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Simple Summary: Understanding how endoplasmic reticulum stress influences colorectal cancer
progression and the composition of the tumor microenvironment is important for developing novel
strategies in the treatment of colorectal cancer. In this study, we identified two endoplasmic reticulum
stress-related subtypes of colorectal cancer with distinct prognosis and infiltration patterns in the
tumor microenvironment. Besides, we constructed a prognostic model for predicting patients’
survival, which involved an endoplasmic reticulum stress-related 14-gene signature. Furthermore,
by utilizing spatial transcriptomics data from two untreated colorectal cancer patients, we explored
endoplasmic reticulum stress-related gene signatures at a subcellular level and found that colorectal
cancer cells and regulatory T cells showed an evidently increased expression of endoplasmic reticulum
stress-related gene signature, and cancer-associated fibroblasts might be the leading characteristic
that distinguishes the endoplasmic reticulum stress-related subtypes of colorectal cancer. We suggest
that targeting endoplasmic reticulum stress in colorectal cancer might reshape the exhausted tumor
microenvironment and mitigate tumor progression.

Abstract: Recently, endoplasmic reticulum (ER) stress has been shown to influence tumor progression
and immune cell function in the tumor microenvironment (TME). However, the underlying role of ER
stress-related gene patterns in colorectal cancer (CRC) development remains unclear. We analyzed the
ER stress-related gene patterns in 884 patients with CRC from the Gene Expression Omnibus database
and evaluated the cell-infiltrating patterns in the TME. Two ER stress-related patterns were identified
in patients with CRC that had distinct cell-infiltrating patterns in the TME and clinical characteristics.
A risk score and nomogram based on 14 screened prognosis-correlated genes was built and validated
to predict patient survival. Patients with a higher risk score were shown to have an unfavorable
prognosis, and the risk score was associated with cell infiltration and drug sensitivity. Furthermore,
spatial transcriptomics data were utilized to explore ER stress-related gene patterns in CRC tissues,
and it was shown that ER stress phenotype involves in the formation of the immunosuppressive
TME. This study demonstrated that ER stress-related gene patterns play a role in influencing the
TME and predicting prognosis. These analyses of ER stress in the TME of CRC might deepen our
understanding of CRC progression and immune escape and provide novel insights into therapeutic
strategies.
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1. Introduction

During the past decades, immunotherapies, such as immune checkpoint inhibitors
(ICIs) and chimeric antigen receptor T cells (CAR-T), have obtained robust clinical responses
and revolutionized the treatment of cancer patients [1]. Unfortunately, their efficacy varies,
and only a limited number of patients benefit from immunotherapy, which is far from
meeting the clinical demand [2–4]. It is widely accepted that different types of immune
cells infiltrating the tumor microenvironment (TME) can influence tumor development
and affect clinical outcomes [1,5,6]. Both innate immune cells (such as natural killer (NK)
and dendritic cells (DC)) and adaptive immune cells (such as T and B cells) participate in
tumor immunosurveillance. However, cancer cells can elicit multiple mechanisms to escape
immunosurveillance or dampen antigen presentation, which necessitates immunotherapy
that aims to boost the host immune system to eliminate tumor cells [1]. Moreover, the
mechanisms underlying immunotherapy and tumor immune escape are not fully under-
stood [7]. Understanding the TME and the mechanisms of immunotherapy may lead to
novel therapeutic approaches for cancer.

The endoplasmic reticulum (ER) is one of the most vital organelles in eukaryotes and
functions as a site of protein synthesis, folding, and modification, a calcium reservoir, and
a compartment of lipid biosynthesis [8]. ER homeostasis is essential for normal cellular
processes. ER stress can be induced under conditions such as high demand of secretion or
protein synthesis, and is involved in many pathological diseases [9], including the aging
process [10], neurodegenerative disease [11], and type 2 diabetes [12]. The unfolded protein
response (UPR) pathway is the main mechanism for mitigating the induced ER stress in
cells. To date, three parallel pathways have been discovered, and the three corresponding
ER stress sensors located on the ER membrane are inositol-requiring enzyme 1α (IRE1α; also
named ERN1), PRKR-like endoplasmic reticulum kinase (PERK; also named EIF2AK3), and
activating transcription factor 6 (ATF6) [13]. Recently, increasing evidence has shown that ER
stress is involved in the regulation of cancer development and the function of immune cells
in the TME [14,15].

Growing interest has been generated toward deciphering the role of ER stress-related
pathways in the functional regulation of immune cells in the TME, albeit with conflicting
results [13,16]. The ER stress sensor IRE1α and its substrate XBP1 in NK cells are elevated
to boost anti-tumor effects through their downstream target c-Myc [17]. The IRE1α-XBP1
axis was also shown to be crucial in the tumor antigen cross-presentation of CD8α+ con-
ventional DCs, and deficiency of XBP1 in CD8α+ DCs resulted in a defective phenotype
and antigen-presenting capacity [18]. In contrast, constitutive activation of XBP1 in DCs
results in abnormal accumulation of lipids in tumor-associated DCs and subsequent dys-
function of antitumor T cells in ovarian cancer [19]. Additionally, persistent activation of
ER stress pathways in myeloid-derived suppressor cells (MDSC) has been shown to form
an immunosuppressive environment and lead to tumor progression [13,20]. The studies
mentioned above only focused on a restricted number of ER stress regulators, while the
regulation of tumor development and the TME contains numerous factors that are highly
coordinated. Thus, the ER stress patterns in cancer and the TME remain elusive and require
further elucidation.

In this study, we integrated the transcriptomic data and clinical information of 1476 pa-
tients with colorectal cancer (CRC) to identify the relationship between ER stress-related
regulators and immune cell infiltration characteristics, as well as clinical outcomes in CRC
patients. We identified two ER stress-related sub-clusters (ERcluster A and ERcluster B),
and based on the differentially expressed genes (DEGs) between the ERcluster A and
ERcluster B, another two gene clusters (GeneCluster A and GeneCluster B) were identified.
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Next, we built a risk score system and nomogram based on the ER stress-related gene
signatures to predict patient survival. Furthermore, we included spatial transcriptomic (ST)
data to visualize ER stress-related gene patterns in cell subtypes.

