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Lycium barbarum polysaccharide (LBP) is isolated from the fruit of Chinese herbal Lycium barbarum. Previous studies had
demonstrated that LBP could inhibit tumor growth and enhance the immunity in mice. However, the effect of LBP on systemic
and local immune responses in vivo, especially on phenotypic and functional changes of T cells, is still largely unknown. In the
present study, we investigated the effects of LBP on systemic and local T cell-dependent antitumor immune responses in H22
tumor-bearing mice. The results showed that LBP could inhibit the solid tumor growth in mice, but showed little effect on the
body weight or spleen index. Furthermore, LBP could maintain high levels of T cells in peripheral blood (PB), tumor draining
lymph node (TDLN), and tumor tissue, prevent the increase of Tregs while promote infiltration of CD8+ T cells in tumor tissue,
inhibit the production of TGF-β1 and IL-10 in serum, decrease the exhaustion phenotype of T cells, and maintain cytotoxicity
of lymphocytes. Taken together, our results demonstrated that LBP simultaneously induced systemic and local immune
responses in H22 tumor-bearing mice by alleviating immunosuppression and maintaining antitumor immune responses in mice.

1. Introduction

Lycium barbarum polysaccharide (LBP) is isolated from the
fruit of edible Chinese herbal Lycium barbarum. LBP has
multiple biological activities and function, such as antitumor
activity [1–3], immunoregulation [4–6], neuroprotective
effect [7], and cardioprotective activity [8]. The antitumor
activity of LBP had been demonstrated in the tumor-
bearing mice that it could inhibit transplantable sarcoma
S180 [2] and hepatoma H22 tumor growth in mice [1]. Fur-
thermore, LBP could enhance the immunity of the tumor-
bearing mice by improving lymphocyte proliferation and
increasing macrophage phagocytosis and cytotoxic T lym-
phocyte (CTL) activity [1, 2]. However, the effects of LBP

on systemic and local tumor immune responses are still
largely unknown.

Cancer is a complex collection of distinct genetic diseases
that it causes millions of deaths each year around the world
[9, 10]. Over the past decades, with the development of
understanding of the cellular and molecular mechanisms of
immune system, the important roles of immune cells and
molecules in cancer development and prevention have been
identified and demonstrated. It is now clear that T cells as
one of the major forces of adaptive immunity play a duplici-
tous role in cancer development—either pro- or antitumor
growth due to different cell subsets [11, 12]. Evidence had
accumulated that the presence of high levels of T cells,
including CD8+ CTL and CD4+ helper T cell (Th cell), was
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a favourable prognostic factor in human tumors [13–15].
However, evidence showed that the increase of CD4+ Tregs
indicated poor prognosis in tumor-bearing individuals
[16–18]. Tregs can suppress antitumor responses of
CD8+ CTL and CD4+ Th. It had been demonstrated in
tumor-bearing mice that the depletion of Tregs could
enhance antitumor immunity and inhibit tumor growth
[19]. It is one of the most promising methods for can-
cer therapy to maintain an effective antitumor T-cell
response in cancer patients. In this case, immunother-
apy which activates the immune system to fight against
cancer cells has become an effective approach in some
cancer treatments.

Previous studies had reported that LBP could activate T
cells [5, 20] and regulate the phenotypic and functional mat-
uration of murine bone marrow-derived dendritic cells (DC)
[6]. LBP-treated DC could improve Th1 and Th2 responses
both in vitro and in vivo [21]. Another study led by Bo
et al. showed that simple nanoliposomes encapsulating
Lycium barbarum polysaccharides efficiently stimulated
CD4+ and CD8+ T cell proliferation in vivo [4]. Furthermore,
LBP showed synergistic immunotherapeutic effects when
combined with interferon-α2b in murine rencarenal carci-
noma treatment [22]. However, the effect of LBP on systemic
and local immune responses in vivo, especially on phenotypic
and functional changes of T cells, is still largely unknown.
In our previous study, we found that a fraction from LBP
had the highest antitumor activity in H22 tumor-bearing
mice [23]. In the present study, we further investigated
the effect of LBP on immune responses both in system
and tumor tissue.

