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Potential therapeutic role of
pyroptosis mediated by the
NLRP3 inflammasome in type 2
diabetes and its complications

Xiang Li, Gui-Ying Xiao, Tao Guo, Yu-Jie Song
and Qiu-Mei Li*

Department of Endocrinology and Metabolic Diseases, Dalian University Affiliated Xinhua Hospital,
Dalian, Liaoning, China
As a new way of programmed cell death, pyroptosis plays a vital role in many

diseases. In recent years, the relationship between pyroptosis and type 2

diabetes (T2D) has received increasing attention. Although the current

treatment options for T2D are abundant, the occurrence and development

of T2D appear to continue, and the poor prognosis and high mortality of

patients with T2D remain a considerable burden in the global health system.

Numerous studies have shown that pyroptosis mediated by the NLRP3

inflammasome can affect the progression of T2D and its complications;

targeting the NLRP3 inflammasome has potential therapeutic effects. In this

review, we described the molecular mechanism of pyroptosis more

comprehensively, discussed the most updated progress of pyroptosis

mediated by NLRP3 inflammasome in T2D and its complications, and listed

some drugs and agents with potential anti-pyroptosis effects. Based on the

available evidence, exploring more mechanisms of the NLRP3 inflammasome

pathway may bring more options and benefits for preventing and treating T2D

and drug development.
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Introduction

T2D is a multifactorial autoimmune disease characterized by glucose and lipid

metabolism disturbances, insulin resistance (IR), and absolute or relative insulin

deficiency (1, 2). In addition, chronic inflammation runs through the entire process of

the development of diabetes and its complications (3–5), exacerbating metabolic

imbalances and the development of complications (6, 7). Worldwide, the incidence of

T2D is still increasing (8, 9), and its complications remain a significant cause of
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death (10). Inflammatory response and metabolic disorders are a

vicious cycle in type 2 diabetes, and chronic inflammation, blood

sugar, and lipid disorders promote each other (11–13). A better

understanding of the inflammatory response may have a

significant effect on the treatment and outcome of T2D.

As a form of programmed cell death, pyroptosis is essential

in maintaining physiology homeostasis and pathogen invasion

(14). With the discovery of gasdermins family, the scope of

pyroptosis has expanded. The earliest study of pyroptosis dates

back to 1986, Friedlander’s study of mouse macrophage death

and content release (15). It was not until 2001 that D’Souza et al.

coined the term pyroptosis to describe inflammatory

programmed cell death (16). In 2015, pyroptosis was defined

as the inflammatory programmed cell death mediated by

gasdermins (17). The gasdermins family includes gasdermin

A/B/C/D (GSDMA/B/C/D), gasdermin E (GSDME, also

known as DFNA5), and DFNB59 (Pejvakin, PJVK) (18).

When pyroptosis occurs, gasdermins are cleaved by caspases

into two fragments (the N-terminal pore-forming domain

(PFD) and the C-terminal repressor domain (RD)); the N-

terminal PFD oligomerizes and forms pores in the cell
Frontiers in Endocrinology 02
membrane, leading to the release of inflammatory factors and