2. Materials and Methods
2.1. Data and Resources

Microarray gene expression data and clinical information including age, gender, tumor
location, stage, KRAS mutation, and BRAF mutation of CRC tumor samples (GSE17536,
GSE38832, and GSE39582, n = 884), were downloaded from the Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/, accessed on 1 November 2021). The above
three GEO datasets were all based on the GPL570 platform; other platforms were not ac-
cepted because certain uncontrollable biases might be included. The Cancer Genome Atlas
(TCGA) Colon Adenocarcinoma (COAD)/Rectum adenocarcinoma (READ) expression
data in fragments per kilobase of transcript per million mapped fragments (FPKM) and
their corresponding clinical data were downloaded from the Genomic Data Commons
(GDC) portal (https://portal.gdc.cancer.gov/, accessed on 1 November 2021). The gene
expression FPKM value of TCGA COAD/READ was transformed into the TPM format.
Three independent cohorts of GEO datasets were combined, and batch effects were re-
moved using the R package “Combat”. Patients with missing survival information were
excluded from the study. Thus, 884 patients from the GEO database and 592 patients from
the TCGA database were included in this study.

2.2. Unsupervised Clustering Analysis of ER Stress-Related Genes

The ER stress-related gene set (GOBP_RESPONSE_TO_ENDOPLASMIC_RETICULUM_
STRESS) was downloaded from the Molecular Signatures Database v7.5.1 (MSigDB, http:
//www.gsea-msigdb.org/, accessed on 1 November 2021). A total of 295 genes were
included in the GOBP_RESPONSE_TO_ENDOPLASMIC_RETICULUM_STRESS gene set,
268 of which were found in GEO and TCGA expression data (Supplementary Table S3).
Unsupervised consensus clustering was realized by the R package “ConsensusClusterPlus”
to find the molecular subtypes of CRC; repetitions were set at 1000 to make sure the sta-
bility of clustering. The optimal number of clusters was determined using the cumulative
distribution function (CDF) curve, which showed a gently increasing trend. Furthermore,
to examine the differences in the biological processes between the ER stress-related sub-
clusters, gene set variation analysis (GSVA) was utilized, and the gene set c2. cp.kegg.v7.2,
downloaded from MSigDB, and analysis was performed using the R package “GSVA” [21].

2.3. Estimation of Lymphocyte Infiltration in the Bulk Sequencing Data

Several algorithms, including single-sample gene set enrichment analysis (ssGSEA) [21],
microenvironment cell population (MCP)-counter [22], and CIBERSORT [23], have been
used to reflect and cross-validate the infiltration of different immune cell subtypes. The
28 immune cell signatures applied in ssGSEA were derived from Charoentong et al. [24],
and the ESTIMATE algorithm was used to assess the immune and stromal scores of each
tumor sample [25]. The patients were then grouped based on the clusters to identify
differences in lymphocyte infiltration between the clusters.

2.4. Biological Functions and Pathways Enrichment Analysis

Differentially expressed genes (DEGs) between the ER stress-related subtypes were
identified with the “limma” package in R, fold change value was set at 0.8, and p-value < 0.05
was accepted as statistically significant [26] (Supplementary Table S4). Another R pack-
age, “clusterProfiler, ” was used to evaluate the biological functions and pathways of
these ER stress-related DEGs [27]. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses were performed with a p-value and an adjusted
p-value of <0.05.

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
http://www.gsea-msigdb.org/
http://www.gsea-msigdb.org/
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2.5. Construction of ER Stress-Related Risk Score

The ER stress-related risk score was calculated to quantify individual tumor types and
identify patient prognosis. Univariate Cox analysis was performed on 268 genes from the
GOBP_RESPONSE_TO_ENDOPLASMIC_RETICULUM_STRESS gene set to determine
those correlated with patient survival. Genes (n = 232, Supplementary Table S2) correlated
with prognosis in the former step were included in the Lasso and multivariate Cox regres-
sion analyses. Patients with CRC were randomly divided into training set and testing set at
a ratio of 1:1; for these processes, the “glmnet” package in R software was utilized. The
model was determined by the smallest lambda value according to 10-fold cross-validation,
and the ER stress-related risk score was formulated as follows: Risk score = Σ (Expi ×Coef)
where Expi and Coef represent the gene expression value and risk coefficient, respectively
(Table 1). The median risk score was set as the cutoff value to divide the patients into
high-risk (risk score > median) and low-risk (risk score < median) groups. In addition,
using the package “ggplot2” in R software, principal component analysis (PCA) was
performed based on ER stress-related genes. The correlation between the risk score and
lymphocyte infiltration results of CIBERSORT was conducted using Pearson’s correlation
analysis in R. To evaluate the sensitivity of common chemotherapeutic drugs between the
two risk groups, another R package “pRRophetic” was used to calculate the half-maximal
inhibitory concentration (IC50) values of these drugs and visualized in boxplot. Analysis
of protein-protein interaction (PPI) networks among the above 232 prognostic genes was
conducted using STRING database (11.0) [28]. MCODE algorithm [29] was utilized to find
complex modules within large protein interaction networks and the results were further
visualized in Cytoscape [30].

Table 1. Parameters used in the construction of ER stress-related risk score.