2. Materials and Methods

2.1. Reagents. LBP was prepared from Lycium barbarum by
our laboratory as described previously [23]. The total sugar
and protein content was 70.13% and 19.30%, respectively.
The fractions with molecular weight range from 40 kDa to
350 kDa were prepared and used in this study. Mouse 1x lym-
phocyte separation medium was purchased from Dakewe
Biotech Co. Ltd. (Shenzhen, China). PE/CY7-anti-mouse
CD3, FITC-anti-mouse CD4, PE-anti-mouse PD-1, PE/
CY5-anti-mouse CD25, and purified CD8 antibody were
purchased from BioLegend. Purified CD3 antibody was pur-
chased from Affinity Bioscience. Propidium iodide (PI), col-
lagenase type IV, and DNase I were purchased from Sigma.
Mouse IL-10 and mouse TGF-β1 ELISA kit were purchased
from MULTI SCIENCE (Hangzhou, China).

2.2. Animals. Specific pathogen-free six-to-eight-week-old
male BALB/c mice, weighed 20± 2 g, were purchased from
the Guangdong Medical Laboratory Animal Center (Foshan,
China). Animals were fed on standard laboratory diet and
water, and all experimental procedures were approved by
the Animal Care and Use Committee of Guangzhou Univer-
sity of Chinese Medicine, Guangzhou, China.

2.3. Preparation of Tumor-Bearing Mice and Treatment
Protocol.H22 tumor-bearingmice were prepared as described

previously [23]. Briefly, the tumor-bearing mice were pre-
pared by being injected subcutaneously with 2× 106 H22
cells into the right armpit. The tumor-bearing mice were
divided into model group and LBP treatment group, while
tumor-free mice were used as control. The mice in LBP
treatment group were treated intragastrically with
250mg/kg LBP (dissolved in saline solution) for 10 days
once daily since day 1 after tumor challenge. The control
and model mice were given the same volume of saline
solution intragastrically.

2.4. Analysis of Tumor Weight, Body Weight, and Spleen
Index. The body weight of the mice was recorded every
day. On day 11, mice were sacrificed by cervical disloca-
tion after anaesthesia with chloral hydrate. The tumors
and spleens were excised, photographed, and weighed.
The spleen index was calculated using the formula: spleen
index (mg/g) = spleen weight (mg)/body weight (g).

2.5. Preparation of Lymphocytes. Single cell suspensions of
lymphocytes from PB, TDLN, spleen, and tumor tissue were
prepared as described below. Lymphocytes from freshly hep-
arinized PB were prepared with a mouse 1x lymphocyte sep-
aration medium (Dakewe Biotech Co. Ltd., China) according
to the manufacturer’s instructions. Lymphocytes from the
spleens and TDLNs were prepared as described previously
[24]. Briefly, the spleens and TDLNs were aseptically
removed and ground gently by passing a sterile 200-gauge
steel mesh. The cells were collected by centrifugation at
300×g for 5min at 4°C. The lymphocytes were prepared with
the lymphocyte separation medium. The cells were washed
twice with precold phosphate buffer (PBS) and resuspended
in PBS for flow cytometry analysis or in RPMI1640 medium
(containing 10% FBS, 100U/mL penicillin, and 100μg/mL
streptomycin) for cytotoxicity analysis. To prepare lympho-
cytes from tumor tissues, tumors were cut into small pieces
and digested with 25μg/mL collagenase type IV and 150U/
mL DNase I in RPMI1640 for 24 h at 4°C. Then, the tumor
tissues were gently pressed through a sterile 200-gauge steel
mesh with a plunger. Cells were collected by centrifugation
at 300×g for 5min at 4°C and washed twice with PBS. The
cells were resuspended and taken to prepare lymphocytes
with the mouse 1x lymphocyte separation medium as
described above.

2.6. Flow Cytometry Analysis. Phenotypic analysis was
performed by flow cytometry (FCM). The lymphocytes
were stained with fluorescence-conjugated monoclonal
antibodies as follows: PE/CY7-antimouse CD3, FITC-
anti-mouse CD4, PE-anti-mouse PD-1, PE/CY5-anti-
mouse CD25, or PE/CY5-anti-mouse CD8 according to
the manufacturer’s instructions. And then, the cells were
detected at medium speed using a FACS Canto™ II flow
cytometer (BD Biosciences).

2.7. ELISA Assay. Freshly heparinized blood was prepared
from orbital venous plexus of the mice. After being centri-
fuged at 800×g for 20min at 4°C, sera were collected. The
levels of TGF-β and IL-10 in sera were assayed by enzyme-
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linked immunoabsorbent assay (ELISA) kits according to the
manufacturer’s instructions.

