss mice infected with T. cruzi Y strain Significantly increased number of MCs was observed in the muscular layer 
of mice with chagasic megacolon

Campos et al. (35)

In Chagas 
heart disease

CBA mice infected with T. cruzi plus cromolyn 
treatment

Greater parasitemia, higher mortality, myocarditis, and cardiac damage were 
found in the infected mice treated with MC stabilizer

Meuser-Batista et al. 
(36)

Patients with chronic Chagas disease MC chymase density was associated with the intensity of myocardium 
fibrosis of chronic Chagas disease

Roldão et al. (37)

In 
Trypanosoma 
brucei 
infection

Rats infected with T. brucei The levels of MCs in the 
intestines of T. brucei-infected 
rats were similar to those of 
uninfected controls

Gould and Castro 
(38)

T. gondii In 
toxoplasmic 
encephalitis

A patient with meningoencephalitic toxoplasmosis Systemic cutaneous and gastrointestinal mastocytosis were observed Koeppel et al. (39)

In ocular 
T. gondii 
infection

Calomys callosus inoculated with T. gondii RH 
strain via the conjunctiva

Significantly increased MC number and MC activation were observed in the 
ocular tissues

Gil et al. (40)

In oral 
T. gondii 
infection

MC-deficient mice (W/Wv) and control +/+ orally 
infected with cysts of T. gondii ME49 strain

Rapid lethality of T. gondii infection and decreased serum IFN-γ levels were 
observed in the infected mice in the absence of MCs

Cruz et al. (41)

In 
intraperitoneal 
T. gondii 
infection

C. callosus infected with T. gondii RH strain The number of degranulated MCs was significantly higher than that of intact 
MCs, with a remarkable increase in the influx of neutrophils and Mφ toward 
the peritoneal cavity

Ferreira et al. (42)

MC-deficient KitW/KitW-v mice infected with T. 
gondii RH strain

The influx of Ly6G+ cells toward the peritoneal cavity was significantly 
reduced compared to control littermates

Del Rio et al. (43)

Kunming outbred mice infected with T. gondii RH 
strain

Significantly increased parasite burden, tissue inflammation, and Th1 
cytokine mRNA levels were detected in the livers and spleens of infected 
mice treated with an activator of MC release

Huang et al. (44)

Significantly decreased parasite burden and tissue inflammation, and 
significantly increased Th2 cytokine mRNA levels were detected in the livers 
and spleens of infected mice treated with an inhibitor of MC release

TABLe 1 | Continued

4

Lu and H
uang

The R
oles of M

C
s in P

arasitic P
rotozoan Infections

Frontiers in Im
m

unology | w
w

w
.frontiersin.org

A
pril 2017 | Volum

e 8 | A
rticle 363

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


5

Lu and Huang The Roles of MCs in Parasitic Protozoan Infections

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 363

and soluble VEGFR (sVEGFR)-2 are increased in CM patients 
compared to healthy adults (54). Plasma VEGF concentrations 
in Kenyan children with CM are associated with an increased 
risk of neurological sequelae (55). sVEGFR-1 may play a patho-
logical role during chronic placenta malaria and hypertension 
in first-time mothers (56). Both P. falciparum and Plasmodium 
vivax crude antigens induce VEGF release from the human MC 
line HMC-1 or the human basophilic cell line KU812 in vitro. 
Increased parasitemia of P. berghei ANKA was observed in 
anti-VEGF Ab-treated mice compared to non-treated mice (54). 
Furthermore, VEGF was shown to promote malaria-associated 
acute lung injury induced by P. berghei ANKA in mice (57). 
The pro-inflammatory cytokine interleukin (IL)-33 is strongly 
enhanced in infants (<5 years) with severe malaria from P. fal-
ciparum infection (58). IL-33 contributes to the stimulation and 
release of VEGF in human MCs (hMCs) (59). Conversely, IL-33 
prevents the development of ECM in C57BL/6 mice infected with 
P. berghei ANKA and reduces the production of inflammatory 
mediators IFN-γ, IL-12, and TNF-α (60).

MCs in the intestines of Animals with 
Plasmodium infection
In the gastrointestinal tract, MCs regulate vascular and epithelial 
permeability, ion secretion, angiogenesis, peristalsis, fibrosis, 
tissue repair, and innate and adaptive immunity (61). Increased 
numbers of mucosal MCs (MMCs) in the ileal villi and crypts 
and increased histamine levels in the ileum were detected in 
Plasmodium yoelii-infected mice. The increase in ileal MMCs 
was positively correlated with elevated parasitemia and IL-4 
mRNA levels in the same tissue. An additional study found that P. 
yoelii nigeriensis-infected mice develop an l-arginine deficiency, 
which is associated with intestinal mastocytosis, elevated levels 
of plasma histamine, and enhanced intestinal permeability (22). 
Plasmodium fragile-infected rhesus macaques have been shown 
to exhibit ileal mastocytosis and increased plasma histamine 
levels. Antihistamine treatment during P. yoelii infection results 
in decreased intestinal permeability in CBA/J mice, suggesting 
that MCs and histamine are involved in increased intestinal 
permeability during Plasmodium infection (23).

MCs in Leishmania spp. inFeCTiOn

Leishmaniasis is caused by several different species of Leishmania, 
and each infection has a different clinical outcome; human 
leishmaniasis is usually classified as cutaneous, mucocutaneous, 
or visceral. Leishmania parasites primarily live in Mφ (25), but 
Leishmania major and Leishmania infantum promastigotes can 
also bind to MC membranes and infect MCs (62).

MCs in the Skin of Patients and Animals 
with Leishmania infection
Cutaneous leishmaniasis is an important public health concern in 
many parts of the world, especially in Africa (63). MCs degranu-
late and release inflammatory mediators such as TNF-α after 
infection and recruit polymorphonuclear leukocytes (PMNs) to 
the site of infection (64). MCs can be important in cutaneous 

leishmaniasis and are involved in healing lesions. The MC count 
was higher in the skin biopsy of patients with cutaneous leish-
maniasis caused by Leishmania braziliensis with earlier healing 
after treatment, and there was a positive association between the 
disease duration and MC count (24).

After infection of Leishmania amazonensis in susceptible 
(C57BL/10 and CBA), relatively resistant (DBA/2), and resistant 
(C3H.He) mice, the primary lesions in footpads and draining 
lymph nodes showed a predominance of eosinophils and MCs 
in the initial phase of infection in all the infected mice (65). 
MC numbers increased significantly in the upper dermis in 
susceptible (BALB/c) but not in resistant (C57BL/6 and CBA/
T6T6) mice after L. major infection. However, the number of 
degranulating MCs was higher in CBA/T6T6 mice during early 
L. major infection. In addition, MC-derived cytokines, such as 
TNF-α, play a proparasitic role in a susceptible strain (BALB/c) 
of mice, but an antiparasitic role in resistant strains (C57BL/6 and 
CBA/T6T6) of mice, suggesting that the susceptible and resist-
ant mouse strains may have different modes of producing the 
antileishmanial immune response by differential regulation of 
MC function (25). After L. major inoculation, MC activation and 
parasite uptake by skin-resident Mφ occurred, followed by neu-
trophil and monocyte immigration and DC activation. Therefore, 
MC-dependent recruitment of Mφ, PMN, and DC to the skin 
is involved in controlling leishmaniasis (66). Furthermore, 
using MC-deficient KitW-sh/KitW-sh mice for infection with L. 
major promastigotes results in a worse disease outcome, e.g., 
significantly enhanced lesion progression and lesional parasite 
burdens, accompanied by significantly decreased levels of IFN-γ 
and IL-17A, but significantly increased IL-4 and IL-10, compared 
to wild-type mice, indicating that MCs play a crucial role against 
Leishmania parasites by promoting Th1 and Th17 responses 
in  vivo (26). L. infantum/chagasi-infected skins, from dogs of 
two different leishmaniasis endemic areas of Brazil, showed 
different skin infection patterns; however, dogs from both areas 
showed dermic inflammatory infiltrates composed of numerous 
degranulated MCs compared to normal skin, indicating that 
MCs modulate the immune response and participate in the 
host defense against Leishmania infection (27). Dogs naturally 
infected with L. infantum showed increased inflammatory infil-
trates in the skin of animals with severe forms of canine visceral 
leishmaniasis and a high parasite density. The increased number 
of Mφ and decreased number of lymphocytes, eosinophils, and 
MCs in the skin correlate with clinical progression of canine 
visceral leishmaniasis (28).