Gene Coef

ASNS 0.688343247
CALR3 −0.572927078
DNAJB2 0.455677169
EIF2AK4 0.831306602
ERMP1 0.764514094
FBXO6 −0.388996026
FLOT1 0.463952998
HERPUD1 0.803594073
HYOU1 0.233149469
PDX1 −0.60035933
SEC31A 0.493525152
TSPYL2 0.646208663
WIPI1 −0.244404952
YOD1 0.292412602

2.6. Mutation, Copy number Variation, and DNA Methylation Analysis

R package “GenVisR” was used to visualize the gene mutational landscape. The copy
number variation (CNV) landscape was plotted with the “RCircos” R package. For DNA
methylation analysis, a web-based user-friendly tool named Shiny Methylation Analysis
Resource Tool (http://www.bioinfo-zs.com/smartapp/, accessed on 1 November 2021)
was used to comprehensively analyze the DNA methylation levels of ER stress-related
genes [31] in TCGA projects.

2.7. Real-Time Quantitative PCR Analysis

Frozen CRC tumor samples and their paired adjacent normal tissues from six patients
were acquired from Sichuan University West China Hospital. Total RNA was extracted
using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The PrimeScriptTM II 1st Strand

http://www.bioinfo-zs.com/smartapp/
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Synthesis Kit (Takara, Kusatsu, Japan) was used for reverse transcription to convert RNA
into cDNA, and the procedures were performed according to the manufacturer’s instruc-
tions. Real-time quantitative PCR (RT-qPCR) was performed on a QuantStudio3 PCR
system (Thermo Fisher Scientific, Waltham, MA, USA), and relative mRNA abundance
was calculated using the 2−∆∆Ct method. The forward and reverse primer sequences used
for RT-qPCR are shown in Supplementary Table S5. This study was approved by the
Ethics Committee of Sichuan University West China Hospital, Chengdu, China (approval
number: 2018 (280)). Written informed consent was obtained from all patients before being
enrolled in the study and the study was conducted in accordance with the principles of the
Declaration of Helsinki.

2.8. Construction of a Nomogram in Predicting Survival

The “rms” package in R was applied and the risk score combined with other clinical
factors such as stage and age which are associated patients’ prognosis were taken into
account and incorporated into the establishment of a nomogram [32]. A calibration plot
illustrating the observed and predicted survival rates was used to assess the performance
of the established nomogram. Each variable was matched to a certain score according to the
nomogram. The total score for each patient represents the predicted survival probability.
Time-dependent receiver operating characteristic (ROC) curves for 1-, 3-, 5-, and 10-year
survival were generated to verify the predictive ability of the nomogram system.

2.9. Spatial Transcriptomics Data Analysis

Two slides of untreated CRC tissue with spatial transcriptomics (ST) data were col-
lected from a study by Wu et al. [33] (http://www.cancerdiversity.asia/scCRLM, accessed
on 1 November 2021). Detailed procedures performed on tumor slides have been described
by Wu et al. In the cell subtype annotation, each spot on the ST data contains several
cells, and some existing overlapping cell markers might not illustrate the cell subtypes
sufficiently. Thus, we applied several cell gene markers from Charoentong et al. [24] and
Racle et al. [34] to score the cell subtypes in the ssGSEA analysis.

2.10. Statistical Analysis

Statistical analyses were conducted using R software (version 4.0.5, Auckland, New
Zealand). The Kruskal–Wallis test was used to compare lymphocyte infiltration scores and
gene expression levels. Chi-square tests were used to evaluate the relationship between
clinical characteristics (including age, sex, stage, grade, MSI status, KRAS mutation, and
BRAF mutation) and ER stress-related sub-clusters. Kaplan–Meier and log-rank test were
utilized to investigate overall survival (OS) between different sub-clusters and optimal
cutoff value of risk score in TCGA COAD/READ was determined by the “survminer” and
“survival” packages in R software. In addition, we applied univariate and multivariate Cox
regression models to calculate the hazard ratio (HR) of ER stress-related genes in patients
with CRC. For all statistical analyses, a two-tailed p-value < 0.05 was considered statistically
significant.

3. Results
3.1. Identification of ER Stress Related Sub-Clusters in CRC

The entire analytical pipeline used in this study is shown in Figure 1. To gain deeper
insight into the expression pattern of ER stress-related genes in CRC oncogenesis, 884 pa-
tients from three independent datasets from GEO (GSE17536, GSE38832, and GSE39582)
were included. Using a consensus clustering algorithm based on the aforementioned 268 ER
stress-related genes in two MSigDB gene sets (Supplementary Figure S1), k = 2 was found
to be an optimal parameter for dividing the entire GEO CRC cohort into two sub-clusters,
namely ERcluster A and ERcluster B (n = 538 and n = 346, respectively; Figure 2A). We
further analyzed the clinical characteristics of the two sub-clusters (Table 2). It appeared
that ERcluster B was preferably located at the proximal site, had a higher BRAF mutational

http://www.cancerdiversity.asia/scCRLM
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rate, and a higher mismatch repair deficiency (dMMR) rate. No significant disparities
were detected in terms of age, sex, stage, grade, KRAS mutational status, or adjuvant
therapy. Survival analysis showed that ERcluster B had a poorer overall survival rate than
ERcluster A (Figure 2B, log-rank p = 0.006). Furthermore, GSVA revealed that several
immune-related pathways were enriched in ERcluster B, including B cell receptor signaling
pathways, NK cell mediated cytotoxicity, and cytokine signaling pathways (Figure 2C).
Subsequently, by applying the ER stress-related genes in the PCA analysis, the above two
ER stress-related sub-cluster patterns could be well distinguished (Figure 2D). In general,
the above results demonstrated that two different expression patterns of ER stress-related
genes participated in CRC tumorigenesis and were correlated with patient prognosis.

Table 2. Characteristics of CRC patients in ERcluster A and ERcluster B in GEO datasets.

