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Summary 
CD4+CD8 + thymocytes expressing self-reactive T cell antigen receptors (TCR) are deleted 
in the thymus as a consequence of TCIL/sdf-antigen/major histocompatibility complex interac- 
tions. However, the signals that are necessary to initiate clonal deletion have not yet been 
clarified. Here we demonstrate that TCR engagement does not efftdently induce apoptosis of 
CD4+CD8 + thymocytes, although it generates signals that increase expression of CD5, a 
thymocyte differentiation marker. In fact, TCR signals fail to induce thymocyte apoptosis even 
when augmented by simultaneous engagement with CD4 or lymphocyte function 1-associated 
molecules. In marked contrast, signals generated by engagement of both TCR and the costimulatory 
molecule CD28 potently induce apoptosis of CD4 +CD8 + thymocytes. Thus, the present results 
define a requirement for both TCR and costimulatory signals for thymocyte apoptosis and identify 
CD28 as one molecule that is capable of providing the necessary costimulus. These results provide 
a molecular basis for differences among cell types in their ability to mediate negative selection 
of developing thymocytes. 

T olerance to self-proteins is maintained among T ceils 
through the elimination or inactivation of clones which 

express antigen receptors reactive to self-antigen/MHC com- 
plexes (1, 2). Elimination of stir-reactive immature T cells 
takes place in the thymus by donal deletion which occurs 
via apoptosis (3-5). CD4+CD8 + thymocytes, the major 
targets of donal deletion, can be induced to undergo apop- 
toffs both in vivo and in vitro through engagement of their 
antigen receptors by either intrathymic self-ligands or by an- 
tireceptor antibodies (6-13). However, it is not known whether 
induction of apoptosis requires signals in addition to those 
transduced by the TCR. In fact, donal deletion of thymo- 
cytes is usually assayed in the presence of dedicated APCs 
that are capable of providing ligands for costimulatory mole- 
cules present on thymocytes. Whether APCs bearing co- 
stimulatory ligands are uniquely capable of mediating TCR- 
driven apoptosis of CD4+CD8 + thymocytes, or whether 
any cell type capable of presenting self-antigen/MHC com- 
plexes can mediate negative selection (14) is not dear. 

In this report, we show that isolated TCR signals do not 
efficiently drive apoptosis of CD4+CD8 + thymocytes even 
when enhanced by coengagement with CD4 or LFA-1. How- 
ever, TCR signals deliver a potent apoptotic stimulus when 
combined with signals provided by the costimulatory mole- 
cule, CD28. These results demonstrate that both TCR and 

costimulatory signals are necessary to induce thymocyte apop- 
tosis and indicate that only ceUs expressing costimulatory 
ligands can mediate negative selection. 

Materials and Methods 

Isolation of CD4 + CD8 + Thymoqtes. CD4+CD8 + thymocytes 
were purified from young adult C57BL/6 thymuses by panning 
on anti-CD8 coated phtes (15). More than 95% of the harvested 
cells were CD4+CD8 +. 

Culture Conditions and Antibodies. 24-wen tissue cuhure plates 
were coated with antibody incubating them overnight at 4~ with 
500 ~tl of a 50/~g/ml solution in PBS ofmAb to TCR-B (H57-597 
[16]), mAb to CD3e (145-2Cll [17]), mAb to CD28 (37.51; Phar- 
mingen, San Diego, CA [18]), mAb to CD4 (GK1.5 [19]), a 1:100 
dilution in PBS of dialyzed ammonium sulfate precipitates of mAb 
to LFA-1 (M17/4 [20]) ascites or combinations thereof. Thymo- 
cytes (2.5 x 106) were cultured in 0.5 ml RPMI medium sup- 
plemented with 5 x 10 -s M 2-ME and 10% FCS that had been 
depleted of endogenous steroids by treatment for 30 min at 56~ 
with a final concentration of 0.5% Norit A charcoal and 0.05% 
dextran. Dexamethasone was added to a final concentration of 
10 -6 where indicated. Where indicated (see Fig. 3), aliquots of 
cultured CD4+CD8 + thymocytes were removed at 4 h, trans- 
ferred to uncoated wells, and incubated for an additional 15 h in 
medium alone at 37~ 

Staining and Flow Cytometry Analysis. At the end of culture, 
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cells were analyzed by two color flow cytometry on a FACScan ~ 
using Consort 30 and Lysis II software (see Fig. 1) or on a FACScan | 
(all from Becton Dickinson & Co., Mountain View, CA) using 
institute software (see Figs. 2 and 3, and Table 1). Cells were stained 
in the first color with FITC-conjugated mAb to CD5 (Ly-1, Becton 
Dickinson & Co.) or, as a negative control, FITC-conjugated mAb 
to human CD3e (Leu-4, Becton Dickinson & Co.). For the second 
color, cells were exposed to 1 #g/ml ethidium bromide (EtBr; Sigma 
Chemical Co., St. Louis, MO) for 30 min as described (21). Data 
are displayed as one color histograms. Dead cells were not elec- 
tronically excluded during acquisition or analysis. 