After susceptible BALB/c and resistant C57BL/6 mice were 
infected with L. major and pretreated with compound 48/80 (a 
MC activator), both BALB/c and C57BL/6 mice displayed smaller 
lesions in footpads compared to controls, indicating that MC 
degranulation contributes to susceptibility to L. major infection, 
and in the absence of granulated MCs, BALB/c and C57BL/6 mice 
had increased resistance to L. major infection. Although IL-4 
and MC degranulation are important to Leishmania-associated 
pathogenesis, the MC-mediated susceptibility seems to be inde-
pendent of IL-4 (67). MC-deficient C57BL/6-KitW/KitW-v mice 
and congenic wild-type Kit+/+ mice were infected with metacyclic 
promastigotes of L. major by intradermal injections, resulted in 
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significantly increased lesion sizes and lesional parasitic loads, 
and significantly reduced locally infiltrating cells in KitW/KitW-v 
mice. In addition, pronounced MC degranulation was observed 
in infected skin sites after intradermal injection of L. major in 
C57BL/6 mice, indicating that MCs provide protection against 
L. major infection (29). An in vitro study showed that stimula-
tion with Leishmania mexicana lipophosphoglycan led to a 
significant increase in degranulation in bone marrow-derived 
MCs (BMMCs) from BALB/c mice compared to BMMCs from 
C57BL/6 mice. Moreover, an in vivo study showed that after infec-
tion with L. mexicana, the number of MCs increased more rapidly 
and to a greater level, with significantly higher levels of parasites 
in the lesions of BALB/c mice compared to C57BL/6 mice. This 
indicates that MCs regulate the outcome of leishmaniasis and is 
dependent on the genetic background of the host (68). Conversely, 
a recent study showed that MC has no impact on the severity of 
cutaneous leishmaniasis in mice infected with L. major. By using 
Kit mutant mice with different genetic backgrounds, it was shown 
that MC deficiency did not affect lesion size development after L. 
major infection, suggesting that MCs are not involved in murine 
cutaneous Leishmania infections (30).

MCs in visceral Leishmaniasis
Visceral leishmaniasis is a serious public health problem that 
causes high morbidity and mortality (69). Analysis of Th1, Th2, 
and Th17 cytokine responses by cultured peripheral blood mono-
nuclear cells from patients who had developed kala-azar caused 
by Leishmania donovani, or who were protected against kala-azar, 
showed that IL-17 and IL-22 are the cytokines most strongly 
associated with protection against kala-azar (70). It has been 
reported that higher numbers of plasma cells, lymphocytes, and 
Mφ but lower number of MCs are present in the lamina propria of 
gastrointestinal tract of dogs naturally infected with L. infantum 
compared to non-infected controls, in all gastrointestinal tract 
segments (31). Thus, MCs may play different roles in visceral 
leishmaniasis and cutaneous leishmaniasis.

MCs in Mucocutaneous Leishmaniasis
Mucosal leishmaniasis is a chronic infection that affects the 
upper respiratory tract and/or the oral mucosa (71). Some 
patients diagnosed with mucosal leishmaniasis have oral lesions. 
Scraping cytology examination in patients with oral leishmania-
sis presented free Leishman-Donovan bodies or Mφ loaded with 
Leishman-Donovan bodies, acute and chronic inflammatory 
cells, histiocytes, multinucleated giant cells, MCs, and plasma 
cells (72).

MCs in Ocular Leishmaniasis
Ocular involvement is an unusual presentation of leishmaniasis 
and commonly limited to the eyelid skin (73). Both C57BL/10 
and BALB/c mice are susceptible to leishmaniasis, infected 
with L. amazonensis by intravitreal injection and instillation, 
respectively. Independent of the infective routes, C57BL/10 
mice infected intravitreally presented an intense inflammatory 
reaction in the epithelium of the eyelids, as well as the presence 
of many intact MCs in the conjunctiva of the eyes from 30 days 
postinfection (p.i.). On the other hand, BALB/c mice infected via 

the instillation route presented no lesions but an enhancement of 
intact MCs in the conjunctival region at 30 days p.i., and a discreet 
inflammatory infiltrate and degranulated MCs were observed in 
the conjunctival region at 60 days p.i. (32).

MC–TLRs interaction during Leishmania 
infection
To date, the regulatory effect of MCs on the pathogenesis of 
leishmaniasis is still unclear. The clearance of L. major strongly 
depends on TLRs (24). TLR9-deficient Mφ had reduced expres-
sions of CD40, IL-12, and TNF-α (74). MCs respond to TLR 
ligands by secreting cytokines, chemokines, and lipid mediators, 
and some studies have found that TLR ligands can also cause MC 
degranulation (75). The HMC-1 stimulated by promastigotes of 
L. braziliensis has a significantly greater release of histamine and 
IL-4 compared to control cells treated with medium (76). MCs 
release IL-3 and IL-4 to render Mφ susceptible to Leishmania 
infection in vitro (25).

MCs in Trypanosoma spp. inFeCTiOn

MCs in T. cruzi infection: Chagasic 
Megacolon
Megacolon is frequently observed in patients with Chagas disease 
caused by T. cruzi infection, which has been considered a conse-
quence of an inflammatory process, and inflammatory infiltrates 
are composed of lymphocytes, Mφ, natural killer cells, MCs, 
and eosinophils. Morphometric analyses in the lamina propria, 
muscle layer, or myenteric plexus region revealed that the num-
bers of both tryptase-immunoreactive MCs and eosinophils are 
significantly increased in patients with megacolon compared to 
uninfected individuals. MC and eosinophil activation, as well as 
their physical interaction, were observed by electron microscopy 
(33). T. cruzi-induced injury resulted in intramuscular fibrosis 
and increased thickness of the colon wall in patients with chagasic 
megacolon, and there was a greater MC count and more fibrosis 
in the circular colon musculature of chronic Chagas patients with 
megacolon compared to Chagas cases without megacolon (34). The  
density of MCs was significantly higher in the esophagus and 
large intestine in patients with AIDS plus Chagas disease reactiva-
tion compared to chronic chagasic patients without AIDS. This 
suggests that MCs may play a major role in esophageal and intes-
tinal inflammation during Chagas disease reactivation in HIV-
coinfected patients (77). MC-specific proteases (tryptase and 
chymase) influence the activation of inflammatory cells. Increased 
numbers of tryptase-immunoreactive MCs were found in the 
esophagus sections of T. cruzi-infected individuals with or with-
out megaesophagus. However, increased numbers of chymase- 
immunoreactive MCs were only found in the esophagus sections 
of infected individuals without megaesophagus compared to the 
control groups. Therefore, patients with megaesophagus had 
increased levels of tryptase-immunoreactive MCs (14).