caspases, which promote cell pyroptotic death (18–20). For a

long time, pyroptosis was thought to be caspase-1-induced

monocyte death, and now the definition of pyroptosis has

been expanded to include caspase-4/5/11 (21). Current

research suggests that caspase-1 and caspase-4/5/11 are only

related to pyroptosis. In contrast, caspase-2, caspase-7, and

caspase-10 are only associated with apoptosis (22–26). Other

caspases such as caspase-3/8/9 are involved in the process of

pyroptosis and apoptosis (17, 27–32), and play an essential role

in the occurrence and development of innate immune diseases,

autoimmune diseases and tumors (33–37). Previous studies

suggested that Caspase-3 was an executor of apoptosis, but a

recent study found that Caspase-3 can induce pyroptosis by

cleaving GSDME (27, 38). Apoptosis-related protein caspase-8

can also directly cleave GSDMC and GSDMD to induce

pyroptosis (28, 39, 40). In addition, caspase-9 is also involved

in pyroptosis by activating caspase-3 (41) (Figure 1). With the

deepening of research, the mechanism of pyroptosis has

gradually become apparent, and the relationship between

pyroptosis and disease has also been more explored and studied.
FIGURE 1

Molecular mechanism of pyroptosis. In the caspase-1-dependent pathway, PAMPs and DAMPs mediate inflammasome assembly and activate
caspase-1, which cleaves GSDMD and pro-IL-1b/18. N-GSDMD forms non-selective pores on the cell membrane surface, and IL-1b and IL-18
are secreted out of the cell membrane through the pores formed by N-GSDMD, which further leads to cell lysis and death. In the caspase-1-
independent pathway, LPS of bacteria activates caspase-4/5/11 and cleaves GSDMD to trigger pyroptosis. However, caspase-4/5/11 can also
activate inflammasome assembly and caspase-1 to induce pyroptosis. In addition, in the caspase-8-mediated pathway, TNF-a induces the
activation of caspase-8, cleavage of GSDMD leads to pyroptosis, and caspase-8 can also cleave GSDMC and GSDME, Furthermore, the NLRP3
inflammasome also activate Caspase-8. Granzyme also mediates pyroptosis, such as GzmB released from CAR T cells induces pyroptosis by
activating caspase-3 and cleaving GSDME. In the caspase-9-mediated pathway, chemotherapy drugs and iron cause mitochondrial stress,
activate caspase-3/9, and cleave GSDMB/E to mediate pyroptosis. Furthermore, GzmA in cytotoxic leukomonocyte enters target cells via
perforin and cleaves GSDMB resulting in cell pyroptotic death. Similarly, GSDMB/C/E also forms pores to mediate the secretion of inflammatory
mediators out of the membrane, amplify the inflammatory response, and promote cell death.
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Recent studies have shown that pyroptosis, especially the

NLRP3 inflammasome-mediated pyroptosis, plays a vital role in

the progression of diabetes and its complications (42). However,

the relationship between diabetes and pyroptosis has not been

fully understood, and the proportion of progression in diabetes

is not known. Although some articles on similar topics have been

published in recent years (42), in this review, we will mainly

discuss the current progress of pyroptosis and summarize the

connection between pyroptosis mediated by NLRP3 and T2D

and its complications more comprehensively. In addition, we

will highlight some current therapeutic strategies targeting the

NLRP3 inflammasome signaling pathway, which may provide

new targets for treating diabetes.
Molecular mechanism of pyroptosis

Canonical pyroptosis

The classical pyroptotic pathway mediates caspase-1

activation through inflammasome assembly, triggering the

cleavage of GSDMD and the release of inflammatory

substances such as IL-1b and IL-18 into the extracellular

space, leading to further expansion of the inflammatory

response (43–45). The inflammasome is a complex of multiple

molecules that begins to assemble through recognizing danger

signals by cytosolic pattern recognition receptors (PRRs) (46).

PRRs, also known as inflammasome sensors, include NLRP1,

NLRP3, NLRC4, AIM2, and pyrin (47, 48) . Most

inflammasomes are composed of three functional domains:

NOD-like receptors (NLRs) of inflammatory sensors, the

apoptosis-associated speck-like protein containing a caspase

recruitment domain (CARD) (ASC) and caspase (49–51).

Whether the N-terminus of NLRs contains CARD or Pyrin

domain (PYD), NLRs are divided into NLRPs or NRCs. The N-

terminus of NLRCs has one or more CARD domains, such as

NLRC4; the N-terminus of NLRPs is PYD, such as NLRP1

(containing PYD and CARD domains) and NLRP3 (52–56).

Unlike NLRs, ASCs have both PYD and CARD domains (53).

The inflammatory sensors AIM2 and pyrin are also involved in

inflammasome assembly despite lacking NLRs. AIM2 consists of

a C-terminal HIN-200 domain and an N-terminal PYD

fragment (57–60). However, pyrin comprises an N-terminal

PYD, two B-boxes, a coiled part, and a C-terminal B30.2

domain (also known as SPRY/PRY domain). Mouse Pyrin

lacks the C-terminal B30.2 domain but is functionally similar

to humans (53, 61, 62).

Many microbial infections, as well as non-microbial

diseases, can cause inflammasome activation, for example,

Val-boroPro (Talabostat, PT-100) (63) Toxoplasma gondii

(55), Bacillus anthracis and its anthrax lethal toxin (64, 65)

can cause the activation of NLRP1. NLRP3 can recognize

pathogen-associated molecular patterns (PAMPs) and
Frontiers in Endocrinology 03
danger-associated molecular patterns (DAMPs), infectious

microbes or their evolutionarily conserved molecular patterns

are called PAMPs. After the body is infected, an inflammatory

response is induced to cause damage. DAMPs are

immunos t imula tory molecu lar pa t t erns in s te r i l e

inflammation and are positively correlated with damage.