Characteristics ERcluster A
(n = 538)

ERcluster B
(n = 346) Total (n = 884) p Value

Age 0.84
<65 183 (34.01%) 111 (32.08%) 294 (33.26%)
≥65 281 (52.23%) 186 (53.76%) 467 (52.83%)

Unclear 74 (13.76%) 49 (14.16%) 123 (13.91%)
Gender 0.63
Female 203 (37.73%) 141 (40.75%) 344 (38.91%)
Male 261 (48.51%) 157 (45.38%) 418 (47.29%)

Unclear 74 (13.76%) 48 (13.87%) 122 (13.80%)
Stage 0.17

I 61 (11.34%) 23 (6.65%) 84 (9.50%)
II 221 (41.08%) 142 (41.04%) 363 (41.06%)
III 176 (32.71%) 130 (37.57%) 306 (34.62%)
IV 79 (14.68%) 50 (14.45%) 129 (14.59%)

Unclear 1 (0.19%) 1 (0.29%) 2 (0.23%)
Grade 0.18

1 10 (1.86%) 6 (1.73%) 16 (1.81%)
2 84 (15.61%) 50 (14.45%) 134 (15.16%)
3 11 (2.04%) 16 (4.62%) 27 (3.05%)

Unclear 433 (80.49%) 274 (79.20%) 707 (79.98%)
Tumor_location 6.20 × 10−10

Distal 253 (47.03%) 98 (28.32%) 351 (39.71%)
Proximal 105 (19.52%) 127 (36.71%) 232 (26.24%)
Unclear 180 (33.45%) 121 (34.97%) 301 (34.05%)

KRAS_mutation 0.13
No 188 (34.94%) 140 (40.46%) 328 (37.10%)
Yes 143 (26.58%) 74 (21.39%) 217 (24.55%)

Unclear 207 (38.48%) 132 (38.15%) 339 (38.35%)
BRAF_mutation 3.20 × 10−14

No 307 (57.06%) 154 (44.51%) 461 (52.15%)
Yes 5 (0.93%) 46 (13.29%) 51 (5.77%)

Unclear 226 (42.01%) 146 (42.20%) 372 (42.08%)
MSI_status 2.20 × 10−17

dMMR 14 (2.60%) 63 (18.20%) 77 (8.71%)
pMMR 322 (59.85%) 137 (39.60%) 459 (51.92%)
Unclear 202 (37.55%) 146 (42.20%) 348 (39.37%)

Adjuvant_chemotherapy 0.38
No 194 (36.06%) 132 (38.15%) 326 (36.88%)
Yes 155 (28.81%) 85 (24.57%) 240 (27.15%)

Unclear 189 (35.13%) 129 (37.28%) 318 (35.97%)
dMMR: deficient mismatch repair; pMMR: proficient mismatch repair.
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Figure 1. Overview of the analysis workflow.
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Figure 2. ER stress-related sub-clusters of CRC. (A) Consensus clustering defines two (k = 2) clusters
named as ERcluster A (n = 532) and ERcluster B (n = 340) in patients with CRC (GSE17536, GSE38832,
GSE39582) based on ER stress-related gene sets. (B) Kaplan–Meier survival analysis of the ERcluster
A and B (log rank test p value = 0.006), x axis indicates the number of years after initial diagnosis of
CRC. (C) GSVA analysis of pathways in the two sub-clusters, red and blue represent the upregulated
and downregulated pathways in each sample, respectively. (D) PCA analysis illustrates a distinct
difference of transcription profile between the two sub-clusters.
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3.2. ERcluster A and B Had Distinct Cell-Infiltrating Patterns in the TME

To further detect the dominant pathways that separate ERcluster A and ERcluster B,
387 DEGs screened out by R package “limma” were used in GO and KEGG functional
enrichment analysis (Figure 3A,B). These 387 ER stress-related DEGs were significantly
enriched in immunological processes (Figure 3A). KEGG analysis revealed that several
immunological and cancer-associated pathways were enriched (Figure 3B). Since the above
results correlated ER stress-related genes with immunological events, we applied ssGSEA
to analyze differential infiltration patterns in ERcluster A and B. As a result, cluster B was
found significantly associated with immune cell infiltration, including CD8+ T cells, CD4+
T cells, Treg (regulatory T cells), DCs, and macrophages (Figure 3C). In the MCP-counter
algorithm, which was designated in the absolute quantification of eight immune and
two stromal cells, a similar infiltration pattern was found in ERcluster B (Supplementary
Figure S2A). Higher infiltration of T cells, cytotoxic lymphocytes, monocytic lineage, and
myeloid DCs, but not CD8+ T cells, was identified in ERcluster B. Additionally, stromal and
endothelial cells and fibroblasts were more abundant in ERcluster B than in ERcluster A
(Supplementary Figure S2A). Likewise, according to the ESTIMATE algorithm, ERcluster B
exhibited both higher stromal and immune scores, which is consistent with previous results
(Figure 3D). Furthermore, considering the crucial role of immune checkpoint genes in the
negative regulation of tumor immunity (PD1, PD-L1, CTLA4, IDO1, TIGIT, TIM-3, and
LAG3), we analyzed the expression of these genes and found that except for PD1, all other
immune checkpoint genes were upregulated in ER cluster B (Figure 3E). In summary,
ERcluster A and B showed distinct cell-infiltrating patterns in the TME. ERcluster B seemed
to have more immune cells, stromal cell infiltration, and higher expression of common
immune checkpoint genes.

