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Abstract: To study the effects of maternal fiber supplementation during pregnancy on the testicular
development of male offspring and its possible mechanisms, 36 sows (Landrace × Yorkshire) were
allocated to either a control diet (n = 18) or a fiber diet (the control diet supplemented with 22.60 g/kg
inulin and 181.60 g/kg cellulosic; n = 18) during pregnancy. The body and testes weight of the
offspring, 7-day-old piglets, was recorded. Testes were collected for further analyses. Results showed
that the testicular organ index and the number of spermatogonia in single seminiferous tubule were
higher in piglets from the fiber group than from the control group (p < 0.05). In addition, a significant
increase in the concentration of glucose, lactate, and lipids in the testes was found in the fiber group
(p < 0.05). Proteomic analysis suggested that there were notable differences in glucolipid transport
and metabolism, oxidation, and male reproduction-related proteins expression between the two
groups (p < 0.05). Results revealed that the most enriched signaling pathways in the fiber group
testes included starch and sucrose metabolism, fatty acid metabolism, glutathione metabolism, and
the renin-angiotensin system. mRNA expression analyzes further confirmed the importance of
some signaling pathways in maternal fiber nutrition regulating offspring testicular development.
Our results shed new light on the underlying molecular mechanisms of maternal fiber nutrition on
offspring testicular development and provided a valuable insight for future explorations of the effect
of maternal fiber nutrition on man reproduction.
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1. Introduction

Studies on humans [1] and animals [2–5] show that pregnancy is the key window of testicular
development. During pregnancy, the male fetuses’ seminiferous tubules gradually form, Leydig cells
develop within the testicular interstitial tissue [6], both Sertoli cells and Leydig cells are abundantly
produced [2,4,5], and primordial germ cells gradually differentiate into spermatogonia [7]. There is
evidence showing that Leydig cells have a steroidogenic function, which maintains sex differentiation
and promotes reproductive organ development [6]. Sertoli cells nourish spermatogonia [8] during
spermatogenesis. The number of Sertoli cells and spermatogonia formed during embryogenesis is
highly correlated with both adult testicular size and sperm production [9], while the embryonic period is
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the most active proliferation period of these cells [8]. Studies shows that poor maternal nutrition during
gestation decreases the number of Sertoli cells present in newborn lambs [10]. Furthermore, both protein
and energy restrictions in rats during gestation decreased offspring body weight, testicular weight, and
estradiol body content, while increased testosterone concentration in the testicles [11,12]. Additionally,
protein restriction during pregnancy reduces growth hormone levels in sows offspring [13], and causes
testicular growth retardation in rat offspring as well [14]. It has also been seen that testicular dysplasia
in male lambs is caused by energy restriction during ewes’ pregnancy [15]. A study using hamsters also
revealed that maternal nutritional restriction affects reproductive organ size, hormone levels, and the
development of the testes and the epididymis in the offspring [16]. Undernutrition during early fetal
development was clearly associated with an increased expression of the steroidogenic acute regulatory
protein [17]; an excessive steroid production may adversely affect fetal organ development. In addition,
pregnancy conditions may affect the future development of the reproductive organs and the adults’
reproductive level of male offspring [18,19]. These implicates that maternal nutrition during pregnancy
has far-reaching significance on testicular development and spermatogenesis of the offspring even
after adulthood.

Fiber is a significant nutrient. Recent research data show that fibers play an important role in
health and reproduction, both in humans [20–23] and animals [24–26]. Fibers can improve glucose and
lipid metabolisms, and enhance the antioxidation ability of both mice and humans [22,27]. In addition,
it has been seen that, when fiber is regularly included in the diet, it may improve the development of
the female reproductive organs [28], leading to increased female fecundity.

Fiber supplementation also affects testes development of young mice [25]. In men, increasing fiber
intake increments the levels of the sex hormone-binding globulin that affects the activity of related sex
hormones [20] which, in turn, regulate testicular development. Other studies found that feeding sows
with a high fiber diet during pregnancy would improve their reproductive performance as well as
immunity and birth weight of newborn piglets [24]. Increasing maternal fiber intake during pregnancy
could also reduce the risk of breast cancer in offspring [21] and affect glucolipid metabolism and
antioxidant capacity of piglets [29,30].

Nevertheless, it is not clear whether maternal fiber supplementation during pregnancy affects
testicular development of offspring and, if so, what are its mechanisms. Thus, we used a sow model
and proteomics techniques to study the effects of maternal fibrous nutrition during pregnancy on
testicular development of offspring. This work demonstrates that maternal fiber intake during gestation
has great effects on testicular development, and revealed that glucolipid metabolism, glutathione
metabolism, and the renin-angiotensin system mediated the effect of maternal fiber nutrition over
offspring testicular development.