2.8. Cytotoxicity Analysis. The cytotoxicity of lymphocytes
was detected as described previously with minor modifica-
tion [2]. Briefly, H22 cells as target cells were labeled with
5μmol/L CFSE for 10min at room temperature in the
dark and washed thrice with RPMI1640 medium contain-
ing 5% FBS. The effector cells (lymphocytes) and target
cells (H22 cells) were incubated in 96-well U-bottom plate
for 24h at a ratio of 50 : 1. The cells were collected and
washed twice with PBS. After being stained of PI, cells
were detected by FCM and the percentage of CFSE+ PI+

H22 cells was analyzed.

2.9. Immunohistochemistry Assay. Immunohistochemistry
studies of T cells and CD8+ T cells in tumor tissues were per-
formed as described previously [25]. Briefly, after the tumor
tissues from model and LBP treatment group were fixed with
10% neutral formalin for 24 h, paraffin-embedded sections
were prepared and stained with the purified antibodies of
CD3 and CD8. The immunodetection was performed using
a murine/rabbit IgG immunohistochemistry kit (Boster Bio-
logical Technology Co. Ltd., China) and SignalStain® DAB
substrate kits (CST).

2.10. In Vitro Assay of the Effects of LBP on Cytokine
Production in H22 Cells and RAW264.7 Macrophages. The
H22 cells (1× 104 cells/well in 96-well plates) were treated
with 200, 400, and 800μg/mL of LBP for 24h. The
RAW264.7 macrophages (1× 105 cells/well in 96-well plates)
were treated with 25, 50, and 100μg/mL of LBP for 24h. The
control cells were treated with culture medium. The culture
supernatants were collected to determine the level of TGF-
β1 and IL-10 with ELISA kits.

2.11. Statistical Analysis. The data were expressed as mean
± SD. Student t-test was used to assess the statistical signifi-
cance of differences between experimental groups. P value
< 0.05 was considered statistically significant.

3. Results

3.1. LBP Treatment Inhibits Solid Tumor Growth, but Has
Little Effect on Body Weight or Spleen Index in H22 Tumor-
Bearing Mice. Studies reported that LBP could inhibit tumor
growth in mice [1–3]; also, our previous study demonstrated
that the antitumor activity of LBP was closely related to its
molecular weight and LBP with medium molecular weight
(40–350 kDa) had the highest antitumor activity in H22
tumor-bearing mice [23]. In the present study, we further
investigated the effect of such LBP on the systemic and local
immune responses in H22 tumor-bearing mice. The tumor-
bearing mice were injected subcutaneously with H22 cells
into the right armpit. The tumor-free mice served as a con-
trol. The untreated tumor-bearing mice served as a model.
Consistent with previous study, LBP inhibited H22 tumor
growth dramatically in this study (Figure 1(a)). At the end
of the experiment, LBP showed little effect on body weight
or spleen index in mice when compared with those in the

model group (Figures 1(b) and 1(c)). However, we found that
the increase of body weight due to the tumor growth from
day 4 to day 7 was lower in the LBP-treated mice than those
in the model mice. From day 7 to day 10, the increase of body
weight was decreased in the model mice compared with
themselves on day 6 mainly due to the loss of muscle, while
the increase of body weight always increased slowly in the
LBP-treated mice since day 5. These results indicated that
LBP not only inhibited H22 tumor growth but also reduced
muscle loss in mice.

3.2. LBP Treatment Maintains High Levels of T Cells in PB,
TDLN, and Tumor Tissue. The presence of high levels of T
cells in cancer patients is a favourable prognostic factor
[13–15, 26], and adoptive T cell transfer for cancer has been
proved to be a promise approach [27, 28]. Thus, T cell plays
an important role in cancer treatment. In the present study,
we investigated whether LBP affected T-cell level in H22
tumor-bearing mice. Lymphocytes from PB, TDLN, and
tumor tissues were prepared, and the T-cell percentages in
lymphocytes were determined with FCM. As shown in
Figures 2(a) and 2(b), the tumor-bearing mice in the model
group had lower T-cell percentages in PB and TDLN com-
pared with those in the control group (P < 0 01). LBP-
treated mice had higher percentages of T cells not only in
PB and TDLN but also in tumor tissues, than those in the
model group (P < 0 05 in PB, P < 0 01 in TDLN and tumor
tissues). To confirm these results, we further investigated T-
cell infiltration in tumor tissues with immunohistochemistry.
Results from immunohistochemistry showed that more
T-cell infiltration was observed in tumor tissue from
LBP-treated mice than those from the model group
(Figure 2(c)). These results demonstrated that LBP treat-
ment prevented the decrease of T cells in both systemic
and local tissues of the tumor-bearing mice.

