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Purpose: To evaluate and quantify inter-directional and inter-acquisition variation
in diffusion-weighted imaging (DWI) and emphasize signals that report restricted
diffusion to enhance cancer conspicuity, while reducing the effects of local micro-
scopic motion and magnetic field fluctuations.
Methods: Ten patients with biopsy-proven prostate cancer were studied under an
Institutional Review Board-approved protocol. Individual acquisitions of DWI signal
intensities were reconstructed to calculate inter-acquisition distributions and their
statistics, which were compared for healthy versus cancer tissue. A method was pro-
posed to detect and filter the acquisitions affected by motion-induced signal loss.
First, signals that reflect restricted diffusion were separated from the acquisitions
that suffer from signal loss, likely due to microscopic motion, by imposing a cutoff
value. Furthermore, corrected apparent diffusion coefficient maps were calculated
by employing a weighted sum of the multiple acquisitions, instead of conventional
averaging. These weights were calculated by applying a soft-max function to the set of
acquisitions per-voxel, making the analysis immune to acquisitions with significant
signal loss, even if the number of such acquisitions is high.
Results: Inter-acquisition variation is much larger than the Rician noise variance,
local spatial variations, and the estimates of diffusion anisotropy based on the cur-
rent data, as well as the published values of anisotropy. The proposed method
increases the contrast for cancers and yields a sensitivity of 98.8%with a false positive
rate of 3.9%.
Conclusion: Motion-induced signal loss makes conventional signal-averaging sub-
optimal and can obscure signals from areas with restricted diffusion. Filtering or
weighting individual acquisitions prior to image analysis can overcome this problem.
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1 INTRODUCTION

Diffusion-weighted imaging (DWI) is an essential com-
ponent of multiparametric MRI (mpMRI)1,2 and plays
a critical role as the dominant sequence for identifying
Prostate cancer,3,4 which is the most common noncuta-
neous cancer in men in the United States.5 The “Prostate
Imaging Reporting and Data System”6 is used by radiolo-
gists to analyze multiparametric MRI data and to assign
cancer probability scores to regions of interest after the
evaluation of DWI, T2-weighted sequences, and dynamic
contrast-enhanced-MRI.2

Apparent diffusion coefficients (ADCs), measured
from DWI, are sensitive to cancers because the dense
cellularity of cancers restricts water diffusion and thus
increases the intensity of diffusion-weighted signals.7
Chenevert et al. showed that ADC measurements are
highly reproducible with variability less than 5% via stan-
dard phantom experiments,8,9 demonstrating that MRI
scanners, especially diffusion-sensitizing gradients, pro-
vide excellent stability for very sensitive measurements.
However, ADC measurements in patients are much more
variable.10 A large component of this variability comes
from motion artifacts.11,12 Very small amounts of motions
during diffusion-encoding gradients can result in a sig-
nificant loss of signal.13 Fluctuations in local magnetic
fields also decrease the signal. This makes it more difficult
to detect cancers. This signal loss is especially problem-
atic for high b-value DWI scans. Specifically, b values ≥
900 s∕mm2 produce significant phase dispersion. There-
fore, DWI at high b values have low signal-to-noise ratio
(SNR), and require multiple acquisitions. Clinical DWI
scans are typically acquired with diffusion-sensitizing
gradients along three directions, with multiple acquisi-
tions for each gradient direction.14 These acquisitions
are reconstructed and then averaged together to increase
signal-to-noise ratio and produce a composite image for
diagnosis.15 This means that some signals that are cor-
rupted by motion are combined with signals that accu-
rately report the presence of cancer. This dilutes the
signals that make cancers conspicuous. Gross motion
between separate acquisitions can also cause errors, par-
ticularly in areas where tissue is heterogeneous. How-
ever, effects of this type of motion are expected to be
much smaller than effects of microscopic motions, during
diffusion-sensitizing gradients.

Although it is widely accepted that DWI is sub-
ject to motion and other artifacts,16 there has been
very little quantitative analysis of the directional and
inter-acquisition variability in prostate DWI. The
study of Sadinski et al.17 shows that the standard

deviation (SD) of repeated ADC measurements pro-
duced from averaged DWI scans is at least 10%.
However, this underestimates the true variability
because these estimates are produced from averages
over multiple acquisitions and diffusion-sensitizing gra-
dient directions. This averaging masks the underlying
variability.