2. Results

2.1. Effect of Maternal Fiber Intake on Body Weight and Testicular Development of Offspring

There were no significant differences in body weight of 7-day-old piglets from the two groups
at (p > 0.05; Figure 1A), whereas, in the fiber group (hereafter Fiber), the testicular organ index
was significantly higher than in the control group (Con) (p < 0.001; Figure 1B). Figure 2 shows the
testicular tissue from Con Figure 2A and Fiber Figure 2B 7-day-old piglets, showing Sertoli cells (a)
and spermatogonia (b). Both the number of spermatogonia and Sertoli cells per seminiferous tubule
were significantly higher in Fiber than in Con testes (p < 0.05; Figure 3).
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Figure 1. Effect of maternal fiber intake on the body weight (A) of offspring, (B) testis organ index of
offspring. The values were expressed as mean ± SEM. ** p < 0.01, as compared to normal control group.
Con = control group, Fiber = Fiber group.

Figure 2. Testis tissue cross-sections of piglets, stained in hematoxylin-eosin. (A) testis of piglets in
control group, 400×. (B) Testis of piglets in fiber group, 400×. (a) Stood for Sertoli cell and (b) stood
for spermatogonia.

Figure 3. Effect of maternal fiber intake on the number of spermatogonium and Sertoli cells at per
seminiferous tubule in testes of offspring. The values were expressed as mean ± SEM. * p < 0.05, as
compared to normal control group. Con = control group, Fiber = Fiber group.

2.2. Effect of Maternal Fiber Intake on Offspring Biochemical Parameters

Regarding biochemical compounds, compared with Con testes, the concentration of triglycerides
(TG), cholesterol (CHO), high density lipoproteins (HDL), glucose (GLU), and l-lactate (l-LAC) in
Fiber testes was significantly higher (p < 0.05), whereas the concentration of low density lipoproteins
(LDL), non-esterified fatty acids (NEFA), and l-glutathione (GSH) showed no significant difference
(p > 0.05; Figure 4).
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Figure 4. Effect of maternal fiber intake on the biochemical parameters of offspring. The values
were expressed as mean ± SEM. * means p < 0.05, ** p < 0.01, as compared to normal control group.
Con = control group, Fiber = Fiber group. GLU = glucose, CHO = cholesterol, TG = triglyceride,
HDL = high density lipoprotein, LDL = low density lipoprotein, l-LAC = l-lactate, NEFA = non-esterified
fatty acid and GSH = l-Glutathione.

2.3. DEPs Analysis in Proteomics

We identified 6481 proteins, among which, 5718 proteins contained quantitative information.
We established a 1.2 times change as the change threshold and determined that 25 proteins were
upregulated whereas 24 were downregulated in Fiber compared to Con. Among them, there were
6 proteins related to male reproduction, 5 to carbohydrate metabolism, 2 to fatty acid metabolism, and
2 to glutathione metabolism (Table 1). The complete information on differentially expressed proteins
(DEPs) is shown in Table S1.

Table 1. Differentially expressed proteins (DEPs) associated with Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway in the fiber group and the control group of testes in piglets.

Protein Accession Protein Description Fiber/Con
Ratio

Fiber/Con
p Value

Gene
Name

A0A287A1D6 Methyltransferase like 3 0.625 0.0488 METTL3
F1RJ25 Fructose-bisphosphate aldolase 0.757 0.025 ALDOC
P36968 Phospholipid hydroperoxide glutathione peroxidase 0.76 0.0039 GPX4
F1RLR8 Gamma-glutamyltransferase 5 0.802 0.0158 GGT5
K7N7E5 Uncharacterized protein 0.825 0.015 FADS1
F1SSK5 Uncharacterized protein 0.828 0.0164 ARID4A
I3LP02 Acetyl-CoA acetyltransferase 1 1.226 0.01 ACAT1

F1RQQ8 Alpha-1,4 glucan phosphorylase 1.247 0.0234 PYGM
B9TRX0 Leptin receptor gene-related protein 1.249 0.0378 LEPROT
F1RRW5 Angiotensin-converting enzyme 1.273 0.0286 ACE

A0A286ZUF1 Ectonucleotide pyrophosphatase/phosphodiesterase 1 1.321 0.00702 ENPP1
A0A287AWS9 Heme oxygenase 1.432 0.0239 HMOX1
A0A287BLE1 Sequestosome 1 1.216 0.0184 SQSTM1

F1SAZ0 Sperm associated antigen 17 0.351 0.0000791 SPAG17
A0A287A7G0 COX assembly mitochondrial protein 1.91 0.0139 CMC2

F1CNZ4 STEAP family member 4 1.318 0.0464 STEAP4

The change of protein expression level was expressed by the ratio of fiber/control group. The ratio >1 indicates
up-regulation and the ratio <1 indicates.

2.4. Functional Enrichment Analysis of DEPs

Gene Ontology (GO) terms annotation showed that upregulated DEPs were enriched in
biological process (BP) and molecular function (MF; Figure 5A). 24 upregulated DEPs were able
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to be annotated according to GO information. The complete information on DEPS is shown in Table
S2. BP included metabolic processes, whereas MF included metallopeptidase activity and catalytic
activity; the upregulated proteins had their highest enrichment in metabolic processes (Figure 5A).
The downregulated proteins were enriched in BP, cellular component (CC) and MF (Figure 5B); there
were 35 DEPs able to be annotated according to the GO database information. BP enrichment included
the metabolism of sulfur compounds, cofactor and coenzyme, CC included membrane part, and MF was
mainly enriched for enzyme activities. Cytochrome-c oxidase activity, heme-copper terminal oxidase
activity, and oxidoreductase activity were the most significantly enriched GO terms in downregulated
proteins, whilst catalytic activity was enriched for most proteins.

