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Ferroptosis, a recently discovered regulated programmed cell death, is associated with

tumorigenesis and progression in glioblastoma. Based on widely recognized ferroptosis-

related genes (FRGs), the regulation of ferroptosis patterns and corresponding

characteristics of immune infiltration of 516 GBM samples with GSE13041, TCGA-GBM,

and CGGA-325 were comprehensively analyzed. Here, we revealed the expression,

mutations, and CNV of FRGs in GBM. We identified three distinct regulation patterns

of ferroptosis and found the hub genes of immunity and stemness among DEGs in

three patterns. A prognostic model was constructed based on five FRGs and verified

at the mRNA and protein level. The risk score can not only predict the prognosis but

also the degree of immune infiltration and ICB responsiveness by functional annotation.

The overall assessment of FRGs in GBM patients will guide the direction of improved

research and develop new prognostic prediction tools.
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INTRODUCTION

Grade IV glioma, which is termed as glioblastoma multiforme (GBM), is the most lethal glioma
(1). Despite advances in the treatment of GBM with surgery, radiation, and chemotherapy, the
survival rate of patients remains 18 months (2). Previous investigations have depicted some
malignant biological features that contribute to the highly recurrent and drug-resistance of GBM
(3). Tremendous research studies have focused on molecular markers that contribute to GBM
stemness and immunity (4, 5). Our previous study conducted a comprehensive analysis of the
stemness of GBM (6). However, many therapies targeting these molecular markers become less
effective in clinical practice. Therefore, the novel and effective prognostic models for the prediction
of GBM prognosis and immunotherapy response need to be investigated and clarified.

Ferroptosis is a new type of programmed cell death proposed by Stockwell et al. (7).
Research on the significance of ferroptosis in cancer has recently gained momentum, whereas
disruption of this process under human intervention may show clinical effects (8, 9). Ferroptosis
manifests cell membrane rupture and blebbing, mitochondrial and morphological changes,
with the cell nucleus remain intact (10). For instance, downregulation of SLC1A5 provides
melanoma cell partial immunity to ferroptosis induction (11). GOT1 inhibition promotes
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pancreatic cancer cell death by potentiating the activity of
ferroptosis (12). Knockdown of TFRC can inhibit the cell
proliferation of BRCA cell lines (13). More and more genes
related to ferroptosis have been identified in glioma, such as
ACSL4 that protects glioma cells and exerts antiproliferative
effects by activating a ferroptosis pathway (14), ATF3 that
contributes to brucine-induced glioma cell ferroptosis (15), and
COPZ1 that manipulates NCOA4 to regulate the ferroptosis
process in GBM (16). These ferroptosis-related genes (FRGs)
are closely linked to tumorigenesis and progression. However,
whether these genes are associated with the prognostic value and
molecular functions of GBM patients has not been elucidated.

Despite its implication in cell death, recent studies also
evaluated ferroptosis-associated diseases and their role on
immunity. For example, CD8+ T cells suppress tumor growth by
inducing ferroptosis and pyroptosis (17). In addition, ferroptosis
could release various damage-associated molecular patterns
(DAMPs) or lipid metabolites that are involved in the cellular
immune response (18). Notably, ferroptosis was associated with
tumor immune checkpoints in clear cell renal cell carcinoma
(19). These researches explored the mechanisms in ferroptosis
and immune microenvironment. However, these studies have
not specifically focused on GBM, and the relationship between
ferroptosis and immune response in GBM has not been
well characterized.

Herein, we integrated data from the public Gene Expression
Omnibus (GEO), The Cancer Genome Atlas (TCGA) databases,
and the Chinese Glioma Genome Atlas (CGGA) to evaluate
the role of FRGs signature in the prognosis in GBM patients.
We further identified three distinct regulations of ferroptosis.
Comparison of the DEG of three patterns unveiled five key
genes involved in immunity and stemness. These genes may
have potential value in the regulation of ferroptosis in GBM.
Finally, a risk score based on FRGs had been constructed. Within
functional annotation, we found that the risk score is not only a
good predictive value for survival but also a potential factor for
immune checkpoint blockade (ICB) responsiveness. Our study
could help to guide the link between ferroptosis and GBM stem
cells intensive research in the future and identify new ferroptosis-
related targets and immune therapies.