One animal study showed that, after infection with the Y 
strain of T. cruzi, there were no significant differences in MC 
counts in the acute phase in Swiss mice. However, there was a 
significant increase in the number of MCs in the muscular layer 
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of chronically infected Swiss mice with chagasic megacolon com-
pared to non-infected control mice, accompanied by increased 
thickness of the colon wall, diffuse muscle cell hypertrophy, and 
increased collagen deposition (35), which may be associated with 
MC functions.

MCs in T. cruzi infection: Chagas Heart 
Disease
The density of MCs in the myocardium was shown to be signifi-
cantly higher in the chronic chagasic patients compared to control 
groups (77). The autopsied chagasic patient group showed higher 
MC chymase and MC tryptase densities and a higher percentage 
of collagen in the lingual muscles and myocardium compared 
to the non-chagasic patient group, and MC chymase level was 
associated with the intensity of myocardium fibrosis of chronic 
Chagas disease (37). Infiltrated T cells, Mφ, B cells, and MCs were 
all observed in the myocardium of patients with Chagas cardiopa-
thy, who died at an early mean age or at older ages. However, the 
numbers of T-lymphocytes and MCs were significantly higher in 
the cases who suffered early cardiac death (78).

One animal study showed that T. cruzi-infected CBA mice 
treated with cromolyn (a MC stabilizer) presented much greater 
parasitemia and IFN-γ levels, higher mortality, myocarditis, 
and cardiac damage, indicating that MCs control blood and 
tissue parasitemia, IFN-γ production, cardiac inflammation, and 
susceptibility to infection, suggesting that MCs are involved in 
resistance to this infection (36).

MCs in T. brucei infection
Trypanosoma brucei is a protozoan parasite that causes human 
African trypanosomiasis. Rats initially infected with T. brucei, 
followed by infection with Trichinella spiralis, showed that T. 
brucei infection does not significantly alter the number of MCs 
generated by T. spiralis infection, while the intestinal MC num-
bers in rats infected with only T. brucei were similar to those in 
uninfected rats (38).

MCs in T. gondii inFeCTiOn

MCs in Toxoplasmic encephalitis
Toxoplasmic encephalitis in patients with AIDS is a life-
threatening disease, mostly due to the reactivation of T. gondii 
cysts in the brain (79). It has been reported that a patient with 
meningoencephalitic toxoplasmosis was associated with systemic 
cutaneous and gastrointestinal mastocytosis, suggesting a pos-
sible relationship between MC proliferation and the parasitic 
infection (39).

MCs in Ocular T. gondii infection
Calomys callosus (Rodentia: Cricetidae) animals were inoculated 
intraperitoneally or via the conjunctiva with tachyzoites of the 
RH strain of T. gondii, resulting in the presence of the parasites 
and inflammatory cells and a significant increase in the number 
of MCs. Furthermore, MC activation in the ocular tissues was 
observed after infection, suggesting that MCs play an important 
role in the acute inflammatory response against T. gondii (40).

MCs in Oral T. gondii infection
Oral infection is the natural toxoplasmosis route, and the 
MC population is highly abundant in intestinal mucosa. In 
MC-deficient mice (W/Wv) and their control +/+ counterparts 
orally infected with cysts of the ME49 strain of T. gondii, rapid 
lethality and decreased IFN-γ levels were observed in the serum 
of infected mice in the absence of MCs. This demonstrated 
that MCs play a primordial role in resistance to oral infection 
with T. gondii, and MCs are required for survival of mice after 
oral infection with T. gondii (41). RBL-2H3 MCs infected with  
T. gondii type I (RH), II (PTG), or III (CTG or VEG) tachyzoites 
showed that acute T. gondii infection inhibits antigen-mediated 
MC degranulation, irrespective of the genotype of parasite used, 
and that tachyzoite attachment but not invasion is necessary 
for inhibiting degranulation. Ca2+ mobilization is a central and 
well-studied aspect of IgE/FcεRI-mediated signaling in MCs, and  
T. gondii infection has been shown to inhibit MC degranulation 
by suppressing antigen-mediated Ca2+ responses (80).

MCs in intraperitoneal T. gondii infection
After intraperitoneal infection with the RH strain of T. gondii, 
the number of non-degranulated MCs was significantly lower 
than that of degranulated cells in the peritoneal cavity, subman-
dibular and dorsal lymph nodes, and ileum in infected C. callosus 
compared to uninfected animals. After the MC degranulation, a 
remarkable increase in the influx of neutrophils and Mφ but a 
decrease in lymphocyte influx toward the peritoneal cavity of the 
infected animals were observed. MCs were observed interacting 
with other parasitized cells including Mφ, and extracellular para-
sites were destroyed during the interaction with MCs exhibiting 
degranulation. This suggests that MC is an important cell type 
during the inflammatory response against T. gondii (42). The use 
of MC-deficient KitW/KitW-v mice demonstrated that the influx 
of Ly6G+ cells toward the peritoneal cavity was significantly 
reduced compared to control littermates, indicating that MCs are 
an important chemokine source driving PMN recruitment to the 
peritoneal cavity during T. gondii infection (43). In both wild-type 
and serglycin-deficient mice, intraperitoneal infection with T. 
gondii resulted in highly increased extracellular levels of glycosa-
minoglycans, including hyaluronan and chondroitin sulfate A, 
suggesting that serglycin proteoglycan is dispensable for normal 
secretion and activity of MC proteases in response to T. gondii 
infection (81). A murine model showed that infection of T. gondii 
increased not only the number of MCs at the site of infection but 
also a noticeable degree of MC degranulation. Kunming outbred 
mice were infected intraperitoneally with the RH strain of T. 
gondii and treated by compound 48/80 or disodium cromoglycate 
(a MC stabilizer). The MC activator aggravated the pathology and 
increased the parasitic load, accompanied by upregulated mRNA 
levels of Th1 cytokines (IFN-γ, IL-12p40, or TNF-α) in the livers 
and spleens of T. gondii-infected mice. Conversely, the MC sta-
bilizer improved the pathology and decreased the parasitic load, 
accompanied by increased mRNA levels of Th2 cytokines (IL-4 
and IL-10) in the livers and spleens of mice infected with this 
parasite. In addition, significantly increased inflammatory foci 
of neutrophil infiltrates in different tissues occurred as a result 
of MC degranulation after the parasite infection (44). Thus, the 
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activation or inhibition of MCs is a key factor determining the 
fate of the infection and associated immunopathology.