DAMPs are released when tissue is damaged and initiate an

inflammatory response (66). Such as advanced glycation end

products (AGEs), high mobility protein (HMGB-1), S100

protein family, heat shock protein family (HSPs), toxins,

extracellular matrix (ECM), nucleic acids and ATP (67–70),

induce inflammasome activation with the involvement of the

kinase NEK7 (71–73). NLRC4 is activated by the binding of

NAIP proteins and ligands (flagellin and type 3 secretion

system (T3SS) proteins) (74–76). AIM2 is activated by

combining the C-terminal HIN-200 domain with cytoplasmic

dsDNA (57–60, 77). Another inflammatory sensor, pyrin, is

induced to activate and assemble through small GTPases of the

Rho family (61, 78, 79). Rho-inactivating toxins (Clostridium

difficile glycosyltransferase TcdB, Vibrio parahaemolyticus

VopS) and the Yersinia pestis GTPase-activating protein

(YopE) and cysteine protease (YopT) can also induce pyrin

activation (80, 81). Activating these sensors results in

oligomerization, which forms an inflammasome complex by

recruiting ASC and caspase1. Interestingly, the inflammatory

sensors NLRP1 and NLRC4, due to the CARD domain at the

N-terminus, do not require the recruitment of ASCs to activate

caspase-1 directly (53). Interestingly, inflammatory sensors

NLRP1 and NLRC4, due to their N-terminal containing

CARD domains, can directly activate caspase-1 without

recruiting ASC. After inflammasome assembly, caspase-1 is

hydrolyzed into two fragments (82); On the one hand,

activated caspase-1 hydrolyzes GSDMD into a C-terminus of

22 kDa (C-GSDMD) and an N-terminus of 31 kDa (N-

GSDMD). N-GSDMD can form pores in cell membranes (83,

84). On the other hand, caspase-1 cleaves pro-IL-1b/18 into

mature IL1b and IL-18, which are released extracellularly

through pores formed by GSDMD, resulting in cell

pyroptotic death (17–19, 85, 86) (Figure 2).
Non-canonical pyroptosis

In the caspase-1-independent pyroptosis pathway, human

caspase-4/5 or mouse caspase-11 can be directly activated by N-

terminal CARD combined with lipopolysaccharide (LPS) (87–

89). After activation of caspase-4/5/11, GSDMD is cleaved into

C/N-GSDMD, N-GSDMD is transferred to the cell membrane

to form plasma membrane pores, and the assembly of NLRP3

inflammasome is initiated at the same time (90). However, in the

caspase-1-independent pathway, many studies suggested that

caspase-4/5/11 cannot directly cleave pro-IL-1b/18, which

requires activation of the NLRP3/caspase-1 pathway through
frontiersin.org

https://doi.org/10.3389/fendo.2022.986565
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2022.986565
N-GSDMD to induce induction Maturation and secretion of IL-

1b/IL-18 (31, 91–93). Some studies have also found that caspase-

4 can directly cleave pro-IL-1b and pro-IL-18 (94). In addition,

Yang et al. found that caspase-11 can specifically cleave

Pannexin-1, causing the release of ATP (95). Meanwhile,

cleavage of GSDMD by caspase-4/5/11 leads to the efflux of

K+ and IL-1b/IL-18, eventually leading to pyroptosis (17, 92)

(Figure 2). It is worth noting that Guanylate-binding proteins

(GBPs) play an important role in non-canonical pyroptosis.

GBPs could protect against bacterial infection, when cells are

infected with LPS, GBPs would contribute to LPS release into the

cytosol and activation of the noncanonical caspase-11

inflammasome, GBPs contribute to secretion of IL-1band IL-

18, and induction of pyroptosis (96, 97).
Other signaling pathways

Traditionally, caspase-3 mainly promotes the occurrence of

apoptosis. However, recent studies have found that activation of

caspase-3 can cleave GSDME into N/C-terminal fragments.
Frontiers in Endocrinology 04
Similar to N-GSDMD, N-GSDME can cause the formation of

pores in the cell membrane and promote cell pyroptotic death (38,

98). In addition, Orning and Sarhan et al. found that Yersinia

induced activation of caspase-8 after infection of mouse

macrophages, resulting in the lysis of GSDMD (28, 29). Wu

Qiao et al. found that metabolite a-KG can mediate pyroptosis of

Hela cells via caspase-8/GSDMC (99). Hou et al. also proposed

that PD-L1 mediates caspase-8/GSDMC activation in breast

cancer cells, resulting in pyroptotic death of breast cancer cells

(39); Jiang et al. reported that caspase-1, 3, and 7 could mediate

the cleavage of GSDME leading to pyroptosis (100). Furthermore,

Chemotherapeutic drugs, iron also mediate the activation of the

caspase-9/GSDME/caspase-3 axis to induce pyroptosis.

Interestingly, recent studies have found that the Granzyme

family can cause pyroptosis (100). Zhang Z et al. found that

GzmB can directly cleave GSDME to induce pyroptosis and

inhibit tumor growth (101). Similarly, Liu Y et al. found that

chimeric antigen receptor (CAR) T cells can activate GSDME to

induce pyroptosis (102). Zhou Z et al. reported that GzmA derived

by leukomonocyte induces pyroptosis by cleaving GSDMB at

Lys229/Lys244 sites (103) (Figure 2).
FIGURE 2

Classical and non-classical inflammasome assembly. The canonical pathway is mediated by caspase-1. When NLRP1, NLRC4, NLRP3, AIM, and
Pyrin inflammatory sensors receive different stimuli, recruiting ASC and caspase-1 to mediate the assembly of inflammasomes and activate
caspase-1. Among them, the assembly of NLRP3 and NLRC4 inflammasomes requires the participation of NEK7 and NAIPs, respectively, and
NLRP1 and NLRC4 can directly activate case page-1 due to their CARD domains. After activation of Caspase-1, GSDMD and pro-IL-1b/18 is
cleaved, and the pore formed by GSDMD on the cell membrane surface mediates secretion of IL-1b/18 out of the cell and induces pyroptosis.
The non-canonical pathway is mediated by caspase-4/5/11; LPS of Gram-negative bacteria directly induces caspase-4/5/11 activation and
cleaves GSDMD and Pannexin-1. N-GSDMD induces caspase-1 activation by activating NLRP3 inflammasome assembly, which mediates the
release of inflammatory mediators and pyroptosis.
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NLRP3 inflammasome-mediated
pyroptosis and type 2 diabetes