MATERIALS AND METHODS

Data Acquisition
Raw RNA-seq data (FPKM files) and clinical data on GBM
were extracted from The Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/), Chinese Glioma Genome Atlas (CGGA,
http://www.cgga.org.cn/) and Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo). After data filtration,
GSE13041, TCGA-GBM, and CGGA-325 with 516 GBM
tissue samples were gathered in this study for further analysis.
Infiltration estimation for all TCGA tumors was collected from
TIMER2.0 (http://timer.comp-genomics.org/). Copy number
variant (CNV) data and somatic mutations of all genes were
downloaded from the UCSC Xena browser (https://xenabrowser.
net). CNV differences of all genes were calculated by the
chi-square test (p < 0.05). The location of the significantly

different genes on the chromosomes was shown by the RCircos R
package. The protein–protein interaction network was produced
by the STRING (https://www.string-db.org) database and was
reconstructed via Cytoscape software. The protein expressions
in human normal tissues and tumor tissues were validated via
the Human Protein Altas (HPA, https://www.proteinatlas.org/).

Identification of FRGs
Ferroptosis-related genes had been categorized according to
the existing literature which contains iron metabolism, oxidant
metabolism, lipid metabolism, energy metabolism, and other
unclassified factors (9, 20–22). According to the description of
FRGs in glioma research (23), 59 genes were incorporated into
follow-up studies and were provided in Supplementary Table 1.
Considering the small number of normal brain tissues in the
TCGA, we investigated the expression of the FRGs on the online
web server GEPIA (http://gepia.cancer-pku.cn/). Differentially
expressed genes (DEGs) were calculated using the R package
“LIMMA” (|logFC| > 1 and p < 0.05).

Functional Enrichment Analyses
To functionally annotate DEG sets during the analysis, Kyoto
Encyclopedia of Genes and Genomes (KEGG), pathway analysis,
and Gene Ontology (GO) were performed in R software
version 4.0.3 using ClusterProfiler package. To calculate mRNA
expression-based stemness index (mRNAsi), we used the OCLR
algorithm constructed by Malta’s team (24). The mRNAsi was
represented using an index between zero to one to signal that
the higher the mRNAsi, the greater activity of cancer stem cells.
The CytoHubba plugin version 0.1 in Cytoscape version 3.8.2
was employed to identify hub genes, and enrichment analysis was
performed using the ClueGO plugin version 2.5.8.

The TIMER, CIBERSORT, QUANTISEQ, Microenvironment
Cell Populations-counter (MCP-counter), XCELL, and
Estimating the Proportion of Immune and Cancer cells
(EPIC) algorithms were used to estimate the abundance
of immune cells between the high- and low-risk groups.
The “ESTIMATE” R package was used to assess immune
infiltration (based on the ImmuneScore, StromalScore, and
ESTIMATEScore). The clustering was performed usingWGCNA
and themodule–trait correlations withmRNAsi, EREG-mRNAsi,
and ESTIMATEScore. According to the number of the genes, the
minModuleSize of the mRNA was set to 50. Gene sets that could
predict the responses to immune checkpoint blockade therapy
were obtained from the work by Mariathasan. Single-sample
gene set enrichment analysis (ssGSEA) was used to estimate
immune-related functions in TCGA-GBM patients utilizing gene
set variation analysis (GSVA) (25) version 1.40.1.

Tumor immune dysfunction and exclusion (TIDE) (http://
tide.dfci.harvard.edu/), a well-established algorithm was
employed to predict the clinical response to ICB therapy (26).
TIDE is a computational framework developed to evaluate the
potential of tumor immune escape from the gene expression
profiles of cancer samples. The TIDE score could serve as a
surrogate biomarker to predict response to ICB. The SubMap
(https://www.genepattern.org/) was employed to validate
the reliability of the prediction of TIDE. Mapping result is
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represented as a subclass association matrix filled with p-values
for each subclass association (27).

Construction of a Scoring System and
Calculate the Risk Score
Univariate Cox regression analysis was implemented to filtrate
the prognostic FRGs. The ConsensusClusterPlus package in
R was employed to investigate the detailed information in
unsupervised subclasses discovery and to divide samples into
appropriate parts for maximum stability (28). Thereafter, we
used the R package “glmnet” to conduct least absolute shrinkage
and selection operator (LASSO) Cox regression algorithm and
development of a potential risk signature. The minimum value of
lambda was derived from 1,000 crossvalidations (“1-se” lambda),
which corresponding partial likelihood deviance value was the
smallest for the risk model (29, 30). At last, coefficients with
regression were confirmed by the “cvfit” function with 1,000
repeats. FRG prognostic signature involves five genes. The risk
score calculating formula is as follows:

Riskscore =

n∑

i= 1

Coefi ∗ xi

where Coefi means the coefficients and xi is the expression value
of each FRGs. This formula was used to calculate the risk score for
each GBM patient. The predictive ability of prognostic signature
for clinical traits and survival was reflected by receiver operating
characteristic (ROC) and the area under the curve (AUC).