3.3. ER Stress-Related Gene Clusters Had Distinct Clinical Characteristics and Cell-Infiltration
Patterns in the TME

Based on the 387 ER stress-related DEGs, we conducted unsupervised clustering to
further explore the heterogeneity of ER stress-related subtypes. The 884 patients with CRC
were also divided into two gene clusters, GeneClusters A and B (Figure 4A, Supplementary
Figure S3). The clinical features of GeneClusters A and B resemble the difference between
ERcluster A and B. In addition to a higher proportion of BRAF mutations, and dMMR and
proximal tumor ratios in GeneCluster B, GeneCluster B also had a higher percentage of
patients with stage III/IV disease (Supplementary Table S1). Survival analysis revealed
that GeneCluster B tended to have a poor OS rate (Figure 4B). Furthermore, analysis of
immune checkpoint genes and immune cell infiltration in the two GeneClusters showed
similar patterns. The expression of PD-L1, CTLA4, IDO1, TIGIT, TIM-3, and LAG3 was
elevated in GeneCluster B, and more immune cell subtypes were also enriched (Figure 4C,
D, Supplementary Figure S2B). In summary, based on the 387 ER stress-related DEGs, we
further identified two subtypes of CRC (named GeneCluster A and B), which could better
illustrate the different characteristics of ER stress-related subtypes. These two subtypes
exhibit distinct clinical characteristics and cell infiltration patterns in the TME.
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Figure 3. Functional analysis and the TME cell infiltration patterns between ERcluster A and B.
(A,B) GO and KEGG pathways analysis of the identified 387 DEGs (Fold change value > 0.8 and
p-value < 0.05). (C) The estimated infiltration abundance of 28 immune cells in ERcluster A and B.
The upper and lower ends of the box represent the interquartile range, central bar represents the
median value, and the dots stand for outliers (* p < 0.05, *** p < 0.001). (D) ESTIMATE scoring results
of ERcluster A and B (* p < 0.05, *** p < 0.001). (E) Normalized expression level of common immune
checkpoint genes (PD1, PD-L1, CTLA4, IDO1, TIGIT, TIM-3, and LAG3) between ERcluster A and B
(* p < 0.05, *** p < 0.001, **** p < 0.0001).
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Figure 4. Expression profile of two sub-clusters based on the 387 DEGs (named as GeneCluster A and
GeneCluster B) and their immune infiltration characterization. (A) Expression profile of 387 DEGs and
clinical characteristics of the two gene clusters. (B) Kaplan–Meier survival analysis of the GeneCluster
A and B (log rank test p value < 0.001), x axis indicates the number of years after initial diagnosis of
CRC. (C) Expression level of common immune checkpoint genes (PD1, PD-L1, CTLA4, IDO1, TIGIT,
TIM-3, and LAG3) between GeneCluster A and B (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).
(D) The estimated infiltration abundance of 28 immune cells in GeneCluster A and B (* p < 0.05,
** p < 0.01, *** p < 0.001).



Cancers 2022, 14, 3326 11 of 21

3.4. Construction and Validation of Risk Score and Its Clinical Significance

We sought to build a risk score based on ER stress-related genes to better depict the
prognosis of CRC patients. First, 268 genes in the MSigDB gene sets were included in the
univariate Cox analysis among patients with CRC from three independent GEO datasets
(n = 884). A total of 232 genes within the gene list were found to have a prognostic value.
Second, we randomly divided the patients into training (n = 442) and testing (n = 442)
groups at a 1:1 ratio. Then, by applying the 232 genes in the LASSO and multivariate
Cox regression analyses, 14-gene ER stress-related signatures (ASNS, CALR3, DNAJB2,
EIF2AK4, ERMP1, FBXO6, FLOT1, HERPUD1, HYOU1, PDX1, SEC31A, TSPYL2, WIPI1,
and YOD1) were screened to build the ER stress-related risk score, and the median value
was set as the cut-off point (Figure 5A, Supplementary Figure S4A,B). Those with a risk
score above the median value were included in the high-risk group and the other half,
below the median value, was designated as the low-risk group. Figure 5B illustrates the
distribution of the two ER stress-related clusters, gene clusters, risk groups, and endpoint
events. According to the survival analysis, the high-risk group had a significantly poorer
OS compared with the low-risk group (Figure 5C,F). Unsurprisingly, both ERcluster B and
GeneCluster B had higher risk scores (Figure 5D,E). Additionally, the ER stress-related risk
score showed a good predictive value in CRC for the time-dependent survival of patients
with CRC. The area under the curve (AUC) values of the 1-, 3-, 5-, and 10-year survival
rates of CRC patients were 0.749, 0.685, 0.674, and 0.653, respectively (Figure 5G). Moreover,
to validate the prognostic value of the ER stress-related risk score, we utilized another
cohort of CRC patients from the TCGA database (n = 592), and the result was consistent in
that the high-risk group had a worse prognosis (Figure 5H).

In terms of the correlation of risk score and immune infiltration, we found that the
risk score was positively correlated with the infiltration of macrophage M2, memory B
cells, and macrophage M0. In contrast, the risk score was negatively correlated with CD8
T and activated CD4 memory T cells, and M1 macrophages (Supplementary Figure S5).
In addition, we found that the risk score was associated with sensitivity to common
chemotherapeutic drugs (Supplementary Figure S6). In summary, we constructed a risk
score based on 14 ER stress-related genes and found that it can effectively distinguish poor
prognosis among CRC patients. Additionally, the risk score was associated with immune
cell infiltration and drug sensitivity.