3.3. LBP Treatment Prevents the Increase of CD4+CD25high

Tregs While Promotes Infiltration of CD8+ T Cells in Tumor
Tissue. As mentioned above, LBP maintained high levels of
T cells in the tumor-bearing mice. However, there are two
major T-cell subsets, including CD8+ cytotoxic T lympho-
cytes (CTL) and CD4+ regulatory T cells (Tregs), which play
an opposite role in tumor immunity [19, 29], respectively.
Tregs can promote tumor growth, while CTL can kill the can-
cer cells. Thus, in the present study, we further investigated
whether LBP affected distribution of Tregs and CD8+ T cells
in the tumor-bearing mice. Lymphocytes from the spleen,
TDLN, and tumor tissues were prepared as described above.
The percentages of Tregs in T cells were determined with
FCM, while the infiltration of CD8+ T cells in tumor tissue
was assayed with immunohistochemistry. Since most of the
CD4+ Tregs can be identified by the high expression of
CD25 molecules on their surface [30], CD4+CD25high T cells
were distinguished as Tregs in this study. As shown in
Figure 3, the tumor-bearing mice had higher percentages of
Tregs in TDLN (P < 0 01) and spleen (slightly upregulated,
but not significantly) than those in the control group. Com-
pared with the model group, LBP treatment showed little
effect on the level of Tregs in TDLN or spleen; however, it
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could significantly reduce Tregs in tumor tissue (P < 0 05
when compared with the model group, Figures 3(a) and
3(b)). The results indicated that LBP might increase the infil-
tration of CD8+ T cells in tumor tissue, because Tregs have
the ability to inhibit the proliferation of CD8+ T cells. We
therefore further investigated the effect of LBP on the infiltra-
tion of CD8+ T cells in the tumor tissue. As expected, the
results in immunohistochemistry showed that LBP-treated
mice had more infiltration of CD8+ T cells in tumor tissue
than those in the model group (Figure 3(c)). Our results
demonstrated that LBP treatment prevented the increase of
CD4+ CD25high Tregs and promoted infiltration of CD8+ T
cells in tumor tissue.

3.4. LBP Treatment Inhibits the Production of TGF-β1 and
IL-10 in Tumor-Bearing Mice. TGF-β1 and IL-10 play
important roles in the development and suppressive function
of Tregs [31, 32]. To illuminate how LBP prevents the
increase of Tregs in the tumor-bearing mice, we therefore
investigated whether LBP could affect the production of
TGF-β1 and IL-10 in mice. We first investigated the levels
of TGF-β1 and IL-10 in serum with ELISA kits. As shown
in Figure 4, the tumor-bearing mice in the model group
had higher levels of TGF-β1 (Figure 4(a)) and IL-10
(Figure 4(b)) in serum than those in the control group
(P < 0 01), while LBP-treated mice had lower levels of
such cytokines in serum when compared with model mice
(P < 0 05 and P < 0 01, resp.). These results demonstrated

that LBP could inhibit the production of TGF-β1 and IL-10
in H22 tumor-bearing mice, which might contribute to the
prevention of Tregs function in LBP-treated mice.

Macrophages and some cancer cells can produce TGF-β1
and IL-10 [31, 33, 34]. To illuminate how LBP inhibits the
production of TGF-β1 and IL-10 in H22 tumor-bearing
mice, we then investigated the effects of LBP on TGF-β1
and IL-10 production in H22 cells and RAW264.7 macro-
phages in vitro. The cells were treated with LBP for 24 h,
and the culture supernatants were collected and assayed.
The results showed that H22 cells could produce TGF-β1,
but not IL-10; LBP could inhibit the production of TGF-β1
in H22 cells in a dose-dependent manner (Figure 4(c)). How-
ever, LBP could not inhibit the production of IL-10 in
RAW264.7 macrophages; on the contrary, LBP could pro-
mote the IL-10 section (Figure 4(d)). These results demon-
strated that LBP inhibited the production of TGF-β1 in the
H22 tumor-bearing mice partly by inhibiting TGF-β1 secre-
tion in H22 cells. Meanwhile, the inhibition of IL-10 produc-
tion in LBP-treated mice was probably due to the inhibition
of Tregs, because Tregs can also produce IL-10.