The independent clinical factor validated by univariate and
multivariate Cox regression analyses was enrolled to construct
a nomogram for prognosis prediction. Patients with missing
data were excluded. The nomogram was performed using the
“survival” and “regplot” packages of R 4.1.0 to investigate the
probability of 1-, 3-, and 5-year overall survival (OS).

RNA Extraction and Real-Time PCR
For RNA extraction, three GBM tissues and one peritumoral
brain edema were collected in the Second Affiliated Hospital of
Harbin Medical University. This research was approved by all
the patients and the ethics committee of hospital. Total RNA
was isolated using TRIzol reagent (Invitrogen, USA) according to
the manufacturer’s instructions. According to the manufacturer’s
instructions of the Nanodrop ND-2000 spectrophotometer
(Thermo Scientific, USA), 2 µg of the total RNA was transcribed
into cDNA. SYBR Green PCR kit (Takara, Japan) was used for
qRT-PCR. The 2–11Cq method was used to calculate gene
transcription level, with β-actinmRNA as control. Data represent
the mean ± SD of triplicate real-time PCR. Primers (Tsingke
Biotechnology Co., Ltd, Beijing, China) used are displayed in
Supplementary Table 2. Clinical characteristics of patient cohort
are displayed in Supplementary Table 3.

Statistical Analysis
All the data were analyzed using the R software version 4.1.0.
The OS of the patients with glioma between different groups
was analyzed using Kaplan–Meier curves with the log-rank test.

Correlations were assessed via Spearman’s coefficient. Kruskal–
Wallis tests were applied for the comparison of gene expression
in two or more groups. The landscape of CNV and gene
location were visualized by the RCircos R package (31). A
p < 0.05 was considered as statistically significant. Statistical
analyses were performed using GraphPad Prism 9 for rest of
the data.

RESULTS

Landscape of FRGs in GBM
A total of 59 FRGs previously reported were included in this
study. We first analyzed the expression of these genes in TCGA-
GBM and normal tissues. The expression of 59 genes showed
significant differences in TCGA-GBM with normal samples
(Figure 1A). Among them, FANCD2, STEAP3, HMOX1, and
other eight genes were upregulated in GBM (p < 0.001), whereas
ACSL4, GLS2, and PEBP1 were the opposite (p < 0.001). We
next examined CNV and chromosome location. Chromosome
10 carried the largest number of genes that undergo copy
number variation. PGD and SLC1A5, the genes with the highest
frequency of copy number loss, were located on chromosomes 1
and 19, respectively (Figures 1B,C). After that, we investigated
the mutation frequencies of these genes in the TCGA-GBM
dataset. As a result, there were 21 FRGs with mutation frequency
>1%, and TP53 had the highest mutation frequency which was
predominantly missense mutation (Figure 1D). Given the high
frequency of copy number loss and mutation of TP53, we further
explored the gene expression of FRGs between TP53 wildtype
and mutant type. Four genes differentially expressed between
subgroups were shown, and ABCC1 exhibited an increased
expression in the TP53 mutant group (Figures 1E–H), which
may be associated with malignant progression of TP53 mutant
status (32).

The Relationship Between FRGs and
Prognosis
Three mRNA-seq datasets that include TCGA-GBM (n = 161),
CGGA325 (n= 137), and GSE12041 (n= 218) were integrated to
interrogate the prognostic significance of FRGs. According to the
previous studies of different metabolic pathways, genes related to
ferroptosis were preliminarily divided into five categories. Gene
expression, correlation, and prognostics are shown in Figure 2A.
Among them, AKR1C1, AKR1C3, FDFT1 that involved in lipid
metabolism, and NCOA4 that involved in iron metabolism were
significantly associated with improved prognosis, which can be
regarded as the protective factors. In contrast, the expression
of STEAP3, HMOX1 that involved in the iron metabolism, and
HSPB1 and SAT1 belong to other categories was associated
with poor prognosis, which can be regarded as the risk factors
(Figure 2A). Next, the Kaplan–Meier survival curve was used,
and six genes that include NCOA4, STEAP3, AKR1C1, AKR1C3,
FDFT1, and HSBP1 were most significantly related to OS
(Figures 2B–G), which indicates that they may be vital in
predicting patient prognosis.
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FIGURE 1 | Landscape of FRGs in TCGA-GBM. (A) The expression levels of FRGs in the TCGA dataset. Red: upregulated genes; blue: downregulated genes. (B)

CNV frequency; red: CNV gain; green: CNV loss. (C) The CNV distribution of all chromosomes. (D) The mutation of FRGs in GBM; green boxes represent missense

mutations, orange splicing mutations, blue frameshift mutations, and red nonsense mutations. (E–H) Four genes (ABCC1, GPX4, PEBP1, and ACSL3) with

significantly different expressions between TP53 wildtype and mutant (p < 0.01).