MC–T. gondii interaction In Vitro
When T. gondii tachyzoites and MCs were incubated together, the 
tachyzoites adhered to the surface of the MCs, followed by MC 
degranulation. MC histamine and LTB4 release was significantly 
increased after incubation with the tachyzoites, which resulted in 
damage to the tachyzoites. MC-treated tachyzoites were found to 
be incapable of infection and replication in murine peritoneal Mφ. 
Therefore, LTB4 released by MCs and other inflammatory cells may 
be a key factor in the host defense against T. gondii (82). hMCs co-
cultured with T. gondii RH tachyzoites that were opsonized with 
IgG directed against the surface antigen 1 exhibited a polarized 
degranulation toward the invading parasites and resulted in the 
death of more than 70% of the parasites during the process. On 
the other hand, non-opsonized T. gondii rapidly infected MCs 
without triggering any detectable degranulation process, and only 
20% of the parasites died during the process. hMC treated with a 
chymase inhibitor did not affect parasite mortality, whereas hMC 
treated with a tryptase inhibitor significantly decreased the num-
ber of dead parasites in contact with degranulated MCs. Thus, 
IgG-opsonized T. gondii resulted in tryptase-dependent parasite 
death (83). TS-4 strain T. gondii infection significantly increased 
the expression of metalloproteinases (MMP)-2 and MMP-9 in 
P815 murine mastocytoma cells, and the invading parasites can 
elicit Erk1/2 phosphorylation, leading to NF-κB activation in the 
cytoplasm. This pathway for generating MMP-2 and MMP-9 is 
important in host defense mechanisms against T. gondii (84). The 
mediators of activated MCs play an important role in modulat-
ing acute inflammatory pathogenesis and parasite clearance in T. 
gondii infection (85).

COnCLUDinG ReMARKS

In this review, we have highlighted that MCs influence the 
outcome and immune response to Plasmodium spp., Leishmania 
spp., Trypanosoma spp., and T. gondii infections, and these 
protozoan parasites can all trigger MC activation, exhibiting 
an increase in the number of MCs and the degree of their 
degranulation, and have fundamentally diverse impacts on 
protozoan infections in different settings, i.e., protozoan para-
site infections can be controlled or may deteriorate through the 

release of different MC mediators, proteases, and cytokines, etc. 
In P. berghei-infected mice, MCs and MC-derived TNF play 
protective roles in murine malaria. In Leishmania infection, 
the MC count is positively associated with the disease dura-
tion of cutaneous leishmaniasis. During T. gondii infection, an 
increased MC number and greater MC activation are observed 
in infected animals. Furthermore, MCs are required for mouse 
survival after oral infection with T. gondii. However, MCs can 
also worsen the outcome of a protozoan infection under certain 
circumstances. For example, MC degranulation is significantly 
correlated with parasitemia and disease severity in human 
malaria; histamine-mediated signaling contributes to malaria 
pathogenesis. In T. cruzi infection, greater MC counts with 
more fibrosis are found in the colon musculature of chronic 
Chagas patients with megacolon or the myocardium of patients 
with Chagas cardiopathy. MC activation by MC stimulators can 
deteriorate the pathology and increase the parasitic load in acute 
T. gondii-infected mice. Moreover, some studies have shown 
that MCs have no impact on malaria pathogenesis caused by  
P. berghei ANKA and no effect on lesion size development by  
L. major infection in mouse models. In addition, the numbers of 
MCs in the intestines of T. brucei-infected rats are not significantly 
different compared to uninfected controls. Mediators from MCs 
play a key role in inflammation and in the pathogenesis of the 
protozoan parasitic diseases. Understanding the mechanisms by 
which MCs regulate pathogenesis during different protozoan 
parasite infections may potentially lead to the development 
of a new and unique therapeutic target for protozoan-related 
diseases. Therefore, further studies that evaluate the clinical 
importance of MC-protozoan interactions may lead to new 
therapeutic approaches for these protozoan parasitic diseases.

AUTHOR COnTRiBUTiOnS

FL conceived and wrote the manuscript, and SH participated in 
the writing.

FUnDinG

This publication was supported in part by the Natural Science 
Foundation of China (no. 81471973) and the Science and 
Technology Planning Project of Guangdong Province, China (nos. 
2014A020212108, 2014A020212212, and 2013B021800043).

ReFeRenCeS

1. Haldar K, Mohandas N. Erythrocyte remodeling by malaria parasites. 
Curr Opin Hematol (2007) 14:203–9. doi:10.1097/MOH.0b013e3280f 
31b2d 

2. Gurung P, Kanneganti TD. Innate immunity against Leishmania infections. 
Cell Microbiol (2015) 17:1286–94. doi:10.1111/cmi.12484 

3. Séguin O, Descoteaux A. Leishmania, the phagosome, and host responses: 
the journey of a parasite. Cell Immunol (2016) 309:1–6. doi:10.1016/ 
j.cellimm.2016.08.004 

4. Thomas SM, Purmal A, Pollastri M, Mensa-Wilmot K. Discovery of a carba-
zole-derived lead drug for human African trypanosomiasis. Sci Rep (2016) 
6:32083. doi:10.1038/srep32083 

5. Rassi  A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet (2010) 375:1388–
402. doi:10.1016/S0140-6736(10)60061-X 

6. de Noya BA, Gonzalez ON. An ecological overview on the factors that drives 
to Trypanosoma cruzi oral transmission. Acta Trop (2015) 151:94–102. 
doi:10.1016/j.actatropica.2015.06.004 

7. Dubey JP. History of the discovery of the life cycle of Toxoplasma gondii. Int 
J Parasitol (2009) 39:877–82. doi:10.1016/j.ijpara.2009.01.005 

8. Landrith TA, Harris TH, Wilson EH. Characteristics and critical function of 
CD8+ T cells in the Toxoplasma-infected brain. Semin Immunopathol (2015) 
37:261–70. doi:10.1007/s00281-015-0487-3 

9. Maldonado YA, Read JS; Committee on Infectious Diseases. Diagnosis, 
treatment, and prevention of congenital toxoplasmosis in the United States. 
Pediatrics (2017) 139:e20163860. doi:10.1542/peds.2016-3860 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1097/MOH.0b013e3280f
31b2d
https://doi.org/10.1097/MOH.0b013e3280f
31b2d
https://doi.org/10.1111/cmi.12484
https://doi.org/10.1016/
j.cellimm.2016.08.004
https://doi.org/10.1016/
j.cellimm.2016.08.004
https://doi.org/10.1038/srep32083
https://doi.org/10.1016/S0140-6736(10)60061-X
https://doi.org/10.1016/j.actatropica.2015.06.004
https://doi.org/10.1016/j.ijpara.2009.01.005
https://doi.org/10.1007/s00281-015-0487-3
https://doi.org/10.1542/peds.2016-3860


9

Lu and Huang The Roles of MCs in Parasitic Protozoan Infections

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 363

10. Bulfone-Paus S, Bahri R. Mast cells as regulators of T cell responses. Front 
Immunol (2015) 6:394. doi:10.3389/fimmu.2015.00394 

11. Arthur G, Bradding P. New developments in mast cell biology: clinical impli-
cations. Chest (2016) 150:680–93. doi:10.1016/j.chest.2016.06.009 

12. Halova I, Draberova L, Draber P. Mast cell chemotaxis-chemoattractants 
and signaling pathways. Front Immunol (2012) 3:119. doi:10.3389/
fimmu.2012.00119 

13. Vukman KV, Lalor R, Aldridge A, O’Neill SM. Mast cells: new therapeutic 
target in helminth immune modulation. Parasite Immunol (2016) 38:45–52. 
doi:10.1111/pim.12295 