NOD-like receptor (NLR) family pyrin domain-containing 3

(NLRP3) is an important PRR in the cytoplasm. The NLRP3

inflammasome consists of a sensor (NLRP3), an aptamer (ASC),

and an effector (caspase 1). The NLRP3 inflammatory sensor is

composed of a C-terminal leucine-rich repeat (LRR), a

nucleotide-binding and oligomerization domain (NACHT),

and an N-terminal PYD domain that recruits caspases (104).

Activation of the NLRP3 inflammasome involves two signals,

the first signal is the initiation of NLRP3 gene transcription

mediated by the NF-kB pathway, and the second signal is the

activation of NLRP3 inflammasome sensors (105). The NLRP3

sensor self-oligomerizes through homotypic NACHT domain

interactions. Oligomeric NLRP3 recruits ASCs through

homotypic PYD-PYD domain interactions and induces ASC

aggregation into a macromolecular focal point called the ASC

speck. Subsequently, the assembled ASCs recruit proaspase-1

through homotypic CARD–CARD domain interactions to form

the NLRP3-ASC-caspase-1 protein complex which is known as

the NLRP3 inflammasome (106).

In type 2 diabetes, A variety of metabolites and factors such

as glucose and fatty acids (107), LPS released by the gut

microbiota (108, 109), mitochondrial reactive oxygen species

(mROS) (110), the international association for preventive

pediatrics(IAPP) (111), ceramide (112), amino acid

homocysteine (113) and ATP (114) can activate the NLRP3

inflammasome. After stimulation, the NLRP3 inflammasome is
Frontiers in Endocrinology 05
activated with the participation of the ligand NIMA-related

kinase 7 (NEK7) (71–73).

In 2010, Tschopp et al. first proposed that the NLRP3

inflammasome may be involved in the progression of T2DM

(115). Subsequent studies have shown that NLRP3

inflammasome activation can aggravate IR and lead to further

damage to islet b cells and promote T2D progression (5, 112,

116–119); some recent studies have also demonstrated that the

activation of the NLRP3 inflammasome mediates the pyroptosis

of pancreatic b cells (108, 120); for example, in the study of

Yuan, J et al., the use of the NLRP3 inhibitor MCC950

ameliorated islet cell damage (121). Furthermore, pyroptosis

mediated by the NLPR3 inflammasome plays a vital role in the

progression of various complications such as diabetic

nephropathy (DN) and diabetic cardiomyopathy (DCM)

(Figure 3) (122–125). Recent studies have shown the potential

therapeutic role of the NLRP3 inflammasome/pyroptosis

signaling pathway in type 2 diabetes and its complications.
Microvascular complications

Diabetic nephropathy

As one of the microvascular complications of diabetes, DN is

considered a sterile inflammatory disease and the leading cause

of death in end-stage renal disease and patients with type 2

diabetes (126). Pyroptosis mediated by the NLRP3

inflammasome plays an important role in the development of
FIGURE 3

Pyroptosis mediated by the NLRP3 inflammasome in type 2 diabetes and its complications.
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diabetic nephropathy (122, 127, 128). In a previous study,

Shahzad K et al. found that activation of the NLRP3

inflammasome in non-myeloid-derived cells exacerbates DN

(127). A recent study showed that the expression levels of

pyroptosis-related proteins such as NLRP3, caspase-1, and IL-

1b were significantly increased in STZ-treated diabetic rats

(129). An X et al. also found that in the HFD/STZ diabetic

mouse model, the expression levels of pyroptosis-related

proteins, including NLRP3 inflammasome, caspase-1, and

GSDMD, were increased (130). Chen J et al. also found the

same result, NLRP3 inflammasome recognizes risk signals,

activates GSDMD, and inflammatory substances such as

caspase-1 and IL-1b trigger pyroptosis and induce an

inflammatory response. And it was confirmed by the TUNEL

experiment that pyroptosis promotes the progress of DN (131).

In addition, other studies have demonstrated that pyroptosis

mediated by the NLRP3 inflammasome is associated with

inflammation and fibrosis in DN, leading to aggravation of

DN, the phenomenon was improved after the use of the

caspase-1 inhibitor VX-765 (132–134). Notably, in renal

tubular epithelial cells (TECs) and podocytes, NLRP3

inflammasome-mediated pyroptosis is critical in promoting

DN progression (135–137).
Podocyte pyroptosis

Podocytes are highly differentiated atypical epithelial cells of

the kidney that are non-dividing, unique insulin-sensitive cells in

the glomerulus. Participate in forming the filtration barrier and

maintain the normal filtration function of the glomerulus (138).