Figure 5. The functional enrichment of Gene ontology (GO) annotation of the up-regulated DEPs
(A) and down-regulated DEPs (B). The number on the histogram represents the negative logarithmic
transformation of the p-value obtained by the enrichment test (using Fisher’s exact test).
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Furthermore, a KEGG pathway enrichment analysis showed 15 DEPs involved in renin secretion,
hematopoietic cell lineage, the renin-angiotensin system, cardiac muscle contraction, fatty acid
metabolism, starch and sucrose metabolism, and glutathione metabolism (Figure 6). All KEGG
pathways information is shown in Table S3. Hematopoietic cell lineage, the renin-angiotensin system,
and starch and sucrose metabolic pathways were the most significantly enriched pathways, form these,
the hematopoietic cell lineage pathway was enriched with the highest number of proteins. DEPs in
the glutathione metabolic pathway included F1RLR8 and P36968; in starch and sucrose metabolism
pathway, A0A286ZUF1 and F1RQQ8; in the fatty acid metabolism pathway, I3LP02 and K7N7E5; and
in the renin-angiotensin system pathway, F1RRW5 and A0A287B315.

Figure 6. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEPs.
There were 15 DEPs were able to be enrichment. Hematopoietic cell lineage, renin-angiotensin system
and starch and sucrose metabolic pathways were most significantly enriched.

2.5. Relative Expression of mRNAs

Compared to the Con, the relative expression of mRNAs of the fatty acid metabolism (e.g., FADS1),
male reproduction (e.g., ARID4A), and the renin-angiotensin system (e.g., ACE) proteins was
significantly decreased in Fiber (p < 0.05; Figure 7); whereas the relative mRNA expression of glutathione
metabolism (e.g., GPX4) gene was significantly increased (p < 0.01; Figure 7). In addition, there was
no significant difference in the relative mRNA expression of fatty acid metabolism (e.g., ACAT1),
glutathione metabolism (e.g., GGT5), Carbohydrate metabolism (e.g., ENPP1, PYGM, and ALDOC)
and the male reproductive (e.g., HMOX1, LEPTIN, and METTL3) (p > 0.05; Figure 7).
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Figure 7. Effect of maternal fiber intake on the relative expression of mRNA. The values were expressed
as mean ± SEM. * means p < 0.05, ** p < 0.01, *** p < 0.001, as compared to normal control group.
Con = control group, Fiber = Fiber group.

3. Discussion

Results showed that fiber supplementation of sows during pregnancy was beneficial for
male piglets, inducing an early development of the testes and an increase in the testicular organ
index; the higher the testicular organ index, the better the nutritional environment for testicular
development [9]. To our knowledge, this is the first study that shows that the supplementation
of the maternal diet with fiber during pregnancy could increase the number of Sertoli cells and
spermatogonia in offspring testes. The more spermatogonia and Sertoli cells, the more conducive to
testicular development, which may have long-term effects in offspring reproductive performance.

GO analysis and KEGG pathway analysis of our data showed that many of the DEPs are involved
in carbohydrate metabolism, fatty acid metabolism, GSH metabolism, and renin-angiotensin system
pathways. These DEPs may play an important role in early testicular development; related pathways
may also be involved in regulating the early development of testes. Now, it has been demonstrated that
carbohydrate metabolism plays an important role in nutrient supply to testes by Sertoli cells [31,32].
In this regard, ENPP1, PYGM, and ALDOC are all involved in carbohydrate metabolism. Although there
were no previous studies about their role in male reproduction, we found that the GLU content in
offspring testes of Fiber was 26.43% higher than that of Con, suggesting that maternal fiber intake may
alter testicular GLU supply to the offspring. It is well-known that GLU is one of the main substances
that pass through the placental barrier [33]. After glucose enters the fetus, mediated by glucose
transporters (GLUTs), it is metabolized and transmitted to the testes, diffusing through the blood-testis
barrier. In the testis, Sertoli cells use GLU to produce lactate [31]. Neither spermatocytes nor sperm
cells can use GLU directly, but utilize lactate as an energy source [32]. Lactic acid increases protein
synthesis by producing adenosine triphosphate (ATP); then, it regulates the rate of nicotinamide
adenine dinucleotide (NADPH) oxidase oxidation and the pentose phosphate pathway, and plays a
role in other metabolic pathways in sperm cells [34]. In fact, the lactic acid concentration in the testis of
Fiber was 55.96% higher than that in Con. Several studies have shown that infusion of lactic acid in
testes can improve spermatogenesis in adult cryptorchidism [35], and that it has antiapoptotic effects
on germ cells [34]. Therefore, the secretion of lactate by Sertoli cells is essential for spermatogonia.
Sertoli cells ensure enough lactic acid supply in the microenvironment where germ cells develop,
even in the absence of glucose [36]. This suggests that fiber intake by the mother may affect testicular
development by impacting carbohydrate metabolism, thereby striking the energy supply of both
glucose and lactate in the testis.