14. Martins PR, Nascimento RD, de Souza Lisboa A, Martinelli PM, d’Ávila Reis 
D. Neuroimmunopathology of Trypanosoma cruzi-induced megaoesopha-
gus: is there a role for mast cell proteases? Hum Immunol (2014) 75:302–5. 
doi:10.1016/j.humimm.2014.02.003 

15. Theoharides TC. Mast cells promote malaria infection? Clin Ther (2015) 
37:1374–7. doi:10.1016/j.clinthera.2015.03.014 

16. Wilainam P, Nintasen R, Viriyavejakul P. Mast cell activation in the skin of 
Plasmodium falciparum malaria patients. Malar J (2015) 14:67. doi:10.1186/
s12936-015-0568-8 

17. Choumet V, Attout T, Chartier L, Khun H, Sautereau J, Robbe-Vincent A, et al. 
Visualizing non-infectious and infectious Anopheles gambiae blood feedings 
in naive and saliva-immunized mice. PLoS One (2012) 7:e50464. doi:10.1371/
journal.pone.0050464 

18. Furuta T, Kikuchi T, Iwakura Y, Watanabe N. Protective roles of mast cells and 
mast cell-derived TNF in murine malaria. J Immunol (2006) 177:3294–302. 
doi:10.4049/jimmunol.177.5.3294 

19. Porcherie A, Mathieu C, Peronet R, Schneider E, Claver J, Commere PH, et al. 
Critical role of the neutrophil-associated high-affinity receptor for IgE in the 
pathogenesis of experimental cerebral malaria. J Exp Med (2011) 208:2225–36. 
doi:10.1084/jem.20110845 

20. Beghdadi W, Porcherie A, Schneider BS, Morisset S, Dubayle D, Peronet 
R, et  al. Histamine H-3 receptor-mediated signaling protects mice from 
cerebral malaria. PLoS One (2009) 4:e6004. doi:10.1371/journal.pone. 
0006004 

21. Beghdadi W, Porcherie A, Schneider BS, Dubayle D, Peronet R, Huerre M, 
et al. Inhibition of histamine-mediated signaling confers significant protec-
tion against severe malaria in mouse models of disease. J Exp Med (2008) 
205:395–408. doi:10.1084/jem.20071548 

22. Chau JY, Tiffany CM, Nimishakavi S, Lawrence JA, Pakpour N, Mooney 
JP, et  al. Malaria-associated l-arginine deficiency induces mast cell-as-
sociated disruption to intestinal barrier defenses against nontyphoidal 
Salmonella bacteremia. Infect Immun (2013) 81:3515–26. doi:10.1128/IAI. 
00380-13 

23. Potts RA, Tiffany CM, Pakpour N, Lokken KL, Tiffany CR, Cheung K, et al. 
Mast cells and histamine alter intestinal permeability during malaria parasite 
infection. Immunobiology (2016) 221:468–74. doi:10.1016/j.imbio.2015. 
11.003 

24. Tuon FF, Amato VS, Bacha HA, Almusawi T, Duarte MI, Amato Neto V. Toll-
like receptors and leishmaniasis. Infect Immun (2008) 76:866–72. doi:10.1128/
IAI.01090-07 

25. Saha B, Tonkal AM, Croft S, Roy S. Mast cells at the host-pathogen interface: 
host-protection versus immune evasion in leishmaniasis. Clin Exp Immunol 
(2004) 137:19–23. doi:10.1111/j.1365-2249.2004.02505.x 

26. Dudeck A, Suender CA, Kostka SL, von Stebut E, Maurer M. Mast cells 
promote Th1 and Th17 responses by modulating dendritic cell matura-
tion and function. Eur J Immunol (2011) 41:1883–93. doi:10.1002/eji. 
201040994 

27. Calabrese KS, Cortada VM, Dorval ME, Souza Lima MA, Oshiro ET, Souza CS, 
et al. Leishmania (Leishmania) infantum/chagasi: histopathological aspects of 
the skin in naturally infected dogs in two endemic areas. Exp Parasitol (2010) 
124:253–7. doi:10.1016/j.exppara.2009.10.005 

28. Menezes-Souza D, Guerra-Sá R, Carneiro CM, Vitoriano-Souza J, Giunchetti 
RC, Teixeira-Carvalho A, et  al. Higher expression of CCL2, CCL4, CCL5, 
CCL21, and CXCL8 chemokines in the skin associated with parasite density in 
canine visceral leishmaniasis. PLoS Negl Trop Dis (2012) 6:e1566. doi:10.1371/
journal.pntd.0001566 

29. Maurer M, Lopez Kostka S, Siebenhaar F, Moelle K, Metz M, Knop J, et al. 
Skin mast cells control T cell-dependent host defense in Leishmania major 
infections. FASEB J (2006) 20:2460–7. doi:10.1096/fj.06-5860com 

30. Paul C, Wolff S, Zapf T, Raifer H, Feyerabend TB, Bollig N, et al. Mast cells 
have no impact on cutaneous leishmaniasis severity and related Th2 differ-
entiation in resistant and susceptible mice. Eur J Immunol (2016) 46:114–21. 
doi:10.1002/eji.201545613 

31. Pinto AJ, de Amorim IF, Pinheiro LJ, Madeira IM, Souza CC, Chiarini-Garcia 
H, et al. Glycol methacrylate embedding for the histochemical study of the 
gastrointestinal tract of dogs naturally infected with Leishmania infantum. Eur 
J Histochem (2015) 59:2546. doi:10.4081/ejh.2015.2546 

32. Calabrese KS, Silva LS, Hardoim DJ, Souza CS, Abreu-Silva AL. Ocular exper-
imental leishmaniasis in C57BL/10 and BALB/c mice induced by Leishmania 
amazonensis infection. Exp Parasitol (2013) 133:156–61. doi:10.1016/ 
j.exppara.2012.11.008 

33. Martins PR, Nascimento RD, Lopes JG, Santos MM, de Oliveira CA, de 
Oliveira EC, et  al. Mast cells in the colon of Trypanosoma cruzi-infected 
patients: are they involved in the recruitment, survival and/or activation of 
eosinophils? Parasitol Res (2015) 114:1847–56. doi:10.1007/s00436-015- 
4371-9 

34. Pinheiro SW, Rua AM, Etchebehere RM, Cançado CG, Chica JE, Lopes ER, 
et al. Morphometric study of the fibrosis and mast cell count in the circular 
colon musculature of chronic Chagas patients with and without megacolon. 
Rev Soc Bras Med Trop (2003) 36:461–6. doi:10.1590/S0037-86822003000 
400005 

35. Campos CF, Cangussú SD, Duz AL, Cartelle CT, Noviello Mde L, Veloso 
VM, et al. Enteric neuronal damage, intramuscular denervation and smooth 
muscle phenotype changes as mechanisms of chagasic megacolon: evidence 
from a long-term murine model of Tripanosoma cruzi infection. PLoS One 
(2016) 11:e0153038. doi:10.1371/journal.pone.0153038 

36. Meuser-Batista M, Corrêa JR, Carvalho VF, de Carvalho Britto CF, Moreira 
OC, Batista MM, et al. Mast cell function and death in Trypanosoma cruzi 
infection. Am J Pathol (2011) 179:1894–904. doi:10.1016/j.ajpath.2011. 
06.014 

37. Roldão JA, Beghini M, Ramalho LS, Porto CS, Rodrigues DB, Teixeira VP, 
et  al. Comparison between the collagen intensity and mast cell density in 
the lingual muscles and myocardium of autopsied chronic chagasic and 
non-chagasic patients. Parasitol Res (2012) 111:647–54. doi:10.1007/s00436- 
012-2882-1 

38. Gould SS, Castro GA. Suppression by Trypanosoma brucei of anaphylax-
is-mediated ion transport in the small intestine of rats. Immunology (1994) 
81:468–74. 