3.5. Mutation, CNV, Transcription, and Methylation Level of the 14 Risk Score-Building Genes

After sorting the 14 genes to build the risk score, we further analyzed these key
genes at the multi-omics level. Among these genes, EIF2AK4 had the highest mutation
frequency, followed by SEC31A, HYOU1, and ERMP1 (Figure 6A). Next, we evaluated
CNV in these genes. PDX1 and ASNS showed a widespread CNV increase, while SEC31A,
EIF2AK4, and FBOX6 showed CNV loss (Figure 6B). As for the transcriptomic level, ASNS,
EIF2AK4, ERMP1, FBOX6, FLOT1, HYOU1, PDX1, and YOD1 were significantly elevated
in tumor samples, while HERPUD1 and WIPI1 were downregulated (Figure 6C). Using
the six pairs of frozen CRC tumors and their normal adjacent samples, we validated
that PDX1 and YOD1 expression was significantly increased in CRC tumors and that
HERPUD1 and DNAJB2 were suppressed. Other genes, such as ASNS, EIF2AK4, ERMP1,
and HYOU1, showed an increasing trend in tumor tissue, but this was not statistically
significant (Supplementary Figure S7). Figure 6D illustrates the locations of CNV in the
14 genes on their corresponding chromosomes.
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Figure 5. Construction of an ER stress-related risk score in predicting survival of patients with CRC.
(A) Univariate Cox regression results of the 14 risk score-building genes in patients with CRC from
GEO datasets. (B) Alluvial diagram of sub-cluster distributions with distinct risk score and clinical
outcomes. (C) Survival analysis of the high- and low-risk group (log rank test p value < 0.001).
(D,E) Difference of risk score in ERclusters and GeneClusters. (F) Ranked plots and distribution plots
of risk score and clinical outcomes, respectively (median value of risk score was set as cutoff value).
(G) ROC curves of the sensitivity and specificity of 1-, 3-, 5-, and 10-year survival prediction using
risk score. (H) Validation of risk score in predicting TCGA COAD/READ survival (n = 592).
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Figure 6. Mutational, transcriptional, and methylation alteration of the screened out 14 ER stress-
related genes. (A) Mutational landscape of the 14 ER stress-related genes in 91 patients with CRC
from TCGA database. (B) Frequencies of CNV gain and loss among the 14 genes. (C) DEGs among
the 14 genes between CRC and normal adjacent tissue (* p < 0.05, *** p < 0.001). (D) Illustration of
the locations of CNV gain and loss in the 14 ER stress-related genes. (E) Differentially methylated
promoter sites among the 14 genes.
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Furthermore, DNA methylation analysis revealed that specific loci in PDX1, EIF2AK4,
ASNS, DNAJB2, and FBOX6 were hypomethylated in tumor samples (Figure 6E). In general,
the multi-omics data were consistent. The increased expression of PDX1 and ASNS might be
due to CNV gain and DNA hypomethylation, indicating that CNV and DNA methylation
might regulate the expression of ER stress-related genes. However, EIF2AK4 and FBOX6
showed loss of CNV, but their expression was increased, whereas other genes with increased
or decreased CNV or differentially methylated DNA loci showed no expression disparities
between normal and tumor tissues. Thus, we speculated that CNV and DNA methylation
might participate in the regulation of 14 ER stress-related genes. Other mechanisms, such
as transcription factors and histone acetylation, could also be involved in the regulation
of these genes. In summary, these results demonstrated evident multi-omics changes
(including the mutation landscape, CNV, expression, and methylation level) in the 14 ER
stress-related genes in CRC, indicating that these genes and the ER stress-related gene
pattern might be involved in CRC carcinogenesis.

3.6. Development and Verification of a Nomogram in Predicting Survival of Patients with CRC

Because the inconvenience and consideration of other clinical features such as age and
tumor stage were correlated with tumor prognosis, we incorporated these clinicopatho-
logical features into the construction of a nomogram to predict the 1-, 3-, 5-, and 10-year
survival of patients with CRC (Figure 7A). In all GEO patients with CRC, the AUC values
of the nomogram were 0.819, 0.766, 0.769, and 0.779 for the 1-, 3-, 5-, and 10-year survival
predictions, respectively. The calibration curve showed that the nomogram was capable
of predicting prognosis (Figure 7B,C). We tested the nomogram on the GEO subgroups.
In GSE17536, the 1-, 3-, 5-, and 10-year AUC values were 0.862, 0.797, 0.847, and 0.814,
respectively. In GSE39582, the 1-, 3-, 5-, and 10-year AUC values were 0.791, 0.754, 0.739,
and 0.779, respectively (Figure 7D,E). To compare the performance of the nomogram with
that of simply using TNM stage for survival prediction, we found that the AUC values
of the TMN stage were 0.802, 0.729, 0.711, and 0.694 for 1-, 3-, 5-, and 10-year survival,
respectively, in patients with CRC (Figure 7F). These results suggest that the nomogram
had a superior ability to predict the survival of patients with CRC and might be utilized in
clinical practice.

3.7. Insights into ER Stress-Related Gene Signatures at the ST Level

Although we identified two ER stress-related heterogeneous subgroups of patients
with CRC with discrepant prognoses, there was still a huge gap in understanding the extent
to which these ER stress-related gene signatures were enriched and what cell subtypes were
preferentially influenced by these gene signatures. Thus, we employed ST data to identify
these gene signatures, not only in terms of their expression, but also at the spatial level.
Two untreated CRC tissue sections and their corresponding transcriptomic data were gath-
ered from the web portal developed by Wu et al. [33] (http://www.cancerdiversity.asia/
scCRLM, accessed on 1 November 2021). Next, using the ssGSEA method as described by
Wu et al. [33], two gene signatures, GOBP_RESPONSE_TO_ENDOPLASMIC_RETICULUM_
STRESS (abbreviated as ER stress signature) and DEGs between ERcluster A and B (short-
ened as DEGs signature) were calculated and visualized in the ST data (Figure 8A,B). We
found that the ER stress signature was highly enriched in the tumor region compared
to the nearby normal region. This indicates that the tumor cells and their surrounding
microenvironment were highly influenced by ER stress patterns or that the ER stress-related
genes participated in tumor biological processes. In addition, the FOXP3+ Treg region
was found to highly overlap with ER stress signatures (Figure 8C). More interestingly,
using the DEGs between ERcluster A and B as a gene list in ssGSEA, we found that the
DEGs signature was highly enriched in the region of cancer-associated fibroblasts (CAFs)
(Figure 8D). MDSC and macrophage signatures also seemed to overlap with the DEGs and
ER stress signatures (Figure 8E,F). As for CD4+ and CD8+ T cells, their correlation with
the above two signatures was not evident (data not shown). Given the above, these results