Besides, the process of testis development needs plenty of lipids [37]; fatty acid metabolism is
important in early testis development in the fetus. ACAT1 and FADS1 genes are involved in fatty
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acid metabolism, and their expression affects CoA production, which in turn affects the β-oxidation
process and fatty acid biosynthesis. ACAT1 contributes to the balance of CHO in the body, essential in
the process of sperm production [38]. The expression of FADS1 is related to fatty acid synthesis, and
CHO synthesis is positively correlated with FADS1 gene expression [39]. The CHO, TG, and HDL
content in offspring testes in Fiber were higher than those of Con, and the expression of ACAT1 and
FADS1 was also higher in Fiber compared with Con, indicating that maternal fiber intake may alter
offspring testicular lipid content. TGs do not cross the placental barrier directly, while lipoprotein
receptors, lipoprotein lipase, phospholipase A2, and intracellular lipase are introduced into the fetus to
resynthesize triglycerides [33,37]. In spermatogenic epithelial cells, Sertoli cells can synthesize CHO
in vitro, but the CHO concentration required for steroid production or spermatogenesis exceeds the
ability of Sertoli cells to synthesize the compound, thus, testicular CHO synthesis depends on lipid
transport in the blood circulation [40]. Some studies have shown that Omega-3 polyunsaturated fatty
acids have no effect on the survival of TM4 cells, but that they can improve the cell viability caused
by palmitic acid [41]. Jutika Datar [42] found that the genes involved in triacylglycerol synthesis and
sphingomyelin metabolism of phosphatidylglycerol were barely expressed in the dysplastic testes of
obese rats as determined by transcriptome sequencing. Hermo et al. [43] also found inactivation of
genes involved in lipid metabolism in mice affected spermatogenesis, suggesting that genes related
to fatty acid metabolism in testes play a crucial role in testicular development. This demonstrates
that fibers may affect testicular development by affecting lipid metabolism, directly modifying lipid
supplies, such as CHO, TG, and HDL, in the testis.

Glutathione metabolism, involving genes like GPX4 and GGT5, is also related to Sertoli cell
metabolism, important for testis development [31]. The expression of GPX4 affects the synthesis
of GSH and oxidized l-glutathione (GSSG). GGT5 is a key gene, mainly expressed in mammalian
Leydig cells; increasing the expression of GGT5 may alter local oxidation status and impair steroid
production in the testicles [44]. We found that the relative expression of GPX4 in Fiber was 72.41%
lower than that of Con, while there were no significant differences in the GSH content between the
two groups. These data may indicate that enzyme interactions for GSH synthesis and metabolism,
resulting in little changes in GSH content. In contrast, studies have shown that overexpression of
GPX4 may cause a fertility decrease [45]. It is known that Sertoli cell metabolism highly depends on
GSH and monocarboxylate transporters [31]. Sertoli cells, peritubular cells, pachytene spermatocytes
round spermatids, and interstitial tissues contain high concentration of GSH, whereas Sertoli cells
and peritubular cells also have high GSH-dependent enzyme activities [46]. The addition of GSH
can improve the total motility and plasma membrane integrity of ram sperm after thawing [47], and
it has an effect on maintaining sperm motility [47]. Moreover, Stradaioli [48] found that high GSH
levels in the extender can reduce oxidative damage over surviving sperm during freezing and thawing.
It was also found that when GSH was added to the thawing agent, the sperm fertilization capacity
would increase in direct proportion to GSH dose [49]. Mata-Campuzano discovered that cryopreserved
spermatozoa supplemented with GSH could improve the sperm mitochondrial activity, resulting in an
increase in litter size after artificial insemination [50]. We suggest that dietary fibers improve testicular
development by changing the expression of GSH synthesis and metabolism enzymes.

Some studies have suggested that there is a specific renin-angiotensin system in testes. Testes can
synthesize angiotensin-converting enzyme (ACE) [51] which regulates angiotensin production; in
turn, angiotensin II may play a role in spermatogenesis, keeping sperm motility and fertilization [52].
ACE is a key checkpoint in the renin-angiotensin system; restrictive expression of ACE hinders the
development of Leydig cells and spermatozoa [53]. This work showed that the expression of ACE in
Fiber was 82.10% higher than in Con, suggesting that dietary fibers may affect the renin-angiotensin
system by increasing ACE. Thus, fibers may increase germ cell number in the testes through changes in
the renin-angiotensin system, which promotes testicular development. In addition, METTL3, ARID4A,
HMOX1, and LEPROT are involved in male reproductive related processes: METTL3 regulates
spermatogonial differentiation and meiosis initiation [54]. ARID4A mainly expresses in testicular
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Sertoli cells, supporting spermatogenesis and constructing the blood-testis barrier; an ARID4A gene
deletion leads to phenotypic dysfunction of Sertoli cells, spermatogenic disorders, damages to the
blood-testis barrier, and increased seminiferous tubule permeability [55]. HMOX1 can regulate the
levels of reactive oxygen species of human seminiferous tubules during cryopreservation, in addition, it
has cytoprotective effect and can ease cisplatin-induced reproductive toxicity in male rats. Additionally,
some studies reveled that increasing the expression of leptin and leptin receptors (such as LEPROT)
were inversely correlated with the secretion of testosterone (T), the main androgen formed by the fetal
testes at the time of male sexual differentiation [56]. Thus, leptin and leptin receptors are important in
testis development. As their expression is changed by maternal fibers intake, these changes may affect
the testes development at some extent.