39. Koeppel MC, Abitan R, Angeli C, Lafon J, Pelletier J, Sayag J. Cutaneous 
and gastrointestinal mastocytosis associated with cerebral toxoplas-
mosis. Br J Dermatol (1998) 139:881–4. doi:10.1046/j.1365-2133.1998. 
02518.x 

40. Gil CD, Mineo JR, Smith RL, Oliani SM. Mast cells in the eyes of Calomys 
callosus (Rodentia: Cricetidae) infected by Toxoplasma gondii. Parasitol Res 
(2002) 88:557–62. doi:10.1007/s00436-002-0593-8 

41. Cruz A, Mendes ÉA, de Andrade MV, do Nascimento VC, Cartelle CT, 
Arantes RM, et al. Mast cells are crucial in the resistance against Toxoplasma 
gondii oral infection. Eur J Immunol (2014) 44:2949–54. doi:10.1002/eji. 
201344185 

42. Ferreira GLS, Mineo JR, Oliveira JG, Ferro EAV, Souza MA, Santos AAD. 
Toxoplasma gondii and mast cell interactions in vivo and in vitro: experimental 
infection approaches in Calomys callosus (Rodentia, Cricetidae). Microbes 
Infect (2004) 6:172–81. doi:10.1016/j.micinf.2003.11.007 

43. Del Rio L, Bennouna S, Salinas J, Denkers EY. CXCR2 deficiency confers 
impaired neutrophil recruitment and increased susceptibility during 
Toxoplasma gondii infection. J Immunol (2001) 167:6503–9. doi:10.4049/
jimmunol.167.11.6503 

44. Huang B, Huang S, Chen Y, Zheng H, Shen J, Lun ZR, et  al. Mast cells 
modulate acute toxoplasmosis in murine models. PLoS One (2013) 8:e77327. 
doi:10.1371/journal.pone.0077327 

45. Cohen PR. Solitary mastocytoma presenting in an adult: report and literature 
review of adult-onset solitary cutaneous mastocytoma with recommenda-
tions for evaluation and treatment. Dermatol Pract Concept (2016) 6:31–8. 
doi:10.5826/dpc.0603a07 

46. Owhashi M, Harada M, Suguri S, Ohmae H, Ishii A. The role of saliva of 
Anopheles stephensi in inflammatory response: identification of a high molec-
ular weight neutrophil chemotactic factor. Parasitol Res (2001) 87:376–82. 
doi:10.1007/s004360000355 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.3389/fimmu.2015.00394
https://doi.org/10.1016/j.chest.2016.06.009
https://doi.org/10.3389/fimmu.2012.00119
https://doi.org/10.3389/fimmu.2012.00119
https://doi.org/10.1111/pim.12295
https://doi.org/10.1016/j.humimm.2014.02.003
https://doi.org/10.1016/j.clinthera.2015.03.014
https://doi.org/10.1186/s12936-015-0568-8
https://doi.org/10.1186/s12936-015-0568-8
https://doi.org/10.1371/journal.pone.0050464
https://doi.org/10.1371/journal.pone.0050464
https://doi.org/10.4049/jimmunol.177.5.3294
https://doi.org/10.1084/jem.20110845
https://doi.org/10.1371/journal.pone.
0006004
https://doi.org/10.1371/journal.pone.
0006004
https://doi.org/10.1084/jem.20071548
https://doi.org/10.1128/IAI.
00380-13
https://doi.org/10.1128/IAI.
00380-13
https://doi.org/10.1016/j.imbio.2015.
11.003
https://doi.org/10.1016/j.imbio.2015.
11.003
https://doi.org/10.1128/IAI.01090-07
https://doi.org/10.1128/IAI.01090-07
https://doi.org/10.1111/j.1365-2249.2004.02505.x
https://doi.org/10.1002/eji.
201040994
https://doi.org/10.1002/eji.
201040994
https://doi.org/10.1016/j.exppara.2009.10.005
https://doi.org/10.1371/journal.pntd.0001566
https://doi.org/10.1371/journal.pntd.0001566
https://doi.org/10.1096/fj.06-5860com
https://doi.org/10.1002/eji.201545613
https://doi.org/10.4081/ejh.2015.2546
https://doi.org/10.1016/
j.exppara.2012.11.008
https://doi.org/10.1016/
j.exppara.2012.11.008
https://doi.org/10.1007/s00436-015-
4371-9
https://doi.org/10.1007/s00436-015-
4371-9
https://doi.org/10.1590/S0037-86822003000
400005
https://doi.org/10.1590/S0037-86822003000
400005
https://doi.org/10.1371/journal.pone.0153038
https://doi.org/10.1016/j.ajpath.2011.
06.014
https://doi.org/10.1016/j.ajpath.2011.
06.014
https://doi.org/10.1007/s00436-
012-2882-1
https://doi.org/10.1007/s00436-
012-2882-1
https://doi.org/10.1046/j.1365-2133.1998.
02518.x
https://doi.org/10.1046/j.1365-2133.1998.
02518.x
https://doi.org/10.1007/s00436-002-0593-8
https://doi.org/10.1002/eji.
201344185
https://doi.org/10.1002/eji.
201344185
https://doi.org/10.1016/j.micinf.2003.11.007
https://doi.org/10.4049/jimmunol.167.11.6503
https://doi.org/10.4049/jimmunol.167.11.6503
https://doi.org/10.1371/journal.pone.0077327
https://doi.org/10.5826/dpc.0603a07
https://doi.org/10.1007/s004360000355


10

Lu and Huang The Roles of MCs in Parasitic Protozoan Infections

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 363

47. Mecheri S. Contribution of allergic inflammatory response to the pathogene-
sis of malaria disease. Biochim Biophys Acta (2012) 1822:49–56. doi:10.1016/ 
j.bbadis.2011.02.005 

48. Khalil M, Ronda J, Weintraub M, Jain K, Silver R, Silverman AJ. Brain mast 
cell relationship to neurovasculature during development. Brain Res (2007) 
1171:18–29. doi:10.1016/j.brainres.2007.07.034 

49. Guermonprez P, Helft J, Claser C, Deroubaix S, Karanje H, Gazumyan A, 
et  al. Inflammatory Flt3l is essential to mobilize dendritic cells and for 
T  cell responses during Plasmodium infection. Nat Med (2013) 19:730–8. 
doi:10.1038/nm.3197 

50. Furuta T, Imajo-Ohmi S, Fukuda H, Kano S, Miyake K, Watanabe N. Mast 
cell-mediated immune responses through IgE antibody and toll-like receptor 
4 by malarial peroxiredoxin. Eur J Immunol (2008) 38:1341–50. doi:10.1002/
eji.200738059 