3.5. LBP Treatment Decreases the Exhaustion Phenotype of T
Cells in Tumor-Bearing Mice. Though LBP promoted the
infiltration of T cells in the tumor tissues, previous study
reported that the tumor-infiltrating T cells are exhausted
[11]. PD-1 expression is markedly upregulated on tumor-
infiltrating T cells, especially on CD8+ T cells, which has been
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Figure 1: LBP treatment inhibited H22 solid tumor growth in mice. Mice were transplanted with H22 cells in the right armpit subcutaneously
to prepare tumor-bearing mice. In LBP group, mice were treated with LBP (250mg/kg) intragastrically for 10 days once daily. (a) Tumor
weights from BALB/c mice. (b) Change of body weight. (c) Spleen index. Data are represented as mean± SD, n = 8 in each group.
∗∗P < 0 01 versus model group.
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Figure 2: LBP treatment prevented the decrease of T cells in tumor-bearing mice. The percentage of T cells in PB, TDLN, and tumor tissue
from tumor-free mice or H22 tumor-bearing mice was analyzed by FCM. The infiltration of T cells in tumor tissue was observed by
immunohistochemistry. (a) Representative histograms of T cell percentage gated on lymphocytes. (b) Statistical analysis of the percentage
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demonstrated as T cell exhaustion phenotype [11, 35]. To
investigate whether LBP affected the T cell exhaustion in
the tumor-bearing mice, we analyzed the PD-1 expression
on effector T cells—CD4+ CD25− T cells and CD8+ T cells
in tumor tissues and spleens using the data of percentage
and mean fluorescence intensity (MFI) which indicates the
number of PD-1 on cell surface. The results showed that

LBP-treated mice had lower percentage and MFI of PD-1
expression on T cells in tumor tissues than those in the model
group (P < 0 05 and P < 0 01, respectively, Figure 5(a)). Fur-
ther analysis showed that LBP-treated mice had lower MFI
of PD-1 on CD8+ T cells and percentage of CD4+ CD25−

PD-1+ T cells in tumor tissues than those in the model
group (P < 0 01). The tumor-bearing mice in the model
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Figure 3: LBP treatment prevented the increase of CD4+ CD25 high Tregs while promoted the infiltration of CD8+ T cells in tumor
tissue. (a) Representative dot plots of CD4+ CD25 high Tregs percentages gated on CD4+ T cells in TDLN, spleen, and tumor tissue.
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group had higher percentages of CD8+ PD-1+ T cells and
CD4+ CD25− PD-1+ T cells in the spleens than those in the
control group. Compared with the mice in the model group,
LBP-treated mice had higher MFI of PD-1 on CD8+ T cells
and lower percentages of CD4+ CD25− PD-1+ T cells in the
spleens (P < 0 05, Figure 5(b)). These results demonstrated
that LBP treatment could decrease the exhaustion phenotype
of T cells in H22 tumor-bearing mice.

3.6. LBP Treatment Maintains the Cytotoxicity of
Lymphocytes in TDLN and Spleen. The cytotoxicity of lym-
phocytes against cancer cells is a powerful antitumor
immune response. CD8+ CTL and NK cells are two types of
lymphocytes that can kill the cancer cells in a cytotoxic man-
ner. As shown above, LBP treatment decreased the exhaus-
tion phenotype of T cells and the infiltration of Tregs in
tumor tissues as well as the production of suppressive cyto-
kines. These could contribute to maintain the antitumor
immune responses in H22 tumor-bearing mice. Thus, we
then further investigated the effects of LBP on the cytotoxic-
ity of lymphocytes against H22 cells. Lymphocytes in TDLN
and spleens of the mice were separated and cultured with
H22 cells for 24 h. H22 cells that were killed by lymphocytes
were determined using FCM. As shown in Figure 6, the
results showed that lymphocytes in the spleens from the
model group had lower cytotoxicity to H22 cells than

those in the control group (P < 0 01). Compared with the
model group, lymphocytes in the spleens and TDLN from
the LBP treatment group had higher cytotoxicity to H22
cells (P < 0 05 in the spleen, P < 0 01 in TDLN). These
results demonstrated that LBP treatment maintained cyto-
toxicity of lymphocytes against H22 cells in the H22
tumor-bearing mice.