4. Materials and Methods

All experimental procedures followed the current law regarding animal protection and were
approved by the Guide for the Care and Use of Laboratory Animals prepared by the Animal Care and
Use Committee of Sichuan Agricultural University (permit number DKYB20131704, date 2 January
2018). The experiment was carried out at the Sichuan Agricultural University experiment teaching base.

4.1. Animals and Diets

A total of 36 gilts (Landrace×Yorkshire), 9-month-old each, were used in a 118-day trial. Sows began
mating at the third estrus, and they were randomly divided into the control group (Con; n = 18) and the
fiber group (Fiber; n = 18) when they were pregnant (randomized controlled trials registration number:
ISRCTN50167738). Sows were fed with diet limitation during gestation to control their body weight.
Diets were fed at 9 am every day. During the first 89 days of pregnancy, feeding levels were of 2.15 kg/day,
whereas they were increased to 2.55 kg/day from day 90 to 110. Con was fed a corn-soybean basal diet
according to the NRC (2012) (Table 2), whilst Fiber’s basal diet was supplemented with 22.60 g/kg inulin
and 181.60 g/kg cellulosic (i.e., 48.59 g inulin and 390.44 g cellulosic during the first 89 days of pregnancy,
and 57.63 g inulin and 463.08 g cellulosic from day 90 to 110). During the experiment, animals were
housed in individual pens in a well-ventilated room with a temperature between 20 and 26 ◦C and
controlled lighting for 12 h/day. Water was provided ad libitum. Daily cleaning and disinfection work
were carried out to keep the room hygienic and dry. Sows were transferred to the farrowing room
at day 110 of pregnancy. Sows were fed with a lactation diet (according to NRC 2012) after delivery.
Cross-fostering was first allowed 24 h after farrowing and it was only carried out within each treatment
group. Then, we recorded the individual weight of 7-day-old piglets.

Table 2. Control group diet and nutritive composition.

Material and Composition, % Nutritive Composition

Corn 62.39 DE, Mcal/kg 3.36
Peeled soybean meal 13.10 CP, % 13.39

Fish meal 2.00 CF, % 2.90
Flour 10.00 CF, % 1.41

Corn starch 10.00 Soluble fiber, % 1.13
Lys 0.10 Insoluble fiber, % 9.08
Thr 0.02 Insoluble/soluble 8.03

CaCO3 0.84 Dietary fiber, % 10.21
CaHCO3 0.46 Ca, % 0.60

NaCl 0.40 Available P, % 0.27
Choline 0.14 Lys, % 0.60

Sow multivitamin 1 0.05 Met, % 0.21
Mineral addition 2 0.50 Thr, % 0.46

Total 100.00 Trp, % 0.14
1 Multi-dimensional of breeding pig per kilogram: VA 17500IU, VD3 5000IU, VE 37.5IU, VK3 5 mg, VB1 5 mg, VB3
12.5 mg, VB6 7.5 mg, VB12 0.05 mg, biotin 0.2 mg, niacin 50 mg, folic acid 2.5 mg, D-calcium pantothenate 25 mg,
ethoxyquinoline 0.25 mg. 2 Premix per kilogram: Cu 10 mg, Fe 100 mg, I 0.6 mg, Zn 100 mg, Mn 30 mg, Se 0.25 mg.
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4.2. Sample Collection

The testes of 7-day-old piglets were collected after anesthesia (Zoletil 50; Virbac, Nice, France)
and weighted. Excised testes were dissected into two portions, one part was stored at −80 ◦C until
analysis and the other part was fixed in 4% paraformaldehyde for 2 h.

4.3. Physiology and Biochemistry of Testes

Fixed testis tissues were embedded in paraffin and 5 µm sections were cut using a Leica microtome
(Leica, Solms, Germany). Sections were then fixed in glass slides, stained with hematoxylin and eosin,
and photographed under a light microscope (Motic, Xiamen, China) at a 100×magnification. We used
Image-Pro plus 6.0 to count the number of seminiferous tubules, Sertoli cells, and spermatogonia per
unit area to evaluate the testicular development [57]. For each section, 10 visual fields were selected;
each visual field included at least 5 seminiferous tubules. After counting the number of seminiferous
tubules and the cells within, the average number value was calculated for each cell type [10].

Some of the samples that were stored at−80 ◦C were thawed and homogenized in phosphate buffer
(pH 7.4). Homogenates were centrifuged and the supernatants transferred to clean tubes. GSH content
was measured using enzyme-linked immunosorbent assay kits (S0053, Beyotime, Shanghai, China)
according to the manufacturer’s specification. The content of TG, CHO, LDL, HDL, NEFA, GLU, and
l-LAC was measured using an automatic biochemistry analyzer (Hitachi 3100, HITACHI, Tokyo, Japan).