Podocyte loss is a central factor in DN proteinuria (139). Many

studies have found podocyte pyroptosis closely related to

diabetic nephropathy (140). HG inhibited the survival of

podocytes in a dose-dependent manner and increased the

levels of pyroptosis-related proteins such as ROS, IL-1b, and
IL-18 in cells (141). Notably, activation of the NLRP3

inflammasome in podocytes promotes g lomerular

inflammation and glomerulosclerosis progression (142). In

addition, D-ribose promotes NLRP3 inflammasome activation

in type 2 diabetes to induce podocyte injury and

glomerulosclerosis, the caspase-1 inhibitor YvAD significantly

blocks podocyte injury (143). ABAIS et al. demonstrated that in

a diabetes model, the protein expression levels of caspase-11 and

GSDMD-N in podocytes were increased, and the expression of

podocyte markers nephrin and podocin were decreased,

podocyte loss and foot process fusion, promoting the

expression of inflammatory factors such as NF-kB, IL-1b and

IL-18 (140). Recent studies have found that the mammalian

target of rapamycin (mTOR) regulates inflammation by binding

to NLRP3 (144–146). Wang T et al. show that mTOR and NF-

kB inhibitors reduce renal podocyte injury (147). In addition to

the mTOR/NLRP3 signaling pathway, miRNAs can mediate the
Frontiers in Endocrinology 06
activation of the NLRP3 inflammasome and trigger podocyte

pyroptosis under high glucose conditions. For example, Ding

et al. demonstrated that miR-21-5p induces podocyte pyroptosis

(148). In the study of Zhan et al., Long Non-Coding RNA

(lncRNA) NEAT1 promoted podocyte pyroptosis by regulating

miR-34c and regulated the expression of NLRP3, Caspase-1, and

IL-1b in a mouse model of diabetes (129). Thioredoxin-

interacting protein (TXNIP)/reactive oxygen species (ROS)/

NLRP3 pathway is also involved in mediating podocyte

pyroptosis and promoting the progression of DN (135). These

findings above highlight the role of podocyte pyroptosis induced

by the NLRP3/Caspase-1/IL-1b axis in diabetic nephropathy.

Some of the latest cell studies also inhibit podocyte pyroptosis by

interfering NLRP3 inflammasome signaling pathway, such as

using the NLRP3 inflammasome inhibitor MCC950, which is

expected to be used in treating diabetic nephropathy (135,

149–151).

Tubular epithelial cell pyroptosis

TECs are responsible for renal reabsorption and are closely

related to the deterioration of renal function. The damage of TECs

is also a critical link in DKD (152). Under HG conditions, TECs are

more susceptible to glucose and lipid metabolism disorders,

inflammatory responses, and hemodynamic changes, and the

high-glucose environment produces ROS and releases various

inflammatory factors, resulting in renal interstitial inflammation

and fibrosis (122). Zhang et al. found that Caspase-11-mediated

pyroptosis of TECs plays an essential role in acute kidney

injury (137). In addition, lncRNAs are closely related to the

progression of DN; for example, Xie et al. found that lncRNA

GAS5 regulates the NLRP3 inflammasome-caspase-1 axis to

mediate the pyroptosis of TECs (153). Similarly, Zhu et al.

confirmed that the expression of NLRP3, caspase-1, IL-1b, p-IL-
1b and GSDMD-N was up-regulated in HG-induced human

tubular cells (HK-2), and the pyroptosis of HK-2 is associated

with lncRNA KCNQ1OT1 (154). In the study of Wang et al., HG

activated TLR4/NF-kB signaling pathway to mediate the pyroptosis

of GSDMD-related TECs, and TLR4 inhibitor TAK-242

significantly ameliorated the damage of TECs (155). Interestingly,

TXINP/NLRP3 pathway is also involved in mediating TECs

pyroptosis; Ke et al. demonstrated that HG activates TXINP/

NLRP3 pathway to mediate NRK-52E cell pyroptosis and kidney

injury (134). HG also promotes TXNIP/NLRP3/caspase-1 pathway

activation to mediate HK-2 pyroptosis (156).
Diabetic retinopathy

As a common microvascular complication in diabetic patients,

diabetic retinopathy (DR) is one of the leading causes of visual

impairment in adults worldwide. Activation of the NLRP3

inflammasome may be involved in the pathogenesis of DR (157).

For example, in the study by Yu et al., caspase-1 and GSDMD were

activated after induction using advanced glycation end-products-
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modified bovine serum albumin (AGE-BSA), promoting

inflammatory factors IL-1b, IL-18, and LDH release (158).