GSVA and ssGSEA Analysis in three
Clusters of FRGs
To characterize the functions of these FRGs in GBM, they
were clustered for further analysis (Figure 3A). The consensus

distributions for k (2 to 9) were displayed in the empirical
cumulative distribution function (CDF) plots (Figures 3B,C);
given the consensus matrix, k= 3 seemed to be the most suitable
choice. Besides, to verify the effectiveness of unsupervised
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FIGURE 2 | FRGs associated with prognosis. (A) The degree distribution of the prognostic-related gene network. The yellow circles indicate high-risk genes, and the

green circles indicate low-risk genes. The remaining five colored dots represent five types of FRGs. The blue line indicates a negative correlation, and the pink lines

indicate positive correlations with correlation coefficients of p < 0.0001. Cox regression analysis (Cox p-value range 0.0001–1). The size of the dot reflects the p-value.

(B–G) Six FRGs significantly associated with prognosis (NCOA4, STEAP3, AKR1C1, AKR1C3, and HSPB1 p < 0.001; FDFT1 p < 0.01).

clustering, principal component analysis (PCA) can clearly show
the distinction between 3 clusters which proved the accuracy
of our selection for k and the effectiveness (Figure 3D). K–
M analysis found significant differences in OS in the three
clusters (p = 0.008), and cluster A seemed to have the poorest
prognosis. Next, the expression of FRGs in the three clusters
and their clinical characteristics were shown in the heatmap
(Figure 3F). To gain insights into the functional implication,
GSVA was performed to analyze the differentially enriched
KEGG pathways in two of any three clusters. Samples in cluster
A showed prominent enrichment of nod-like receptor (NLR)
signaling pathway, apoptosis, amino sugar and nucleotide sugar
metabolism, and cytokine–cytokine receptor interaction, etc.
(Figures 3G–I). Finally, enrichment of immune cell fractions
in the tumor immune microenvironment (TIME) was assessed
using the ssGSEA algorithm. As a result, most types of
immune cells were significantly enriched in cluster A, such as

activated CD8T cell and eosinophil (Figure 3J). These findings
indicated that different regulatory patterns based on FRGs
reflected the mechanisms in tumor growth, apoptosis, and
immune infiltration.

Identification of Hub Genes in DEGs Using
WGCNA and Functional Annotation
To investigate the specific phenotype-related genes for each
regulatory pattern of ferroptosis, we used the “LIMMA” package
to identify the DEGs. A total of 1,622 DEGs were picked out
in three clusters (Figure 4A). Functional enrichment analysis
found that the main function of these DEGs enriched in
neutrophil activation neutrophil-mediated immunity (BP),
collagen-containing extracellular matrix, secretory granule
lumen (CC), and actin-binding (MF) (Figures 4B,C). For
the KEGG pathway, the most significant pathway for these
DEG enrichment was cytokine–cytokine receptor interaction.
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FIGURE 3 | The unsupervised clustering process for FRGs. (A) Consensus clustering matrix for k = 3. (B) Consensus clustering CDF for k = 2–9. (C) Relative change

in area under the CDF curve for k = 2–9. (D) A PCA plot of unsupervised clustering when k = 3. (E) Prognostic differences between the three clusters after merging

survival information (p < 0.01). (F) The heatmap of three clusters and their clinical characteristics. (G–I) Visualization for the results of KEGG for DEGs with three

clusters. (J) The relative enrichment of each immune cell fraction in the TIME with the gene sets using ssGSEA (*p < 0.05, **p < 0.01, ***p < 0.001).

Frontiers in Neurology | www.frontiersin.org 6 March 2022 | Volume 13 | Article 829926

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Dong et al. Ferroptosis-Related Gene With Glioblastoma

FIGURE 4 | Characteristics of potential traits in different patterns of ferroptosis regulation. (A) A Venn diagram of differential genes in three patterns (p = 0.001). (B)