4.4. TMT Quantitative Proteomic

The testes of 3 piglets from each group were selected for proteomic analysis. Entrusting PTM
Biolabs, Inc (Hangzhou, China) to achieve it. Briefly, each sample was grinded into powder in
liquid nitrogen and mixed with a four times volume of lysis solution. Then, samples were subjected
to supersonic splitting thrice. Samples were centrifuged and supernatants collected. The protein
concentration per sample was determined using a BCA Protein Assay kit (P0011, Beyotime) according
to the manufacturer’s specifications.

Dithiothreitol was added to each sample to a final protein concentration of 5 mM for reducing the
protein’s disulfide bonds. After that, iodoacetamide was added to a final concentration of 11 mM and
samples were incubated. The urea concentration in protein samples was diluted by adding 100 mM
TEAB. Then, trypsin was added at a 1:50 trypsin-to-protein mass ratio for the first digestion and left
stand overnight before adding trypsin once more to a 1:100 trypsin-to-protein mass ratio for a second
4 h digestion period.

Peptides were desalted using a Strata X C18 SPE column (Phenomenex, Los Angeles, CA, USA)
and vacuum dried. We reconstituted peptides in 0.5 M TEAB and processed them according to the
instructions of the TMT kit (Scientific™, Thermo, Waltham, MA, USA).

Tryptic peptides were fractionated by high pH reverse-phase HPLC using an Agilent
300Extend-C18 chromatographic column (5 µm particles, 4.6 mm ID, 250 mm length).

Tryptic peptides were dissolved in an aqueous solution containing 0.1% formic acid and
2% acetonitrile (mobile phase A) and separated by the EASY-nLC 1000 system (Thermo Scientific).
An aqueous solution of 0.1% formic acid and 90% acetonitrile was used as mobile phase B.

Our second-order mass spectrum data were retrieved by MaxQuant (v.1.5.2.8; Munich, Germany)
using the following parameters: Trypsin/P as stablished as the digestion mode. The precursor ion
mass errors of the first search and the main search were 20 and 5 ppm, respectively. The error for the
fragment ions was 0.02 Da. Cysteine alkylation was set as a fixed modification, while the oxidation of
Met and the acetylation of the N-terminus of the protein were set as variable modifications.
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4.5. Bioinformatics Analysis

4.5.1. Annotation Methods

Gene Ontology (GO) annotations at the protein level were derived from the UniProt-GOA database
(www.http://www.ebi.ac.uk/GOA/; Hinxton, UK). First, identified protein IDs were converted to their
corresponding UniProt IDs and then to their GO IDs. Based on these Go IDs, we retrieved the
corresponding information from the UniProt-GOA database. When the identified proteins were not
annotated by the UniProt-GOA database, we used InterProScan (Hinxton) to annotate the corresponding
GO function of the proteins, based on a protein sequence alignment method. Then, proteins were
classified by GO annotation into three categories: biological process (BP), cellular component (CC) and
molecular function (MF).

Next, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate
those protein pathways in which relevant identified proteins participate. Using KEGG online service
tools KAAS and KEGG mapper, we annotated submitted proteins, and mapped them on the KEGG
pathway database, respectively.

4.5.2. Functional Enrichment

GO annotation classifies proteins into three categories: biological process, cellular compartment,
and molecular function. For each category, a Fisher’s exact test (two-tailed) was used to test the
enrichment of the DEPs against the whole set of identified proteins. GO enrichment tests with a
corrected p-value below 0.05 were considered significant.

In addition, the KEGG database was used to identify enriched pathways by a Fisher’s exact test
(two-tailed) to test the enrichment of the DEPs against all identified proteins. Pathway enrichment
tests with a corrected p-value below 0.05 were considered significant. Finally, these pathways were
classified into hierarchical categories according to the KEGG website.

4.5.3. Quantitative PCR Analysis

We selected specific parts of genes to check the results obtained from the proteomics analysis;
the primers used are described in Table 3. We blended testicular samples with TRIzol to homogenization.
Chloroform was added to each sample and the mix was shaken and then allowed to stand. Samples were
centrifuged, the aqueous phase mixed with isopropanol and left stand still again. Samples were
centrifuged, supernatants were discarded, and 75% ethanol was added to the pellets. Resuspension
was done by continuous beating of the tubes. Once again, samples were centrifuged and RNA
pellets were air dried and resuspended in DEPC water. RNA was reverse transcribed according to
the reverse transcription kit’s instructions (Takara). For quantitative PCR, we used a real-time PCR
system (Bio-Rad, Hercules, CA, USA) the amplification reaction was done according to the product
specifications (Takara). β-actin was used as a reference gene; the relative expression of the target gene
was calculated by the 2−∆∆Ct method [58].
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Table 3. Details of the primers.