DNA Fragmentation Assay. CD4+CD8 + thymocytes were cul- 
tured as indicated, harvested, stained with EtBr, and electronically 
sorted into EtBr- and EtBr int populations using a FACStar Plus | 
(Becton Dickinson & Co.). Genomic DNA was isolated (13) from 
sorted and unsorted thymocytes and from paraUel groups of cells 
cultured with 10 -6 M dexamethasone. It was subsequently sepa- 
rated by electrophoresis through a 0.8% agarose gel containing 
1/zg/ml EtBr and visualized by UV fluorescence. Although EtBr 
can cause single stranded breaks in DNA when excited (22), it would 
not generate the ladder of fragments resulting from cleavage of 
internucleosomal double stranded DNA by endogenous en- 
donucleases that is typical of apoptosis. 

Results 
Thymocyte Death Assay. To assay thymocyte death in vitro, 

we stained thymocytes with EtBr as described (21, 23). EtBr 
stains nucleic acids, is rapidly taken up by thymocytes that 
are destined to die, and the fluorescence it emits can be mea- 
sured on a single cell basis by flow cytometry. EtBr + thymo- 
cytes fluoresce with two different intensities (EtBr int and 
EtBrhigh), both of which represent dying cells (21). Indeed, 
these two populations are evident among CD4+CD8 + 
thymocytes after in vitro treatment with dexamethasone, 
which is known to stimulate apoptosis of immature thymo- 
cytes (Fig. 1, bottom). EtBr int cells appeared as early as 4 h 
after treatment and EtBr high cells dominated the cultures 
after 19 h (Fig. 1, bottom). The frequency of nonviable cells 
as measured by trypan blue exclusion corresponded to the 
frequency of EtBr hish cells (data not shown). 

TCR Signals Alone Do Not E~ciently Induce Apoptosis of 
CD4+CD8 + Thymocytes. To determine if T C R  signals 
alone could induce thymocyte death, we isolated CD4 + 
CD8 + thymocytes and engaged their T C K  with plate- 
bound anti-TCK-~ or anti-CD3e antibodies (Fig. 1, rows 
3 and 4). The thymocytes responded to T C K  cross-linking 
with an increase in surface expression of CD5 (Fig. 1, right), 
a marker of thymocyte maturation and activation (24, 25), 
indicating that intracellular signals were generated. However, 
T C R  stimulation did not increase the proportion of EtBr + 
cells above that seen in control cultures after 4 h, and in- 
creased it only marginally after 19 h (Fig. 1, rows 3 and 4). 
Hence, signals generated by T C K / C D 3  cross-linking alone 
do not efficiently induce death of susceptible CD4 + CD8 + 
thymocytes. 

CD28 Provides a Costimulatory Signal for TCR-mediated Apo!o- 
tosis of CD4+CD8 + Thymocytes. The costimulatory mole- 
cule CD28 is expressed by most mature T cells and, when 
engaged, significantly enhances TCR-mediated prolifera- 

Figure 1. TCR-mediated apoptosis of CD4+CD8 § thymocytes re- 
quires costimulatory signals that can be provided by CD28. Purified 
CD4+CD8 + thymocytes were cultured at 37~ for either 4 or 19 h in 
the presence of various plate-bound antibodies or dexamethasone. Total 
cell recovery was >95% and was unaffected by any of the treatments. Cells 
were stained with mAb to CD5 and EtBr and analyzed by flow cytom- 
etry. One-color histograms of EtBr staining revealed three populations 
of cells with different staining intensities: EtBr-, EtBr int, and EtBrhig h. 
In the first row, overlaid histograms represent staining profiles of cells cul- 
tured in medium alone at 4~ (dashed line) vs. cells cultured in medium 
alone at 37~ (dotted line). (Hatched regions) Differences in EtBr staining 
profiles. Numbers displayed in parentheses indicate percentages of EtBr int 
and EtBrhis h cells falling in these hatched regions and background death 
of unstimulated cells in 37~ cultures. In all other rows, panels display 
overlaid histograms representing staining profiles of treated cells (solid lines) 
vs. cells cultured in medium alone at 37~ (dotted lines). Differences in 
EtBr staining profiles between treated and control (medium alone) groups 
are indicated by dark shading and percentages of cells falling in these regions 
are displayed. Lightly shaded curves represent staining profiles of negative 
control antibody. 