http://www.cancerdiversity.asia/scCRLM
http://www.cancerdiversity.asia/scCRLM
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demonstrated that the ER stress gene pattern was associated with lymphocyte infiltration,
especially FOXP3+ Tregs and MDSC, and the DEGs were significantly associated with CAFs
and macrophages, which might provide insight as to why ERcluster B and GeneCluster
B have a poorer survival (both ERcluster B and GeneCluster B have a higher enrichment
score in ER stress and DEGs signatures, data not shown), since previous studies showed
that CAF-secreted exosomes and macrophages might be associated with poorer prognosis,
tumor progression, and epithelial-mesenchymal transition [35–37].
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Figure 7. Development and validation of a nomogram. (A) Nomogram for the 1-, 3-, 5-, and 10-
year survival prediction in CRC, *** indicate p < 0.001 in the univariate Cox proportional hazards
regression analysis. (B) Time-dependent ROC curve of the nomogram for 1-, 3-, 5-, and 10-year
survival prediction in the overall GEO patients with CRC. (C) Calibration plot for internal validation
of the nomogram in the overall GEO patients with CRC. (D,E) ROC curve of the nomogram for 1-, 3-,
5-, and 10-year survival prediction in the subgroups, GSE17536 and GSE39582. (F) ROC curve of the
TNM stage for 1-, 3-, 5-, and 10-year overall survival prediction.
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 Figure 8. Mapping of gene signatures ER stress and immune cells on CRC ST data. (A) The enrichment
score of GOBP_RESPONSE_TO_ENDOPLASMIC_RETICULUM_STRESS gene set on ST data; the
dotted line represents the tumor region. (B) Enrichment score of DEGs between ERcluster A and B
on ST data. (C–F) Enrichment score of FOXP3+ Treg, CAFs, MDSC, and Macrophages signatures on
ST data.

4. Discussion

Increasing evidence has demonstrated that ER stress-related genes play a crucial
role in shaping the TME, influencing the function of immune cells in the TME and tumor
development [14,15]. However, most studies have only focused on single immune cell types
and a few ER stress regulators. The overall transformation of immune cells in the TME,
mediated by multiple ER stress-related regulators, remains largely unexplored. In addition,
analysis of ER stress-related gene patterns in CRC development is also lacking. Thus, in
this study, we included multiple ER stress-related genes in the analysis of CRC, which
might deepen our understanding of the role of ER stress in shaping the CRC TME and help
develop novel therapeutic strategies to boost the efficacy of immunotherapy in CRC.

Considering CRC as a rather heterogenic cancer type [38], we applied the ER stress-
related gene signature in the unsupervised clustering and identified two sub-clusters of
CRC, which were named ERcluster A and ERcluster B. To further explore the distinct
characteristics and biological functions between these two subtypes, we applied the DEGs
of ERcluster A and B in the unsupervised clustering and found another two sub-clusters of
CRC, named GeneCluster A and GeneCluster B. These subtypes exhibit distinct clinical
characteristics, such as tumor locations and MSI status. According to the survival analysis,
we found that ERcluster B and GeneCluster B showed inferior prognosis compared with
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ERcluster A and GeneCluster A, which suggests that ER stress-related gene patterns
might participate in tumor progression, since ERcluster B and GeneCluster B had a higher
enrichment score in the ER stress signature. Previous studies have demonstrated that ER
stress-induced activation of the UPR is a double-edged sword [14,39]. Under moderate
ER stress, cancer cells are adaptive to intrinsic or extrinsic stimuli, which favors tumor
progression, metastasis, and chemoresistance. The IRE1α-XBP1 axis is elevated in triple-
negative breast cancer (TNBC) [40]. XBP1 aggravates hypoxia-inducible factor 1α (HIF1α) and
activates its downstream pathways, leading to tumor angiogenesis and increased energy
supply to support tumor progression and recurrence [40,41]. Under extreme ER stress, the
outcome of tumor cells tended to be cell death. The PERK-ATF4 axis and its downstream
target, transcription factor C/EBP homologous protein (CHOP, also named DDIT3), were
shown to be pro-apoptotic and cause cell death [42,43]. According to our results, overall ER
stress-related gene patterns seem to allow cancer cells to adapt and thrive and are harmful
to patient prognosis. However, the effect of ER stress was not confined within cancer cells,
it could also be “transmissible” from cancer cells to surrounding immune cells or directly
activated in immune cells by hostile milieu [15,44–46].

We further explored the tumor-infiltrating cells in these different ER stress-related
subtypes. The results revealed that the two corresponding sub-clusters in ERclusters
and GeneClusters had distinct cell-infiltrating patterns in the TME. Both ERcluster B
and GeneCluster B significantly enriched innate and adaptive immune cells. Meanwhile,
stromal cells, such as CAFs, were increasingly infiltrating in ERcluster B and GeneCluster B.
Of note, among the immune cells, MDSC, regulatory T cells, and macrophages were
elevated in ERcluster B and GeneCluster B with a much higher magnitude, indicating
a poor prognosis in cancer patients [47,48]. The underlying mechanism of the distinct
immune-infiltration patterns between ERcluster A and ERcluster B (GeneCluster A and
GeneCluster B) might be caused by intrinsic CRC heterogeneity regarding different ER
stress patterns. However, the role of different tumor origins could not be ruled out, as
previous studies have shown proximal and distal CRC with different embryological origins
have distinct cell-infiltrating patterns [49,50]. We then analyzed the immune checkpoint
genes such as PD-L1, CTLA4, IDO1, TIGIT, TIM-3, and LAG3, which participate in T cell
dysfunction and malfunction of anti-tumor immunity [51], and found that they were
significantly elevated in ERcluster B and GeneCluster B. Despite higher infiltration of
CD8+ T cells and gamma delta T cells in ERcluster B and GeneCluster B, which are usually
regarded as a positive regulation of anti-tumor immunity and signs of a good prognosis,
and considering the TME as a complicated and elaborate regulation network, we speculate
that the overall effect of ER stress is closely correlated with T cell exhaustion and formation
of an immunosuppressive TME in CRC. These results are in accordance with those of
previous studies. For instance, Mohamed et al. [45] reported that the PERK pathway
is involved in the immunosuppressive function of MDSC, and Cubillos-Ruiz et al. [19]
illustrated that IRE1α-XBP1 axis activation in DCs leads to antigen-presenting dysfunction
and corrupted antitumor effects of T cells in ovarian cancer. Our data also revealed that
ERcluster B and GeneCluster B had a higher proportion of patients with dMMR. Currently,
higher lymphocyte infiltration in the TME (“hot tumor”), increased expression of immune
checkpoint genes, and MSI-H/dMMR are considered markers of a good response to
immunotherapy [2,52,53]. Given the above, ER stress-related gene patterns (described as
ERcluster B and GeneCluster B) might be a good indicator of response to immunotherapy.
Moreover, an in vivo study demonstrated that PERK inhibitors increased tumor control
and extended survival in combination with anti-PD-1 therapy [54], indicating that novel
drugs targeting ER stress-related pathways might reverse the immunosuppressive TME
and enhance the efficacy of immunotherapy.