Gene
Name

Forward Sequence
(5′→3′)

Reverse Sequence
(5′→3′) Accession No Product Length

(Base Pair)

ACAT1 GGCTTACCTATTTCTACTCCGTGC CCATTCCACCTGCCACCAT XM_005667301.3 127
FADS1 AGCCTTGCTGCCTGCCTACT CAGTGGCACATAAGTGAGGAAGAT NM_001113041.1 124
GGT5 AACACGGTTCACCTGTGGATG CCTGTGGTCGCGTTGTAGATAGT XM_021074378.1 118
GPX4 AACCAGTTTGGGAGGCAGGAG GGACTTTCATCCACTTCCACAGAG NM_214407.1 142
PYGM ACGTGGACGACGAAGCCTTTA TTGATGTGGACTTTGTATTCCCTCT XM_003122588.5 103

ALDOC GATAAAGGCATTGTCGTGGGC GCAAAGTCGGCACCATCCT XM_005656989.3 140
METTL3 CTTGCCCTTACACAGAGCGTTG CAAACTTGCCCAAGATACTGACGT XM_003128580.5 112
ARID4A ATCTGCTCTTTCACCAAACATGC TTCCATTCCATTTGACAGAGGTG XM_021088206.1 124
HMOX1 CAGGCTGAGAATGCCGAGTT CTTGTTGTGCTCAATCTCCTCCT NM_001004027.1 129

ACE ACGCCAACAGCACTTGTCTTC ATGGCTCTGCCCACCTTGTC NM_001033015.3 121
LEPTIN TCATCAAGACGATTGTCACCAGG TGGATCACATTTCTGGAAGGCA XM_021078503.1 184
ENPP1 CACATCCCAGATTCCCTCACA GCCTCAACAACTCTTCAACCCAT XM_021087944.1 131
β-actin TCTGGCACCACACCTTCT TGATCTGGGTCATCTTCTCAC XM_021086047.1 114

4.6. Statistical Analysis

The data values of this study were expressed as mean ± SEM. All the data were analyzed
by t test using SAS 9.4 software (Raleigh, NA, USA), p < 0.05 was considered as a statistically
significant difference.

5. Conclusions

We identified 16 different DEPs which affect testis cell proliferation. Testis development in the
offspring of sows with different fiber intake during gestation may be affected by the pathways to which
these DEPs belong. The exerted effects on early testicle development may be due to the regulation
of key points in carbohydrate metabolism, fatty acid metabolism, and GSH metabolism pathways
as well as in the renin-angiotensin system. Our results improve our understanding of the molecular
mechanisms associated to the effect of maternal fiber intake on offspring.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/18/
4549/s1.

Author Contributions: Conceptualization, Y.L. (Yan Lin) and D.W. (De Wu); Data curation, L.L.; Formal analysis,
L.L.; Investigation, Y.L. (Yang Li), K.W. and D.W. (Dongqin Wei); Methodology, L.L., Y.L. (Yang Li), and B.F.;
Project administration, Y.L. (Yan Lin); Resources, S.X., B.F., L.C., Z.F., J.L., Y.Z. and D.W. (De Wu); Supervision,
D.W. (De Wu); Writing—original draft, L.L.; Writing—review & editing, Y.L. (Yan Lin).

Funding: The present study was funded by National 13th Five-Year Plan Key R&D Projects: [2017YFD0501902],
National 13th Five-Year Plan Key R&D Projects: [2018YFD0501002], the National Natural Science Foundation of
China [NO. 31702128].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fang, L.Y.; Du, J.W.; Tao, X.R.; Liu, G.L.; Wang, F.; Chen, X.R. The expression of c-fos in spermatogonia and
mesenchymal cells during the development of fetal testis. J. Anat. 2007, 30, 805–808.

2. Lording, D.W.; De kretser, D.M. Comparative ultrastructural and histochemical studies of the interstitial cells
of the rat testis during fetal and postnatal development. Reproduction 1972, 29, 261–269. [CrossRef] [PubMed]

3. Kerr, J.B.; Knell, C.M. The fate of fetal Leydig cells during the development of the fetal and postnatal rat
testis. Development 1988, 103, 535–544. [PubMed]

4. Orth, J.M. Proliferation of sertoli cells in fetal and postnatal rats: A quantitative autoradiographic study.
Anat. Rec. 1982, 203, 485–492. [CrossRef] [PubMed]

5. Van Straaten, H.W.; Wensing, C.J. Leydig cell development in the testis of the pig. Biol. Reprod. 1978, 18,
86–93. [CrossRef] [PubMed]

6. Chen, H.; Ge, R.-S.; Zirkin, B.R. Leydig cells: From stem cells to aging. Mol. Cell Endocrinol. 2009, 306, 9–16.
[CrossRef] [PubMed]

http://www.mdpi.com/1422-0067/20/18/4549/s1
http://www.mdpi.com/1422-0067/20/18/4549/s1
http://dx.doi.org/10.1530/jrf.0.0290261
http://www.ncbi.nlm.nih.gov/pubmed/4260085
http://www.ncbi.nlm.nih.gov/pubmed/3246223
http://dx.doi.org/10.1002/ar.1092030408
http://www.ncbi.nlm.nih.gov/pubmed/7137603
http://dx.doi.org/10.1095/biolreprod18.1.86
http://www.ncbi.nlm.nih.gov/pubmed/626770
http://dx.doi.org/10.1016/j.mce.2009.01.023
http://www.ncbi.nlm.nih.gov/pubmed/19481681