tion and effector activity among both C D 4 - C D 8  + and 
CD4+CD8 - subpopulations (26-28). The involvement of 
CD28 costimulatory signals in the induction of apoptosis in 
immature CD4+CD8 + thymocytes was suggested by the 
observations that (a) immature CD4 + CD8 + thymocytes ex- 
press even higher levels of CD28 than mature T cells (17); 
and (b) APCs are potent inducers of thymocyte deletion and 
are now known to express the CD28 ligand, B7 (28-32). 
Consequently, we examined the ability of CD28 to act as 
a costimulatory molecule with the T C K / C D 3  complex to 
induce the death of CD4+CD8 + thymocytes in vitro (Fig. 
1). Engagement of CD28 alone had no effect (Fig. 1). How- 
ever, engagement of CD28 together with either TCK-~  or 
CD3e induced an increase in the proportion of EtBr + 
thymocytes as early as 4 h after stimulation (Fig. 1, rows 5 
and 6). To confirm that EtBr fluorescence identified apop- 
totic thymocytes, we examined genomic DNA from electron- 
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ically sorted EtBr- and EtBr ~t ceUs for fragmentation, a fea- 
ture of apoptosis. Indeed, genomic DNA isolated from 
EtBr- cells was intact, whereas genomic DNA from EtBr ~t 
cells was highly fragmented (Fig. 2). Genomic DNA from 
EtBr~g h cells was also highly fragmented (data not shown). 

Although the susceptibility of CD4 + CD8 + thymocytes 
to death induced by TCR and CD28 costimulation was evi- 
dent after 4 h of culture, it was most marked after 19 h (Fig. 
1). To determine ff TCR/CD28 signals had to be chronically 
applied to induce cell death, we exposed CD4+CD8 + 
thymocytes to TCR and CD28 engagement for either 4 or 
19 h and then examined their EtBr staining profiles after 19 h 
of culture (Fig. 3). The frequency of EtBr + cells was the 
same among thymocytes stimulated by TCR and CD28 coen- 
gagement for 4 h as it was among thymocytes stimulated 
for a full 19 h (Fig. 3,/eft). Hence, a 4-h stimulus was sufficient 
to commit susceptible thymocytes to die, although their com- 
mitment to undergo apoptosis was fully manifest only after 

19 h of culture. In contrast, optimal CD5 upregulation re- 
quired a continual TCR signal, for thymocytes stimulated 
by TCR and CD28 for 4 h expressed significantly lower levels 
of CD5 than those stimulated for 19 h (Fig. 3, right). 

Neither LFA-I nor CD4 Provides a Costimulatory Signal for 
TCR.rnediated Apoptosis. Whereas engagement of CD28 
provided costimulatory signals in CD4+CD8 + thymocytes 
for TCR-induced apoptosis, this was not the case for other 
surface molecules expressed by CD4+CD8 + thymocytes. 
Neither coengagement of CD4 nor LFA-1 with TCR-/3 in- 
creased the proportion of EtBr + cells, although both LFA-1 
and CD4 synergized with TCR to increase CD5 expression 
significantly above that induced by TCR engagement alone 
(Table 1). These data demonstrate that both CD4 and LFA-1 
can augment TCR signaling, but that neither provides a 
costimulatory signal for apoptosis of CD4 § CD8 + thymo- 
cytes. Previous reports indicating that LFA-1 facilitates apop- 
toffs of CD4+CD8 § thymocytes (33), together with our 
present results, suggest that LFA-1 acts indirectly by signaling 
APC to upregulate expression of ligands for bona fide 
costimulatory signaling molecules on CD4+CD8 + thymo- 
cytes, such as CD28 (34). 