51. Walter M, Stark H. Histamine receptor subtypes: a century of rational drug 
design. Front Biosci (Schol Ed) (2012) 4:461–88. doi:10.2741/s279 

52. Enwonwu CO, Afolabi BM, Salako LO, Idigbe EO, Bashirelah N. Increased 
plasma levels of histidine and histamine in falciparum malaria: relevance 
to severity of infection. J Neural Transm (Vienna) (2000) 107:1273–87. 
doi:10.1007/s007020070017 

53. Hempel C, Hoyer N, Staalsø T, Kurtzhals JA. Effects of the vascular endothelial 
growth factor receptor-2 (VEGFR-2) inhibitor SU5416 on in  vitro cultures 
of Plasmodium falciparum. Malar J (2014) 13:201. doi:10.1186/1475-2875- 
13-201 

54. Furuta T, Kimura M, Watanabe N. Elevated levels of vascular endothelial 
growth factor (VEGF) and soluble vascular endothelial growth factor 
receptor (VEGFR)-2 in human malaria. Am J Trop Med Hyg (2010) 82:136–9. 
doi:10.4269/ajtmh.2010.09-0203 

55. Casals-Pascual C, Idro R, Gicheru N, Gwer S, Kitsao B, Gitau E, et al. High 
levels of erythropoietin are associated with protection against neurological 
sequelae in African children with cerebral malaria. Proc Natl Acad Sci U S A 
(2008) 105:2634–9. doi:10.1073/pnas.0709715105 

56. Muehlenbachs A, Mutabingwa TK, Edmonds S, Fried M, Duffy PE. 
Hypertension and maternal-fetal conflict during placental malaria. PLoS Med 
(2006) 3:e446. doi:10.1371/journal.pmed.0030446 

57. Epiphanio S, Campos MG, Pamplona A, Carapau D, Pena AC, Ataíde R, et al. 
VEGF promotes malaria-associated acute lung injury in mice. PLoS Pathog 
(2010) 6:e1000916. doi:10.1371/journal.ppat.1000916 

58. Ayimba E, Hegewald J, Ségbéna AY, Gantin RG, Lechner CJ, Agosssou A, et al. 
Proinflammatory and regulatory cytokines and chemokines in infants with 
uncomplicated and severe Plasmodium falciparum malaria. Clin Exp Immunol 
(2011) 166:218–26. doi:10.1111/j.1365-2249.2011.04474.x 

59. Shaik-Dasthagirisaheb YB, Varvara G, Murmura G, Saggini A, Potalivo 
G, Caraffa A, et  al. Vascular endothelial growth factor (VEGF), mast cells 
and inflammation. Int J Immunopathol Pharmacol (2013) 26:327–35. 
doi:10.1177/039463201302600206 

60. Besnard AG, Guabiraba R, Niedbala W, Palomo J, Reverchon F, Shaw TN, 
et  al. IL-33-mediated protection against experimental cerebral malaria is 
linked to induction of type 2 innate lymphoid cells, M2 macrophages and 
regulatory T cells. PLoS Pathog (2015) 11:e1004607. doi:10.1371/journal.ppat. 
1004607 

61. Bischoff SC. Role of mast cells in allergic and non-allergic immune responses: 
comparison of human and murine data. Nat Rev Immunol (2007) 7:93–104. 
doi:10.1038/nri2018 

62. Bidri M, Vouldoukis I, Mossalayi MD, Debré P, Guillosson JJ, Mazier D, 
et  al. Evidence for direct interaction between mast cells and Leishmania 
parasites. Parasite Immunol (1997) 19:475–83. doi:10.1046/j.1365-3024.1997. 
d01-153.x 

63. Aflatoonian MR, Sharifi I, Aflatoonian B, Shirzadi MR, Gouya MM, 
Kermanizadeh A. A review of impact of bam earthquake on cutaneous leish-
maniasis and status: epidemic of old foci, emergence of new foci and changes 
in features of the disease. J Arthropod Borne Dis (2016) 10:272–81. 

64. von Stebut E. Cutaneous Leishmania infection: progress in pathogenesis 
research and experimental therapy. Exp Dermatol (2007) 16:340–6. 
doi:10.1111/j.1600-0625.2007.00554.x 

65. de Oliveira Cardoso F, de Souza Cda S, Mendes VG, Abreu-Silva AL, Gonçalves 
da Costa SC, Calabrese KS. Immunopathological studies of Leishmania 

amazonensis infection in resistant and in susceptible mice. J Infect Dis (2010) 
201:1933–40. doi:10.1086/652870 

66. Kautz-Neu K, Schwonberg K, Fischer MR, Schermann AI, von Stebut E. 
Dendritic cells in Leishmania major infections: mechanisms of parasite 
uptake, cell activation and evidence for physiological relevance. Med Microbiol 
Immunol (2012) 201:581–92. doi:10.1007/s00430-012-0261-2 

67. Romão PR, Da Costa Santiago H, Ramos CD, De Oliveira CF, Monteiro 
MC, De Queiroz Cunha F, et  al. Mast cell degranulation contributes to 
susceptibility to Leishmania major. Parasite Immunol (2009) 31:140–6. 
doi:10.1111/j.1365-3024.2008.01084.x 

68. Villaseñor-Cardoso MI, Salaiza N, Delgado J, Gutiérrez-Kobeh L, Pérez-Torres 
A, Becker I. Mast cells are activated by Leishmania mexicana LPG and regulate 
the disease outcome depending on the genetic background of the host. Parasite 
Immunol (2008) 30:425–34. doi:10.1111/j.1365-3024.2008.01042.x 

69. Roy S, Mandal C. Leishmania donovani utilize sialic acids for binding and 
phagocytosis in the macrophages through selective utilization of siglecs and 
impair the innate immune arm. PLoS Negl Trop Dis (2016) 10:e0004904. 
doi:10.1371/journal.pntd.0004904 

70. Pitta MG, Romano A, Cabantous S, Henri S, Hammad A, Kouriba B, et al. IL-
17 and IL-22 are associated with protection against human kala azar caused by 
Leishmania donovani. J Clin Invest (2009) 119:2379–87. doi:10.1172/JCI38813 

71. Cruz AF, Resende RG, Albuquerque DR, de Lacerda JC, Leite CF, Ferreira 
Aguiar MC. Mucosal leishmaniasis in Brazilian patients: two case reports 
with similar clinical presentation and different approaches. Oral Surg Oral 
Med Oral Pathol Oral Radiol (2016) 122:e199–203. doi:10.1016/j.oooo. 
2016.02.017 

72. Daneshbod Y, Oryan A, Davarmanesh M, Shirian S, Negahban S, Aledavood 
A, et al. Clinical, histopathologic, and cytologic diagnosis of mucosal leish-
maniasis and literature review. Arch Pathol Lab Med (2011) 135:478–82. 
doi:10.1043/2010-0069-OA.1 

73. Nikandish M, Goyonlo VM, Taheri AR, Kiafar B. Ocular leishmaniasis 
treated by intralesional amphotericin B. Middle East Afr J Ophthalmol (2016) 
23:153–5. doi:10.4103/0974-9233.171801 

74. Pandey SP, Doyen N, Mishra GC, Saha B, Chandel HS. TLR9-deficiency 
reduces TLR1, TLR2 and TLR3 expressions in Leishmania major-infected 
macrophages. Exp Parasitol (2015) 154:82–6. doi:10.1016/j.exppara.2015. 
04.005 

75. Sandig H, Bulfone-Paus S. TLR signaling in mast cells: common and unique 
features. Front Immunol (2012) 3:185. doi:10.3389/fimmu.2012.00185 

76. de Oliveira MP, Lima MC, Calheiros AS, Martins MA, Antas PR, De Luca 
PM, et al. Leishmania (Viannia) braziliensis: human mast cell line activation 
induced by logarithmic and stationary promastigote derived-lysates. Exp 
Parasitol (2005) 109:72–9. 