GO analyses of differentially expressed. (C) KEGG pathway analyses of differentially expressed. (D–F) Hierarchical clustering dendrograms of identified coexpressed

genes in modules. The branches of the cluster dendrogram correspond to the different gene modules. Each leaf corresponds to a gene. Each colored row represents

a color-coded module, which contains a group of highly connected genes. A total of 5 modules were identified after the merger. (F) Correlations between the gene

modules and target traits including mRNAsi, EREG-mRNAsi, and ESTIMATEScore. The corresponding p-value is increased in size from blue to red. (G–J) The four

modules most significantly correlated with mRNAsi and ESTIMATEScore. Cor was the coefficient indices and p was Pearson’s correlation.
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Next, WGCNA was performed to structure gene coexpression
networks and further identified biologically meaningful modules
that corresponded to designate phenotype-related genes,
which include stemness indices and the ESTIMATEScore. The
most appropriate β was 7, and the relatively balanced scale
independence and mean connectivity of the WGCNA were
identified (Figure 4D). A total of 5 modules (merged dynamic)
were identified (Figure 4E minModuleSize = 50). To analyze
the correlations between merged modules and the immune and
stemness phenotypes, module eigengenes (MEs), which could be
regarded as representative of the gene expression patterns in a
module, were determined and used to calculate the correlations
with designated phenotypes. The heatmap in Figure 4F revealed
the key modules (MEyellow and MEturquoise for the mRNAsi
and MEturquoise and MEbrown for the ESTIMATE). The
correlation graphs were plotted to select the hub genes in these
modules (Figures 4G–J). Interestingly, the module turquoise had
the most positive correlation with ESTIMATEScore and most
negative correlation with mRNAsi. Genes with p.MMturquoise
≥ 0.8 and GS.mRNAsi ≤ −0.5 or GS.ESTIMATEScore ≥ 0.5
were screened out (Supplementary Table 4).

The STRING was used to construct PPI networks. In
the module turquoise, 71 genes are negatively correlated
with mRNAsi, and 134 genes are positively correlated with
ESTIMATEScore (GS> 0.5 andMMturquoise> 0.8). According
to the confidence, the genes with significant interaction were
screened, and the filtered results were imported into the
Cytoscape for network visualization. The top 30 of these
genes associated with mRNAsi and ESTIMATEScore with the
highest combined score in STRING are exhibited (Figures 5A,B).
CytoHubba and Maximal Clique Centrality (MCC) were used
to explore important nodes. Top 10 MCC values were selected,
and then, the intersection was taken to get the hub genes in
PPI analysis (Figures 5C,D). As the result, we found that 5
genes, which include TLR4, TLR8, TNF, CD86, ITGAM, and
PTPRC, were the common hub genes in the two modules. These
five key genes were analyzed by KEGG and GO enrichment
using the “ClueGO” and “CluePedia” plugins for Cytoscape
software (Figures 5E,F p < 0.05). We found that these genes
showed the enrichment of GO terms related to microglial cell
activation, positive regulation of NIK/NF-kappaβ signaling and
interleukin (interleukin-8 production and regulation and positive
regulation of interleukin-1 beta production). Collectively, these
hub genes may be the key components of the GBM immune and
stemness module that contribute to immunoregulatory functions
during ferroptosis.

Cluster Analysis of DEG Levels
Previous results revealed the special performance of the DEGs
in immunity and stemness of GBM. To further study, the
association between these DEGs and FRGs was clustered into
three categories according to their correlations in GBM. Given
the consensus matrix for the analysis, k = 3 seemed to be the
most suitable choice (Figures 6A–D). Similarly, these clusters
also showed significant survival differences (Figure 6F p <

0.001). The differences in survival obtained by this clustering are
consistent with those using FRGs (Figure 3E). The expression

of DEGs in the clustering of the two methods and their clinical
characteristics were shown in the heatmap (Figure 6E), and
these findings were independent of clinical traits, such as age
and sex. For FRGs, we found that most genes show significant
differences in DEG clusters (Figure 6G). Interestingly, among the
FRGs, FTH1, STEAP3, HMOX1, and 13 other genes showed an
increased expression in cluster A, which had the worst prognosis.