Loukovaara et al. found elevated levels of pyroptosis-related

proteins in DR (159). After induction with STZ, the expression

levels of NF-kB, NLRP3, and caspase-1 were up-regulated in DR

(160). In addition, HG can induce pyroptosis of human retinal

microvascular endothelial cells (HRMECs) and human retinal

pericytes (HRPs) (161, 162). NLRP3 inflammasome promotes cone

cell death in a P23H rhodopsin retinal degeneration model (163). Za

et al. also demonstrated HG-induced retinal pigment epithelium

(RPE) cell pyroptosis (164). In recent years, more and more studies

have been conducted on the mechanism of DR pyroptosis. RNA,

methyltransferase-like protein 3 (METTL3), P2X7 purinergic

receptor (P2X7R)/NLRP3, and ROS/TXNIP/NLRP3 pathways may

all be related to DR pyroptosis (158, 164, 165). Targeted intervention

in the activation of NLRP3 inflammasome may be beneficial for the

prevention and treatment of DR.
Macrovascular and Cardiac
Complications

Atherosclerosis

The risk of macrovascular disease is significantly increased

in diabetes. Atherosclerosis (AS) in the aorta, coronary artery,

and cerebral basilar artery is one of the complications of diabetes

and the leading cause of cardiovascular events in patients with

diabetes (166). A growing number of studies have demonstrated

that many risk factors for type 2 diabetes, such as high glucose

and high fat, can activate the NLRP3 inflammasome in

endothelial cells (ECs) and macrophages to mediate pyroptosis

and exacerbate the progression of AS (167). NLRP3

inflammasome and pyroptosis in atherosclerotic plaques are

positively correlated with plaque rupture and vascular

inflammation (168). In the study by An et al., carotid artery

injury in T2D model rats was associated with elevated levels of

NLRP3, caspase-1, and IL-1b (169). Rat aortic AS was associated

with tissue activation of the NLRP3 inflammasome and NF-kB
signaling in the Zucker diabetic fat (ZDF) model rat (170). Song

et al. confirmed that HG promotes NLRP3 inflammasome

activation and IL-1b secretion in ECs (171). Furthermore, in

the study of Chen et al., HG increased the expression levels of

NLRP3, caspase-1, and IL-1b in human arterial smooth muscle

cells (HASMCs) (172). NLRP3 inflammasome, caspase-1, IL-1b,
and IL-18 expression were upregulated in aortic ECs and

vascular smooth muscle cells (VSMCs) in HFD-fed mice

(173). The above studies further confirmed that pyroptosis

mediated by the NLRP3 inflammasome promotes the

progression of AS in a diabetes model, and targeting the

pyroptosis associated with the NLRP3 inflammasome may

have a potential therapeutic effect on type 2 diabetes with AS.
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Diabetic cardiomyopathy

DCM is a prevalent CVD, characterized by systolic

dysfunction and left ventricular hypertrophy. Many risk

factors, such as hyperglycemia, insulin resistance, increased

oxidative stress, mitochondrial dysfunction, cardiomyocyte

damage, and endothelial dysfunction, contribute to the

development of DCM (174). A previous study found that the

hearts overexpressed NLRP3, caspase-1, and IL-1 in diabetic rats

(175). Pyroptosis associated with the NLRP3 inflammasome

plays an important role in the pathogenesis of DCM (176).

Silencing the NLRP3 gene improves cardiac inflammation,

pyroptosis, and myocardial function (177). In cardiac tissue,

pyroptosis occurs mainly in cardiomyocytes (CMs) and cardiac

fibroblasts (CFs) (178–180). The death of CMs and CFs leads to

cardiac remodeling and left ventricular dysfunction.
Cardiomyocyte pyroptosis in DCM

Cardiomyocytes maintain the systolic and diastolic

functions of the heart and ensure the blood supply of the

whole body (123). Under high glucose conditions, the NLRP3

inflammasome was activated through multiple pathways to

induce pyroptosis in CMs. For example, hyperglycemia

promoted cardiomyocyte pyroptosis by activating the AMPK-

TXNIP/NLRP3 signaling pathway (134, 181), and pyroptosis-

associated TLR4 and NLRP3 inflammasome expression was

increased in HG-treated H9C2 cardiomyocytes (182). HG also

induced cardiomyocyte H9c2 pyroptosis by activating the NF-

kB/NLRP3 pathway (177). ROS/NLRP3 and JNK/NLRP3

signaling pathways also promoted cardiomyocyte pyroptosis

(183, 184). In addition, ELAV-like protein 1 (ELAVL1),

LncRNA Kcnq1ot1, and miRNA were all involved in

regulating cardiomyocyte pyroptosis in DCM (185–187). The

death of CMs promotes DCM progression, leading to ventricular

remodeling and even heart failure.
Cardiac fibroblasts Pyroptosis in DCM

Cardiac fibrosis is one of the main pathological features of

DCM, and CFs injury plays an essential role in this process. CFs

are considered semi-occupational inflammatory cells that play

an immunomodulatory role in the heart. Pyroptosis mediated by

the NLRP3 inflammasome as pro-inflammatory programmed

cell death is closely related to the damage of CFs (188). The

NLRP3 inflammasome was activated with the participation of

LncRNA, ROS, miRNA, and other mediators in the HG state,

leading to cardiac fibroblast pyroptosis, promoting collagen

synthesis and aggravating cardiac tissue fibrosis (189, 190).