77. Gattoni CM, Aleixo IF, de Araujo MF, Teixeira Vde P, Rodrigues DB, Pereira 
SA. Chagas disease reactivation in HIV-coinfected patients: histopathological 
aspects. Immunobiology (2015) 220:656–62. doi:10.1016/j.imbio.2014.11.013

78. Cabral HR, Novak IT, Glocker TM, Castro Viera GA. Chagas cardiopathy: 
identification and quantification of infiltrating cells in the hearts of cardiac 
death patients of different ages. Rev Fac Cien Med Univ Nac Cordoba (2002) 
59:83–9. [Article in Spanish]. 

79. Ajzenberg D, Lamaury I, Demar M, Vautrin C, Cabié A, Simon S, et  al. 
Performance testing of PCR assay in blood samples for the diagnosis of 
toxoplasmic encephalitis in AIDS patients from the French departments of 
America and genetic diversity of Toxoplasma gondii: a prospective and mul-
ticentric study. PLoS Negl Trop Dis (2016) 10:e0004790. doi:10.1371/journal.
pntd.0004790 

80. Smith NL, Abi Abdallah DS, Butcher BA, Denkers EY, Baird B, Holowka 
D. Toxoplasma gondii inhibits mast cell degranulation by suppressing 
phospholipase Cγ-mediated Ca2+ mobilization. Front Microbiol (2013) 4:179. 
doi:10.3389/fmicb.2013.00179 

81. Sawesi O, Spillmann D, Lundén A, Wernersson S, Åbrink M. Serglycin-
independent release of active mast cell proteases in response to Toxoplasma 
gondii infection. J Biol Chem (2010) 285:38005–13. doi:10.1074/jbc.
M110.118471 

82. Henderson  WR Jr, Chi EY. The importance of leukotrienes in mast cell-me-
diated Toxoplasma gondii cytotoxicity. J Infect Dis (1998) 177:1437–43. 
doi:10.1086/517833 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1016/
j.bbadis.2011.02.005
https://doi.org/10.1016/
j.bbadis.2011.02.005
https://doi.org/10.1016/j.brainres.2007.07.034
https://doi.org/10.1038/nm.3197
https://doi.org/10.1002/eji.200738059
https://doi.org/10.1002/eji.200738059
https://doi.org/10.2741/s279
https://doi.org/10.1007/s007020070017
https://doi.org/10.1186/1475-2875-
13-201
https://doi.org/10.1186/1475-2875-
13-201
https://doi.org/10.4269/ajtmh.2010.09-0203
https://doi.org/10.1073/pnas.0709715105
https://doi.org/10.1371/journal.pmed.0030446
https://doi.org/10.1371/journal.ppat.1000916
https://doi.org/10.1111/j.1365-2249.2011.
04474.x
https://doi.org/10.1177/039463201302600206
https://doi.org/10.1371/journal.ppat.
1004607
https://doi.org/10.1371/journal.ppat.
1004607
https://doi.org/10.1038/nri2018
https://doi.org/10.1046/j.1365-3024.1997.
d01-153.x
https://doi.org/10.1046/j.1365-3024.1997.
d01-153.x
https://doi.org/10.1111/j.1600-0625.2007.00554.x
https://doi.org/10.1086/652870
https://doi.org/10.1007/s00430-012-
0261-2
https://doi.org/10.1111/j.1365-3024.2008.01084.x
https://doi.org/10.1111/j.1365-3024.2008.
01042.x
https://doi.org/10.1371/journal.pntd.0004904
https://doi.org/10.1172/
JCI38813
https://doi.org/10.1016/j.oooo.
2016.02.017
https://doi.org/10.1016/j.oooo.
2016.02.017
https://doi.org/10.1043/2010-0069-OA.1
https://doi.org/10.4103/0974-9233.171801
https://doi.org/10.1016/j.exppara.2015.
04.005
https://doi.org/10.1016/j.exppara.2015.
04.005
https://doi.org/10.3389/fimmu.2012.
00185
https://doi.org/10.1016/j.imbio.2014.11.013
https://doi.org/10.1371/journal.pntd.0004790
https://doi.org/10.1371/journal.pntd.0004790
https://doi.org/10.3389/fmicb.2013.00179
https://doi.org/10.1074/jbc.M110.118471
https://doi.org/10.1074/jbc.M110.118471
https://doi.org/10.1086/517833


11

Lu and Huang The Roles of MCs in Parasitic Protozoan Infections

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 363

83. Joulia R, Gaudenzio N, Rodrigues M, Lopez J, Blanchard N, Valitutti 
S, et  al. Mast cells form antibody-dependent degranulatory synapse for 
dedicated secretion and defence. Nat Commun (2015) 6:6174. doi:10.1038/ 
ncomms7174 

84. Wang MF, Lu CY, Lai SC. Up-regulation of matrix metalloproteinases-2 
and -9 via an Erk1/2/NF-kappaB pathway in murine mast cells infected 
with Toxoplasma gondii. J Comp Pathol (2013) 149:146–55. doi:10.1016/ 
j.jcpa.2013.03.002 

85. Dlugonska H. Toxoplasma gondii and mast cells. Ann Parasitol (2014) 
60:235–8. 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Lu and Huang. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License (CC BY). The use, distribution or 
reproduction in other forums is permitted, provided the original author(s) or licensor 
are credited and that the original publication in this journal is cited, in accordance 
with accepted academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1038/
ncomms7174
https://doi.org/10.1038/
ncomms7174
https://doi.org/10.1016/
j.jcpa.2013.03.002
https://doi.org/10.1016/
j.jcpa.2013.03.002
http://creativecommons.org/licenses/by/4.0/

	The Roles of Mast Cells in Parasitic Protozoan Infections
	Introduction
	MCs in Plasmodium spp. Infection
	MCs in the Skin of Patients and Animals with Plasmodium Infection
	MCs in Cerebral Malaria (CM)
	MCs in the Intestines of Animals with Plasmodium Infection

	MCs in Leishmania spp. Infection
	MCs in the Skin of Patients and Animals with Leishmania Infection
	MCs in Visceral Leishmaniasis
	MCs in Mucocutaneous Leishmaniasis
	MCs in Ocular Leishmaniasis
	MC–TLRs Interaction during Leishmania Infection

	MCs in Trypanosoma spp. Infection
	MCs in T. cruzi Infection: Chagasic Megacolon
	MCs in T. cruzi Infection: Chagas Heart Disease
	MCs in T. brucei Infection

	MCs in T. gondii Infection
	MCs in Toxoplasmic Encephalitis
	MCs in Ocular T. gondii Infection
	MCs in Oral T. gondii Infection
	MCs in Intraperitoneal T. gondii Infection
	MC–T. gondii Interaction In Vitro

	Concluding Remarks
	Author Contributions
	Funding
	References