Construct the FRG Prognostic Signature
Among the genes related to prognosis (Figure 2A), 16 FRGs were
correlated with the OS of GBM patients. LASSO Cox analysis
was performed to establish an FRG prognostic signature. In the
crossvalidation process, lambda.Min was regarded as the optimal
value (Figures 7A,B). A number of 5 FRGs were identified, and
corresponding coefficients were calculated. A number of 516
samples were divided into train set (TCGA-GBM and GSE13041)
and test set (CGGA-325), and samples were split into high-
and low-risk subgroups by the median value of the risk score.
Kaplan–Meier survival curves depicted that GBM patients with
increased risk scores had worse clinical outcomes (Figures 7C,D,
p < 0.001 in both train and test datasets). Next, we established
3- and 5-year ROC curves and found that the risk score can
effectively distinguish GBM patients with different survival
statuses in train set (Figure 7E, 3-year AUC = 0.706, 5-year
AUC = 0.782). The risk score and survival status distributions
of the train set are shown in Figure 7F. The mortality of patients
increased with the increase of the risk score. The expressions
of risk genes and protective genes in these 5 genes are shown
in the heatmap (Figure 7G), TFRC, and STEAP3 as the risk
factors increased in the high-risk score group. Conversely,
NCOA4, AKR1C1, and AKR1C3 become the protective
factors. The risk scores in the ferroptosis cluster and gene
cluster are shown in Figures 7H,I. Univariate and multivariate
Cox regression analyses show the independent prognostic
value of this risk score (Supplementary Figures 1A,B). A
Nomogram model was established which contained risk score,
recurrent, age, and gender to assess the survival prediction
in GBM patients (Supplementary Figure 1C). A Sankey
diagram is used to link clustering, scoring, and survival status
(Supplementary Figure 2). Most of the surviving patients
belong to the low-risk group and cluster C. Finally, considering
the small number of normal samples in the dataset, we validated
the expression of the five key genes by qRT-PCR with the
unpaired t-test in human GBM tissues. The results of qRT-PCR
(Figures 8A–E) and dates in GEPIA (Figure 8F) were consistent
with the expression of protein in HPA (Figures 8G–K).

Enrichment Analyses of Immune-Related
Functions
The enrichment scores of immune cells and corresponding
immune functions and pathways with ssGSEA were quantified
for the TCGA dataset. Silico approaches that include
TIMER, CIBERSORT, CIBERSORT–ABS, QUANTISEQ,
MCPCOUNTER, XCELL, and EPIC computational were
employed to quantify the immune cells in high- and low-risk
groups (Figure 9A). Consequently, the fraction of B cell, CD8+

T cell, and M2 macrophage were significantly increased in the
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FIGURE 5 | Identification of hub genes from the PPI network. (A,B) PPI network obtained using STRING and showing the top 30 highest scoring genes. The bar plots

of top 30 key genes of mRNAsi (A) and ESTIMATEScore (B). (C,D) Top 10 hub genes of mRNAsi (C) and ESTIMATEScore (D) explored by CytoHubba algorithm in

Cytoscape software 3.8.0. and red nodes represent hub genes. (E,F) KEGG pathway and GO analysis of five overlapping genes (TLR4, TLR8, TNF, CD86, ITGAM,

and PTPRC) using the “ClueGO” and “CluePedia” plugins (p < 0.05).

low-risk group. NK cell and T cell regulatory (Tregs) were
enriched in the high-risk group. The MHC class I scored higher
in the high-risk group. The GSVA method was used to calculate
the immune event scores of the high- and low-risk groups. APC
coinhibition, HLA, and type I IFN response scored higher in
the low-risk group (Figure 9B, p < 0.01). Next, we explored
the relationship between immune checkpoint-related genes and
risk score (Figure 9C). The expression of CD44, TNFRSF14,
and NRP1 in the high-risk group was significantly higher
than that in the low-risk group. Given this, we introduced the
TIDE algorithm to assess the efficacy of FRG signatures in
predicting ICB responsiveness in GBM. Submap was used to
compare the prediction results (Figure 9D). As a result, different
groups in train and test sets showed comparable performance
in predicting the GBM response to anti-CTLA4 therapy (p
< 0.05). Finally, we use GSEA to perform GO enrichment
analysis on high- and low-risk GBM patients. The samples of
the high-risk group were enriched in positive regulation of
transcription from RNA polymerase II promoter in response
to stress (GOBP), mitotic G2M transition checkpoint (GOBP),
BHLH transcription factor binding (GOMF) (Figure 9E). In
the low-risk group, enriched GO terms were cell cortex region
(GOCC), negative regulation of amyloid precursor protein

catabolic process (GOBP), and oxidoreductase activity acting
(GOMF). In conclusion, GBM patients with high- and low-risk
scores had different immune-related functions (Figure 9F).

DISCUSSION

Malignant glioma remains a considerable threat to human
health, and the prognosis of patients with GBM is dismal
(33, 34). Recently, regulated cell death has gained considerable
attention in cancer, especially ferroptosis (7, 35, 36). Herein, 59
FRGs in GBM were included in this study to investigate the
characteristics with expression, OS, and functions. CNV exists as
a genetic polymorphism in the human genome, and CNV alters
tumorigenesis by deletion or amplification of a copy number
of a gene (37, 38). In this study, the highest frequency of FRG
PGD and SLC1A5 CNV (loss) was located on chromosomes
1 and 19, respectively. SLC1A5 expression correlated positively
with immune cells, such as tumor-infiltrating B cells, CD4+ T
in hepatocellular carcinoma, and lower-grade glioma (39). For
mutations in FRGs, TP53 mutation is one of the most frequent
genetic alterations in primary glioma. Previous studies have
shown that TP53 polymorphism is associated with the risk of
primary glioma (40). Of note, the expression of ABCC1 was
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FIGURE 6 | Hierarchical cluster analysis of DEGs. (A–D) The consensus clustering matrix for k = 3 was determined by CDF for k = 2–9. (E) Prognostic differences

between the three clusters after merging survival information (p < 0.01). (F) The heatmap of three clusters and their clinical characteristics. (G) The expression levels

of FRGs in different clusters (*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 7 | FRG prognostic signature. (A,B) The process of building the signature. LASSO regression was performed, calculating the minimum criteria. (C,D)