Some recent studies have further confirmed that CFs
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pyroptosis plays an important role in the pathogenesis of DCM

(191, 192). It is necessary to explore further the mechanism of

CFs pyroptosis for the prevention and treatment of DCM.
Diabetic neuropathy

Extensive research evidence suggests that pyroptosis is also

an important regulatory mechanism for diabetic neuropathy

(125). Pyroptosis can lead to neuronal death and exacerbates

diabetic neuropathy processes such as ischemic stroke, cognitive

impairment, spinal cord injury (SCI), and peripheral neuropathy

(193). In addition, pyroptosis mediated by the NLRP3

inflammasome also occurs in the optic and enteric nerves

under high glucose conditions (194, 195).
Diabetic encephalopathy

In recent years, pyroptosis in diabetic encephalopathy has

received more and more attention. T2D induces pyroptosis by

inducing activation of the NLRP3 inflammasome, aggravating

neurodegeneration, cerebral infarction, and progressive

cognitive decline (125). For example, Hong et al. found that

the NLRP3 inhibitor MCC950 ameliorated cerebral ischemia/

reperfusion (I/R) injury and reduced ischemic stroke risk in

diabetic mice (196). In Wang et al., microglia pyroptosis

exacerbates I/R injury, and NLRP3-specific inhibitor MCC950

ameliorated cerebral I/R injury in diabetic mice (197); Li et al.

also found that hippocampal neurons in STZ-induced diabetes

model mice mediated pyroptosis through the NLRP3 signaling

pathway, accompanied by mouse depression-like behaviors

(198). Similarly, Che et al. found that neuronal expression

levels of NLRP3 inflammasome and pyroptosis were increased

(199). Pyroptosis mediated by the NLRP3 inflammasome is a

complex process in the progression of DE, and both lncRNAs

and miRNAs play important roles in the process of pyroptosis

(197, 199). Further exploring the mechanism of pyroptosis,

especially the NLRP3 inflammasome signaling pathway, may

be an essential strategy for the therapy of DE.
Diabetic peripheral neuropathy

As one of the common complications of diabetes, diabetic

peripheral neuropathy (DPN) is characterized by chronic

inflammation, axonal degeneration, loss of unmyelinated fibers,

and irreversible neuronal damage (165). Excessive ROS production

leading to NLRP3 inflammasome activation promotes the level of

pyroptosis in DPN (200). In Cheng et al.’s study, HG-induced the

activation of NF-kB and NLRP3 inflammasome mediated

pyroptosis in Schwann cells and promoted DPN progression

(201). Similarly, Li et al. demonstrated that high glucose
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exacerbates demyelination in a mouse model of T2DM (202).

Furthermore, in the study by Xu et al., high fat promoted the

activation of the TXNIP/NLRP3 inflammasome in a diabetic mouse

model (203). At the same time, miRNAs were also involved in the

process of neuronal pyroptosis in diabetic mice (199). These

findings proved that pyroptosis related to NLRP3 plays an

important role in the development of DPN.
Other complications

Pyroptosis mediated by the NLRP3 inflammasome also

promoted the progression of diabetes-associated nonalcoholic

fatty liver disease (NAFLD) syndrome. HG and saturated fatty

acids acted together in the liver to exacerbate inflammation and

endoplasmic reticulum stress to destabilize mitochondria (204),

and long-term inflammatory response led to hepatocyte pyroptosis

and promoted liver fibrosis (205). Activation of inflammasome

directly stimulated hepatic stellate cells (HSCs) to increase the

secretion of matrix metalloproteinases (MMPs) and accelerate the

process of liver fibrosis (206). In addition, pyroptosis of stellate cells

mediated by NLRP3 inflammasome further promotes liver fibrosis

(207). After a specific knockout of the NLRP3 gene in hepatocytes,

liver inflammation was significantly reduced (208). These studies

suggested that pyroptosis mediated by NLRP3 inflammasome is

vital for preventing and treating NAFLD.
Potential drugs and agents that
inhibit NLRP3 inflammasome
signaling pathways

In recent years, there have been more and more studies on

the mechanism of T2D pyroptosis, and many clinical drugs and

compounds have demonstrated specific anti-pyroptosis effects

(Table 1). For example, metformin, a first-line drug for diabetes

treatment, inhibited the activation of NLRP3 inflammasome and

cardiomyocyte pyroptosis (209–211), reducing myocardial

ischemia-reperfusion injury (210). GLP-1 receptor agonists

liraglutide and exenatide reduced neurological damage and

inhibited NAFLD and cardiomyocyte pyroptosis in diabetic

rats by inhibiting NLRP3 inflammasome activation (212–215);

Similarly, exendin-4 also inhibited the activation of NLRP3

under HG conditions and alleviated cardiomyocyte pyroptosis

(181). Furthermore, SGLT-2 inhibitor dapagliflozin and DPP4

inhibitor saxagliptin reduced NLRP3 inflammasome activation

and delayed the progression of DCM in diabetic mice (216).