Discuuion 

This study reveals the inability of isolated TCR signals, 
even when augmented by coengagement with CD4 or LFA-1, 
to efficiently induce apoptosis of CD4+CD8 § thymocytes. 
Rather, induction of apoptosis requires both TCR signals 
and costimulatory signals that can be provided by CD28. These 
results provide a molecular basis for observations that den- 
dritic cells, which constitutively express B7 (28, 31, 32), 
mediate clonal deletion much more efficiently than other cell 
types, including thymic epithelium (1, 29, 30). Our findings 
appear to conflict with recent observations that negative se- 
lection of thymocytes occurs even under conditions in which 
CD28 engagement is prevented (35-37). We suspect, how- 
ever, that other as yet undefined surface molecules on 
CD4+CD8 § thymocytes are also capable of providing 
costimulatory apoptotic signals, and that the costimulatory 

Figure 2. Assessment of genomic DNA in stimulated CD4§ § 
thymocytes. CD4+CD8 § thymocytes were cultured with phrehound 
anti-CD3e and anti-CD28 for 14 h. Cdls were then stained with EtBr 
and electronically sorted into EtBr- and EtBr ~t populations. DNA was 
extracted from these popuhtions as well as from CD4+CD8 § thymo- 
cytes treated in parallel with dexamethasone and electrophore~ on an 
agarose gel. The gel was stained with EtBr and visualized by UV light. 
Each lane represents DNA from 106 cells. 

Figure 3. CD4§ § thymoc~es are committed to die within 4 h 
of receipt of apoptotic stimulus. CD4 § CD8 § thymocytes were cultured 
in the pre~ence of platehound mAbs to TCR-B and CD28 for either 4 h 
(dashed lines) or 19 h (solid lines). Cells cultured with mAbs for 4 h were 
replat~l in the absence of antibody for an additional 15 h. All groups were 
harvested after a total of 19 h in culture and stained with EtBr or mAh 
to CD5. (Dotted lines) Staining profiles of CD4+CD8 § thymocytes cul- 
tured in medium alone are indicated by dotted lines. (Lightly shaded curve) 
Staining profile of negative control antibody. 
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Table 1. Neither CD4 nor LFA-1 Provides a Costimulatory Signal for Induction of TCR-mediated Apoptosis of CD4 +CD8 § Thymocytes 

EtBr § thymocytes CD5 fluorescence 

% AFU • 10 -~ 
Exp. 1 

Medium (19)* (1,266)* 
Anti-CD28 0 <0 
Anti-CD4 + 1 <0 
Anti-TCR-3 8 1,546 
Anti-TCR-3 + anti-CD28 42 3,212 
Anti-TCR-3 + anti-CD4 11 3,808 

Exp. 2 

Medium (20) (634) 
Anti-CD28 1 113 
Anti-LFA-1 2 0 

Anti-TCR-/~ 13 1,575 
Anti-TCR-/8 + anti-CD28 27 2,047 
Anti-TCK-B + anti-LFA-1 4 2,417 

CD4*8 § thymocytes were cultured for 18 h at 37~ with plate-bound antibodies as indicated. Cells were harvested and stained with EtBr or mAb 
to CD5 and analyzed by flow cytometry as described in Materials and Methods. 
* Percent EtBr + cells = percent EtBr i~t plus percent EtBrrag h. Percent EtBr + cells from control cultures in the absence of antibody is shown in paren- 
theses. Numbers without parentheses represent the change in frequency of EtBr + cell induced by antibody treatment relative to control cultures. 

Fluorescence intensity was quantitated in linear fluorescence units (FU). The numbers in parentheses represent CD5 fluorescence intensity of con- 
trol cells cultured without antibody; numbers without parentheses represent the change in CD5 fluorescence induced by antibody treatment relative 
to control cells cultured without antibody. FU = cell frequency x median intensity; median intensity was derived by conversion of median logarith- 
mic channel numbers to linear units using a calibration curve empirically derived for each logarithmic amplifier used. 

function of these other molecules is manifest when CD28 
is not itself engaged. In fact, the low frequency of dying 
thymocytes that we observed after T C R  stimulation alone 
may be attributable to suboptimal costimulation resulting 
from interthymocyte interactions. 

The present observation that T C R  signaling by itself does 
not induce cell death has important  implications for our 
understanding of TCtL-mediated selection events in the 
thymus. That  T C R  signaling has different consequences in 
CD4 + CD8 + thymocytes, depending upon the presence or 

absence of costimulatory signals, suggests a basis for the differ- 
ence between positive and negative selection processes. Posi- 
tive selection may be initiated when the T C R  is engaged in 
the absence of costimulation, whereas negative selection may 
occur as a result of a high-aflqnity T C R  interaction in the 
presence of a costimulatory signal. In fact, T C R  signaling 
in the absence of costimulation appears to have consequences 
normally attributed to positive selection such as increased CD5 
expression as seen here and increased T C R  assembly (unpub- 
lished results). 
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