Considering the clinical significance of ER stress-related gene patterns. We built
a risk score using these ER stress-related genes to predict the survival of patients with
CRC. After univariate, Lasso, and multivariate Cox regression analyses, 14 genes (ASNS,
CALR3, DNAJB2, EIF2AK4, ERMP1, FBXO6, FLOT1, HERPUD1, HYOU1, PDX1, SEC31A,
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TSPYL2, WIPI1, and YOD1) that correlated with prognosis were identified and utilized
in the construction of the risk score. Patients with a higher risk score were shown to
have unfavorable outcomes, and the risk score was validated in TCGA COAD/READ
patients. Next, we constructed a nomogram combining the risk score with clinical features
to better predict patient survival with easier accessibility. As a result, the nomogram
demonstrated superior ability in predicting the survival of patients with CRC. Moreover,
we conducted a multi-omics analysis of these 14 critical ER stress-related risk score-building
genes and found that most of them were differentially expressed in tumors. Among the
14 genes, ASNS, known as asparagine synthetase, has been shown to promote colon cancer
progression through increasing asparagine level [55]; EIF2AK4, a risk factor identified in
our study, has been shown to be a promising target in CRC treatment [56]; and YOD1 was
shown to participate in gallbladder cancer progression [57]. Our results confirmed these
studies, and using the risk score of these 14 genes, those with elevated ER stress-related
gene patterns might be identified and could be better treated with the combination of
immunotherapy. Of note, future research might focus on the 14 genes regarding their roles
in ER stress-related pathways, tumor progression, and remodeling of the CRC TME.

Furthermore, ST data of two tumor sections from two untreated CRC patients were
utilized in the analysis of ER stress-related gene patterns at a quantitative spatial level. It has
been demonstrated that CRC tumors have an activated ER stress phenotype. In addition,
MDSC and Tregs have been validated to be associated with the activation of ER stress.
Intriguingly, by applying the DEGs to the enrichment analysis, we found that the DEGs
signature was significantly correlated with CAFs. Multiple studies have demonstrated that
CAFs are associated with tumor progression, chemoresistance, and immunosuppression
in the TME [58–60]. As described above, stromal cells, such as CAFs, were also found to
be highly infiltrating in ERcluster B and GeneCluster B. Thus, we speculate that the ER
stress-related gene pattern might participate in or regulate the infiltration and functions
of CAFs, which further reinforces the formation of an immunosuppressive TME. These
results shed some light on the relationship between ER stress and CAFs, but the underlying
regulatory mechanisms are still largely unknown and future work might be focused on
how ER stress-related pathways (e.g., IRE1α, EIF2AK3, and ATF6 pathways) regulate CAFs
in CRC TME and the role of CAFs in influencing CRC progression.

In conclusion, we identified two ER stress-related subtypes of CRC with distinct
immune cell infiltration patterns and clinical features. ER stress was found to promote
tumor progression and participate in the immunosuppression of the TME. Furthermore, we
constructed a risk score and nomogram system for predicting CRC survival. We proposed
a novel insight into the role of ER stress in CRC development and cell infiltration in the
TME. To the best of our knowledge, this is the first comprehensive analysis of ER stress-
related gene patterns in CRC tumor development and TME cell infiltration. However,
several limitations exist. Firstly, in-depth cell subtype-specific analysis of ER stress-related
gene patterns was confined due to the innate limitations of bulk-sequencing data and
small samples of ST data. Secondly, the expression profile of CRC patients who received
immunotherapy is lacking; thus, we could not test the subtypes or risk score in predicting
immunotherapy response in patients with CRC. In the future, drugs that target ER stress
may be combined with traditional therapy or immunotherapy for CRC treatment.
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//www.mdpi.com/article/10.3390/cancers14143326/s1, Supplementary Figure S1. Unsupervised
clustering of ER stress-related genes; Supplementary figure S2. Abundance estimation of infiltration
cells in the TME using an MCP-counter algorithm; Supplementary Figure S3. Unsupervised clustering
of DEGs between ERcluster A and B; Supplementary Figure S4. Identification of prognostic genes
and validation of the risk score in testing group; Supplementary Figure S5. Correlation evaluation
of infiltration cells with risk score; Supplementary Figure S6. Common drug sensitivity between
high- and low-risk groups; Supplementary Figure S7. RT-qPCR results of the 14 risk score-building
genes between normal adjacent and tumor tissues; Supplementary figure S8. Identification of protein-
protein interaction modules within the 232 prognostic genes; Supplementary Table S1. Characteristics
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of CRC patients in GeneCluster A and GeneCluster B in GEO datasets; Supplementary Table S2.
232 genes with prognostic significances in the Univariate Cox analysis; Supplementary Table S3.
268 ER stress-related genes; Supplementary Table S4. DEGs between ERcluster A and B; Supplemen-
tary Table S5. Forward and reverse primer sequences; Supplementary Table S6. Clinical characteristics
of 884 CRC patients from GSE17536, GSE38832, and GSE39582 datasets; Supplementary Table S7.
ER stress-related ERcluster and GeneCluster in GEO datasets; Supplementary Table S8. Functional
analysis of DEGs between ERcluster A and ERcluster B.
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