Kaplan–Meier curves showed that the high-risk subgroup had worse OS than the subgroup in training set (C, p < 0.001) and test set (D, p < 0.001). (E) ROC curves

showed the predictive efficiency of the risk signature on the 3-year and 5-year survival rates of training set (3-year AUC = 0.706, 5-year AUC = 0.782). (F) The

distributions of risk scores and the distributions of risk scores and OS status. The green and red dots indicated the alive and dead status, respectively. (G) The

heatmap based on the expression of the five genes in the high- and low-risk group. (H,I) According to the formula, the different clustered samples are scored using

the coefficients.
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FIGURE 8 | Validation of risk genes (A–E). (A) AKR1C1, (B) AKR1C3, (C) NCOA4, (D) STEAP3, and (E) TFRC expression in peritumoral brain edema and GBM

tissues. (F) The expression of prognostic model with five genes (NCOA4, TFRC, STEAP3, AKR1C1, and AKR1C3) in GEPIA. (G–K) Validation of five genes with

immunohistochemistry from the HPA database.

higher in mutant TP53 whereas the expression of GPX4, PEBP1,
and ACSL3 were higher in the wild-type TP53 group. The finding
implicated TP53 mutation status was an important link in the
regulation of other FRGs.

Unsupervised cluster analysis of the expression values of
FRGs identified three distinct patterns in GBM. Cluster A with
the worst prognosis showed high enrichment in NLR signaling

pathway apoptosis, and amino sugar and nucleotide sugar
metabolism. The NLR family of receptors had been recognized
as the key roles of immunity and inflammation with GBM
(41). Meanwhile, a variety of immune cells, such as activated
CD8T cell and eosinophil, exhibit aggregation in cluster A.
Whether a direct mechanism of immune cells on ferroptosis
nodes might be of physiological relevance remains elusive.
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FIGURE 9 | Enrichment analysis of immune-related functions. (A) The TIMER, CIBERSORT, CIBERSORT.ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC

algorithms were applied for the immune infiltration of the high- and low-risk groups. (B) Immune score estimated by single sample GSEA (ssGSEA) in different groups.

(C) Immune checkpoints in the tumor microenvironment. (D) TIDE prediction of the association of genes prognostic signature with ICB responsiveness in train and test

sets. (E,F) GO analysis for high-risk group (E) and low-risk group (F) using GSEA 4.1.0.

Recent studies have shown that CD8T cells may in sensitizing
tumor cells toward ferroptosis (42). In addition, 1,622 DEGs
were selected from three patterns. GO and KEGG pathway
analysis revealed that DEG enrichment was mainly involved
in the immunity biological process. Activated neutrophils are
induced by the microenvironment of GBM (43). Meanwhile,
some immune-associated lncRNAs in glioma were verified to

be closely related to cytokine–cytokine receptor interaction (44).
Functional annotation of the hub genes identified by WGCNA
illuminated the potential regulatory mechanisms by which of
FRGs regulate on the immune and stemness phenotypes. Recent
studies suggest a possible negative regulation between stemness
and immune activation (45). Glioblastomamultiforme stem cells,
characterized by self-renewal and therapeutic resistance, play

Frontiers in Neurology | www.frontiersin.org 13 March 2022 | Volume 13 | Article 829926

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Dong et al. Ferroptosis-Related Gene With Glioblastoma

vital roles in GBM (6). Using the app CytoHubba in Cytoscape,
we filtered 5 hub genes in both immune and stemness PPI
networks. TLRs are expressed on both immune and tumor cells,
which play dual roles in countering cell proliferation, migration,
invasion, and glioma stem cell maintenance responses (46). TNF-
α/NF-κB signaling is closely associated with glioma proliferation
(47). Also, CD86 is an unfavorable prognostic biomarker in
lower-grade glioma (48). It is worth noting that PTPRC, TLR8,
TLR4, and TNF all exhibit functions related to IL-8 regulation.
Interleukin-8 (IL-8) has been revealed as a critical regulator of
central nervous system (CNS) function and development with
participation in many CNS disorders including gliomas (49, 50).
These are the key genes of immunity and stemness from different
ferroptosis regulation patterns. This suggests that among the
multiple FRGs, some genes regulate GBM stem cells and the
immune microenvironment. The connection between them is
also the direction of our next research.