Various active substances in traditional Chinese medicine also

improved the pyroptosis of diabetes and its complications by

inhibiting the NLRP3 inflammasome pathway, such as ginsenoside

Rg5 reduced kidney damage by inhibiting the activation of NF-kB/
NLRP3 signaling pathway in the HT/STZ diabetic mouse model
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(217). Huangkui capsule attenuated tubular epithelial-mesenchymal

transition in diabetic nephropathy mice by inhibiting TLR4/NF-kB/
NLRP3 pathway (218). Gypenosides alleviated diabetic myocardial

injury by inhibiting ROS/NLRP3 inflammasome activation (184).

Notably, Salidroside alleviated NAFLD inHT diet mice by regulating

TXNIP/NLRP3 pathway (219). Sulforaphane inhibited the activation

of NLRP3 inflammasome against diabetic retinopathy (220). In

addition, Jinmaitong also regulated the NLRP3 pathway to

improve STZ-induced DPN in rats (165). In the study of Bai

et al., a detailed summary of traditional Chinese medicines

targeting the NLRP3 inflammasome pathway to interfere with

diabetes progression (167).

Some natural substances also delayed the progression of

diabetes and its complications by inhibiting the NLRP3

inflammasome-mediated pyroptosis pathway. For example,

melatonin alleviated the pyroptosis of endothelial cells, slowed the

progression of atherosclerosis, and inhibited the pyroptosis of

neurons and cardiomyocytes in a diabetic mouse model by

regulating the NLRP3 axis (199, 221, 222). Similarly, H3 relaxin

attenuated pyroptosis in DR and inhibited fibrosis and

inflammation in cardiomyocytes of diabetic rats (223, 224). In

addition, sodium butyrate (Nab) reduced the pyroptosis of

glomerular endothelial cells under HG conditions, and miRNA

and LncRNA also played an essential role in the pyroptosis of

diabetes and its complications. Targeted knockout or inhibition of

RNA expression can reduce the activation of NLRP3 inflammation

and delay the progression of diabetes (42, 225–227). According to

the existing research evidence, pyroptosis mediated by the NLRP3

inflammasome was commonly found in T2D and its complications.

The use of drugs or NLRP3 inflammasome inhibitor MCC950

(196), or even knockout of the NLRP3 gene to inhibit pyroptosis

seem to have some effect on T2D Treatment (Figure 3) (177).

Therefore, targeting the NLRP3 inflammasome may lead to more

options for the treatment of diabetic patients in the future.
Summary and outlook

As a complex metabolic disease, the pathogenesis and

complications of diabetes continue to progress. Therefore, the
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exploration of new treatment modalities and intervention

mechanisms is necessary. As a new form of programmed cell

death, pyroptosis plays a vital role in the occurrence and

development of many diseases. Numerous studies have shown

that intervening in the NLRP3 inflammasome signaling pathway

can attenuate pyroptosis under HG conditions and delay the

progression of complications in animal models of T2D. Targeted

regulation of pyroptosis mediated by the NLRP3 inflammasome

appears to play a critical role in the progression of diabetes.

However, there are still some problems that need to be solved.

For example, current studies are all animal models or cell

experiments, which are not enough to support targeting the

NLRP3 inflammasome to prevent and treat T2D; in addition, the

proportion of pyroptosis mediated by the NLRP3 inflammasome in

the progression of diabetes is yet unknown, and the research on

intervening themechanism of pyroptosis to delay the progression of

T2D is still challenging. However, it is undeniable that the targeted

regulation of NLRP3 inflammasome activation has some effect in

the treatment of T2D, and some drugs have gradually shown anti-

pyroptotic effects. Therefore, an in-depth study of the mechanism of

pyroptosis mediated by NLRP3 inflammasome and potential anti-

pyroptotic agents may bring some new strategies for treating T2D

and drug development.
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TABLE 1 Potential drugs and agents that inhibit NLRP3 inflammasome signaling pathways.

Drugs Complications Natural or Angents Complications

Metformin DCM Melatonin DCM, DPN, AS

Liralutide DCM, DPN, NAFLD H3 relaxin DCM, DR

Exenatide NAFLD, DCM Exendin-4 DCM

Dapagliflozin DCM Nab DN

Saxagliptin DCM miRNA DN, DCM, DR, DPN

Chinese medicine DN, DCM, DPN, DR LncRNA DN, DCM, DPN

… MCC950 DR

…
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