4. Discussion

In the present study, we investigated the effects of LBP on
systemic and local immune responses in H22 tumor-
bearing mice. We found that LBP could maintain high levels
of T cells in systemic and local tissues, prevent the increase of
Tregs while promoting infiltration of CD8+ T cells in tumor
tissue, inhibit the production of TGF-β1 and IL-10 in serum,
decrease the exhaustion phenotype of T cells, and maintain
cytotoxicity of lymphocytes. These results demonstrated that
LBP treatment simultaneously induced systemic and local
T cell-dependent antitumor immune responses in H22
tumor-bearing mice.

As known, T cells play an important role in cancer
prevention. The presence of high level of T cells is a
favourable prognostic factor in human tumors [13–15].
Studies have shown that adoptive T-cell therapy is a
potential powerful approach for developing safe and
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by ELISA kits. (a) The level of TGF-β1 in serum. (b) The level of IL-10 in serum. (c) Effect of LBP on TGF-β1 production in H22
cells. (d) Effect of LBP on IL-10 production in RAW264.7 macrophages. Data are represented as mean± SD, n = 8 in each group of
the mice, n = 3 in each group of the cells. ∗P < 0 05 and ∗∗P < 0 01 versus model group in mice; ∗∗P < 0 01 and ∗∗∗P < 0 001 versus
control group in the cells. ELISA: enzyme-linked immunosorbent assay.
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Figure 5: LBP treatment inhibited the expression of PD-1 on T-cell subsets. The PD-1 expression on T cells in tumor tissue and spleen was
analyzed by FCM. (a) PD-1 expression on T cells, CD4+ CD25− T cells and CD8+ T cells in tumor tissue. (b) PD-1 expression on CD4+ CD25−

T cells and CD8+ T cells in the spleen. PD-1 expression on T cell subsets was statistical analysis as the percentage and MFI, simultaneously.
Data are represented as mean± SD, n = 8 in each group. ∗P < 0 05 and ∗∗P < 0 01 versus model group. PD-1: programmed cell death-1;
FCM: flow cytometry; MFI: mean fluorescence intensity.
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effective cancer therapeutics [27, 28]. Though the antitu-
mor and immune regulation activity of LBP had been
demonstrated, the effect of LBP on phenotypic and func-
tional change of T cells is still largely unknown. In this
study, we found that LBP treatment prevented the
decrease of T cells in PB, TDLN, and tumor tissue of
H22 tumor-bearing mice. One possible reason for these
results might be that LBP promoted the activation and
proliferation of T cells in H22 tumor-bearing mice. Evi-
dence supported our conclusion wherein LBP could pro-
mote T-cell proliferation in vitro and in vivo [20, 21, 36].

However, accumulated evidence has shown that T cells
play a duplicitous role in cancer due to the existence of differ-
ent T-cell subsets. T cells can be subdivided into two major
cell types on the basis of functional difference in tumor
immunity—Tregs and effector T cells that they can promote
or inhibit tumor growth, respectively [11, 12]. Tregs are one
type of T cells that can actively suppress the antitumor
immune responses and promote tumor growth [19]. Tregs
suppress the antitumor immune response by expression
of coinhibitory molecules on surface and secretion of sup-
pression cytokines, such as CTLA-4, IL-10, and TGF-β1
[37–39]. Most of the Tregs can be distinguished by the
high expression of CD25 and CD4 on their surface which
has become a target for Tregs depletion and sorting
[19, 40–42], although the expression of internal transcrip-
tion factor Foxp3 is another characteristic for Tregs iden-
tification. Studies reported that increased Tregs infiltration
in some tumors is associated with poor survival [16–18].
Depletion of Tregs or blockade of the coinhibitory mole-
cules on Tregs surface can reverse the imbalance between
pro- and antitumor immunities [19, 43]. Therefore, Tregs
have become a target in cancer immunotherapy. In this
study, we found that LBP treatment inhibited the increase
of CD4+ CD25high Tregs in tumor tissue, as well as the
secretion of IL-10 and TGF-β1 in serum. IL-10 and
TGF-β1 are not only immunosuppressive cytokines but