Based on five FRGs, a prognostic model was established
and validated in TCGA-GBM, GSE13041, and CGGA-325.
These databases have authoritative gene expression and clinical
information for GBM. The prognostic model contained five
genes (NCOA4, TFRC, STEAP3, AKR1C1, and AKR1C3).
The mRNA expression of genes was verified using qRT-
PCR. Based on the HPA database, genes were verified at the
protein levels. These FRGs affect many of the key processes
involved in the tumorigenesis and progression of cancer,
especially glioma. NCOA4 is a selective cargo receptor for the
autophagic degradation of ferritin in glioma which is known
as ferritinophagy (16, 51). The TFRC expression was higher in
glioma (52), and the progression and oncogenicity of glioma
were regulated by hsa-miR-144-3p/TFRC signaling (53). STEAP3
emerged as an important protein that induces mesenchymal
transition and stem-like traits in glioma (54). AKR1C1 and
AKR1C3 are members of the AKR superfamily which has been
previously shown to be associated with oncogenic potential and
proliferation capacity (55), and selective targeting of AKR1C
proteins in GBM could delay the acquisition of resistance to
TMZ of astroglioma cells (56). This prognostic model could
predict tumor prognosis, and targeting these prognostic model
genes may provide new ideas for the development of targeted
treatment tools.

Our results demonstrated that a high-risk score was associated
with a worse prognosis. Three-year and 5-year ROC curves
indicated the 5-gene signature as a potential diagnostic factor in
GBMpatients. Moreover, outcome of the nomogram showed that
risk score and age were associated with GBM prognosis, and it
was consistent with the actual clinical situation. We investigated
the correlation between high- and low-risk groups and immune
cells with the CIBERSORT, CIBERSORT-ABS, QUANTISEQ,
XCELL, MCPCOUNTER, and EPIC algorithms. Tregs were
elevated in the high-risk group. The findings of this study are
in line with those presented in previous studies, Tregs play
important known roles in suppressing the immune response and
maintaining immune homeostasis (57). Innovatively supporting
that the abundance of nonpolarized M0 macrophages rather
than M1 or M2 macrophages assembly in glioblastoma that
contributed to the malignancy of tumor was proposed recently

(58). Also, a recent mice study showed that increasing glioma-
associated monocytes in intracranial murine GL261 leads to
an increase in intratumoral and systemic myeloid-derived
suppressor cells (59). In summary, regulation of ferroptosis in
GBM patients may be important in controlling the inflammatory
and immune responses. Research on immune checkpoints has
now become a new hotspot. In this study, significant differences
in the expression of immune checkpoints between high- and low-
risk groups suggested that the sensitivity to immunotherapies is
associated with a risk score. Moreover, our risk score may screen
out potential ICB responders. This provides a new idea for in-
vivo experiments of immunotherapy. However, GBM patients
with low OS exhibit higher expression of markers characterizing
immune response activity and T cell infiltration (60). Besides,
the presence of the blood–brain barrier cannot be ignored for
the nature of immunotherapy. In fact, considering that targeting
these FRGs indirectly improves immunotherapy, many questions
need answering.

This study still has some limitations. First, all the data used to
construct and validate the prognostic model were obtained from
publicly available datasets. These three GBM databases inevitably
lead to the neglect of intra-tumor heterogeneity in different
databases. As confirmed in the study, tumor heterogeneity
has an important impact on diagnosis and treatment (61). A
prospective study is needed to assess the potential application
of the signature. Second, for the five key genes related to
GBM stemness, which FRGs or pathways regulate them remains
to be further elucidated. Third, although the survival benefits
and immune-related biological processes with ferroptosis-related
gene signature have been revealed through functional analysis,
in-vivo and in-vitro experiments are needed to further elucidate
the specific mechanism, preferably at the single-cell level
in humans. Finally, we expect that this work will provide
clues on immunity, stemness, and prognosis characteristics for
future studies.

CONCLUSIONS

In summary, by analyzing the expression of ferroptosis-related
genes in GBM, we identified three ferroptosis regulation patterns
of GBM patients. Comparison of the DEG of three patterns and
unveiled five key genes involved in immunity and stemness. A
prognostic model based on five FRGs was built. The risk score
can be a good predictor of prognosis and also predicts the degree
of immune infiltration and ICB responsiveness.
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