Int. J. Mol. Sci. 2019, 20, 4549 13 of 15

7. Fukuda, T.; Hedinger, C.; Groscurth, P. Ultrastructure of developing germ cells in the fetal human testis.
Cell Tissue Res. 1975, 161, 55–70. [CrossRef]

8. Griswold, M.D. The central role of Sertoli cells in spermatogenesis. Semin. Cell Dev. Biol. 1998, 9, 411–416.
[CrossRef]

9. Xun, W.; Yueying, W. Animal Physiology; China Forestry Press: Beijing, China, 2016; Volume 328. (In Chinese)
10. Bielli, A.; Pérez, R.; Pedrana, G. Low maternal nutrition during pregnancy reduces the number of Sertoli

cells in the newborn lamb. Reprod. Fertil. Dev. 2002, 14, 333–337. [CrossRef]
11. Ramos, C.d.F.; Lima, S.S.; Rocha, M.L.M. Maternal malnutrition during lactation alters gonadotropin-releasing

hormone expression in the hypothalamus of weaned male rat pups. Nutr. Neurosci. 2010, 13, 170–174.
[CrossRef]

12. Vilanova Teixeira, C.; Silandre, D.; Marcelly de Souza Santos, A. Effects of maternal undernutrition during
lactation on aromatase, estrogen, and androgen receptors expression in rat testis at weaning. J. Endocrinol.
2007, 192, 301–311. [CrossRef] [PubMed]

13. Rehfeldt, C.; Nissen, P.M.; Kuhn, G. Effects of maternal nutrition and porcine growth hormone (pGH)
treatment during gestation on endocrine and metabolic factors in sows, fetuses and pigs, skeletal muscle
development, and postnatal growth. Domest. Anim. Endocrinol. 2004, 27, 267–285. [CrossRef] [PubMed]

14. Zambrano, E.; Rodríguez-González, G.L.; Guzmán, C. A maternal low protein diet during pregnancy
and lactation in the rat impairs male reproductive development. J. Physiol 2005, 563, 275–284. [CrossRef]
[PubMed]

15. Rae, M.T.; Rhind, S.M.; Fowler, P.A.; Miller, D.W.; Kyle, C.E.; Brooks, A.N. Effect of maternal undernutrition
on fetal testicular steroidogenesis during the CNS androgen-responsive period in male sheep fetuses.
Reproduction 2002, 124, 33–39. [CrossRef] [PubMed]

16. Liang, H.; Zhang, Z. Food restriction affects reproduction and survival of F1 and F2 offspring of Rat-like
hamster (Cricetulus triton). Physiol. Behav. 2006, 87, 607–613. [CrossRef]

17. Edwards, L.J.; Bryce, A.E.; Coulter, C.L.; McMillen, I.C. Maternal undernutrition throughout pregnancy
increases adrenocorticotrophin receptor and steroidogenic acute regulatory protein gene expression in the
adrenal gland of twin fetal sheep during late gestation. Mol. Cell. Endocrinol. 2002, 196, 1–10. [CrossRef]

18. Iwasa, T.; Matsuzaki, T.; Yano, K.; Mayila, Y.; Irahara, M. Prenatal undernutrition attenuates fasting-induced
reproductive dysfunction in pre-pubertal male rats. Int. J. Dev. Neurosci. 2018, 71, 30–33. [CrossRef]

19. Jazwiec, P.A.; Sloboda, D.M. Nutritional adversity, sex and reproduction: 30 years of DOHaD and what have
we learned? J. Endocrinol. 2019, 242, T51–T68. [CrossRef]

20. Longcope, C.; Feldman, H.A.; McKinlay, J.B. Diet and Sex Hormone-Binding Globulin. J. Clin. Endorc. Metab.
2000, 85, 293–296. [CrossRef]

21. Yu, B.; Khan, G.; Foxworth, A.; Huang, K.; Hilakivi-Clarke, L. Maternal dietary exposure to fiber during
pregnancy and mammary tumorigenesis among rat offspring. Int. J. Cancer 2006, 119, 2279–2286. [CrossRef]

22. Dai, F.J.; Chau, C.F. Classification and regulatory perspectives of dietary fiber. J. Food Drug Anal. 2017, 25,
37–42. [CrossRef] [PubMed]

23. Ötles, S.; Ozgoz, S. Health effects of dietary fiber. Acta Sci. Pol. Technol. Aliment. 2014, 13, 191–202.
24. Le Bourgot, C.; Ferret-Bernard, S.; Blat, S.; Apper, E.; Huërou-Luron, I.L. Short-chain fructooligosaccharide

supplementation during gestation and lactation or after weaning differentially impacts pig growth and IgA
response to influenza vaccination. J. Funct. Foods 2016, 24, 307–315. [CrossRef]

25. Yang, Y.; Tang, X.L.; Ding, L.L.; Wang, L.X.; Xu, Q.S.; Wang, X.W. Effects of complex oligosaccharides on
testicular development and reproductive hormones in young mice. J. Nutr. 2014, 2, 135–140.
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