also play a critical role in the development and suppres-
sor function of Tregs [31, 32]. Besides, IL-10 and TGF-β1
are also produced by other cell types, such as macro-
phages and some cancer cells [31, 33, 34]. Our results
showed that LBP could inhibit TGF-β1 secretion in H22
cells, but could not inhibit IL-10 secretion in RAW264.7
macrophages. These results indicated that LBP inhibited
the production of TGF-β1 partly by inhibiting TGF-β1
secretion in H22 cells, which contributed to decrease
Tregs in mice. Meanwhile, the decrease of Tregs could con-
tribute to the production of IL-10 in LBP-treated mice.

Effector T cells are composed of CD8+ CTL and CD4+

Th1 cells. One of major mechanisms that the CD8+ CTL
inhibits tumor growth is by killing the tumor cells in a cyto-
toxic manner, while CD4+ Th1 cells may work by secreting
cytokines. In this study, we used the immunohistochemistry
to detect the infiltration of CD8+ T cells in tumor tissue.
We found that LBP treatment could improve the infiltration
of CD8+ T cells in tumor tissue which often indicates the
good prognosis. However, accumulated studies have shown
that most T cells in tumor microenvironment, especially
CD8+ T cells, are exhausted with high PD-1 expression
[11, 30]. We found that LBP treatment inhibited the PD-1
expression on T-cell subsets, including CD4+CD25− and
CD8+ T cells in tumor tissue. This indicated that LBP treat-
ment decreased the exhaustion phenotype of T cells. How-
ever, we also found that LBP treatment inhibited the
proportion of CD4+ CD25− PD+ T cells while increased the
PD-1 expression level on CD8+ T cells in the spleen. These
indicate that multiple mechanisms may be responsible for
LBP in regulating PD-1 expression on CD8+ T cells
between system and tumor microenvironment. In fact,
previous study showed that CD8+ PD-1+ T cells were
exhausted in tumor and functional in draining lymph
nodes of colorectal cancer patients [35].

The results as mentioned above that LBP treatment
decreased the exhaustion phenotype of T cells and the
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Figure 6: LBP treatment maintained cytotoxicity of lymphocytes from TDLN and spleen. H22 cells as target cells were labeled with CFSE
before incubation with lymphocytes. The effector cells (lymphocytes) and target cells (H22 cells) were incubated for 24 h at a ratio of
50 : 1. After staining of PI, FCM was performed to calculate the percentage of PI+ H22 cells. (a) The percentage of H22 cells killed by
lymphocytes from the spleen. (b) The percentage of H22 cells killed by lymphocytes from TDLN. Data are represented as mean± SD,
n = 8 in each group. ∗P < 0 05 and ∗∗P < 0 01 versus model group. CFSE: carboxyfluorescein diacetate succinimidyl ester; PI: propidium
iodide; FCM: flow cytometry; TDLN: tumor draining lymph node.
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infiltration of Tregs in tumor tissues as well as the production
of suppressive cytokines could contribute to enhance the
antitumor immune response in tumor-bearing mice. In order
to demonstrate this conclusion, we further investigated the
cytotoxicity of lymphocytes in TDLN and spleen against
H22 cells. As expected, LBP treatment could maintain the
cytotoxicity of lymphocytes in TDLN and spleen. This was
consistent with previous study that LBP could enhance CTL
activity in S180 tumor-bearing mice [2]. In fact, CD8+T cells
and NK cells are the lymphocytes in TDLN and spleen that
could kill the cancer cells in a cytotoxicity manner, while
Tregs can suppress their antitumor activity [44–46]. There-
fore, the possible mechanisms that LBP maintains the cyto-
toxicity of lymphocytes in our study might be by inhibiting
of Tregs function and preventing T cells from exhaustion.

5. Conclusions

Taken together, our results demonstrated that LBP success-
fully induced systemic and local T cell-dependent antitumor
immune responses in H22 tumor-bearing mice mainly by
alleviating immunosuppression and maintaining antitumor
immune responses. Since immunosuppressive tumor micro-
environment is a big obstacle in cancer immunotherapy, our
results indicate that LBPmay be an effective and ideal reagent
for cancer treatment in combining with immunotherapy,
especially with adoptive cellular immunotherapy.
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