We hypothesize that the distribution of per-voxel sig-
nal intensity is skewed, and therefore conventional aver-
aging is not optimal since it combines high signals on
diffusion-weighted images due to restricted diffusion with
low signals that are due to motion (or fluctuations in
local magnetic field). The method we propose to address
this problem is based on the assumption that artifacts are
more likely to decrease signal than to increase signal in
DWI, especially at high b values. For example, with b =
900 s∕mm2 or higher—highly localized motion of 25–50
microns due to the arterial pulse or peristalsis as well as
gross motion (possibly due to breathing) can reduce or
completely suppress signal. Some artifacts can increase
signal, for example, gross motions that change the location
of tissue between acquisitions, or changes in local suscep-
tibility gradients between acquisitions that result in “signal
pile-up.”18 However, these effects tend to be less frequent
and have less impact compared to local motion during
diffusion-encoding gradient pulses.13 The signal-reducing
effects of motion on DWI have been extensively studied
in the MR literature for several other organs. Liau et al.19

investigated motion-induced signal loss on liver DWI at
b = 1000 s∕mm2 and designed a method to favor high sig-
nals during averaging. Kwee et al.20 analyzed which direc-
tion of motion sensitizing gradients was most affected by
cardiac motion on liver DWI. Another study suggested that
“pseudo-anisotropy” is an artifact that reduces the DWI
signal and originates from anisotropic respiratory move-
ment.21 In a more recent work, Hernando et al.22 showed
that parts of organs closer to body motion are not evalu-
able on ADC maps due to severe signal loss in the DWI
image which results in extreme overestimation in the ADC
map. Aliotta et al.23 investigated the bulk-motion signal
losses occurring over the cardiac cycle on brain, liver,
and heart DWI and showed how mean ADC values were
significantly corrupted (> 3 × 10−3mm2∕s). Luna et al.24

studied the effects of motion on chest DWI and showed
that motion artifacts related to breathing and vascular pul-
sation created low signal in all pulse sequences. Takahara
et al.25 showed that signal intensity of small bowel con-
tents can be suppressed due to normal peristalsis resulting
in intraluminal turbulent flow. Metens et al.26 proposed
optimized cardiac triggering for each acquisition during
DWI of liver to reduce cardiac motion-induced signal loss.
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Gurney et al.27 used a method very similar to the method
presented here, based on the hypothesis that anomalously
low signals reflect motion-induced signal loss. They pro-
posed an algorithm to reject these anomalously low signals
in pancreas and liver DWI. This previous work is consis-
tent with our assumption that high signals at high b values
are more likely to correctly represent restricted diffusion,
while low signals are more likely to result from artifacts in
prostate DWI.

This study extends this previous work by introduc-
ing a statistical approach to quantitatively describe the
level of variability in DWI over various protocols, patients
and tissue types. In addition, we propose a novel edit-
ing method, “Editing for Restricted Diffusion (ERD)”
to reduce the errors caused by acquisitions that are
likely to be corrupted by signal loss due to local micro-
scopic motions and/or fluctuations in local magnetic
field. ERD is based on the principles introduced by Gur-
ney et al. but extends it by incorporating the weighted
sum of acquisitions, instead of sole filtering, which pro-
vides an enhanced contrast between healthy and cancer
tissue.

2 METHODS

This study is a retrospective analysis of data from 10
patients who participated in two prospective studies
that were compliant with Health Insurance Portability
and Accountability Act of 1996 (HIPAA) and approved
by the Institutional Review Board (IRB). Half of the
patients in this study were imaged with a nonendorec-
tal coil (NERC) protocol and the other half of the
patients were imaged with an endorectal coil (ERC)
protocol. More information on MR imaging and his-
tologic analysis is provided in Supporting Information
Appendix S1.

2.1 Analysis of directional and
inter-acquisition variability in DWI

2.1.1 Signal deviation across acquisitions

First, we calculated the SD map of the signal intensities
at the highest b value on a per-voxel basis, across the
multiple acquisitions. This part of the study was con-
ducted to observe the effect of variation induced by the
physiological motion of the prostate and to compare it
with the theoretical Rician behavior. For this, we com-
pared the variation at rectum, a region with no signal

and little probability of motion-induced signal loss—hence
expected to follow a Rayleigh distribution (which is a spe-
cial case of Rician distribution at signal-to-noise ratio = 0)
versus the prostate tissue, which would follow a general-
ized Rician distribution, if the physiological signal loss is
negligible.

We also compared the variability of the ADC val-
ues across acquisitions in cancer and healthy regions of
interest (ROI) for ERC and NERC measurements. For
cancer ROIs, we took the 3 × 3 voxel areas centered
at the biopsy-verified cancer location for each patient.
For healthy ROIs, we used 3 × 3 voxel areas centered
at a tissue that is verified by biopsy to be normal. We
analyzed the inter-acquisition variation via the distri-
butions of ADC values, estimated over the acquisitions
of the cancer and the healthy ROIs. We produced
the ADC maps for each acquisition with multiple
b value reconstructions using mono-exponential least
squares fit (1):

D[i, 𝑗] = −
|B|

∑

∀b∈B
b ln(Sb[i, 𝑗]) −

∑

∀b∈B
b
∑

∀b∈B
ln(Sb[i, 𝑗])

|B|
∑

∀b∈B
b2 −

(
∑

∀b∈B
b
)2 , (1)

where B is the set of b values used and |B| is the size of
B, that is, number of different b values. Sb[i, 𝑗] and D[i, 𝑗]
are the diffusion signal intensity and ADC values of the
voxel located at (i, 𝑗), respectively. Equation (1) yields the
best fit for the mono-exponential decay model Sb[i, 𝑗] =
S0[i, 𝑗] exp(−bD[i, 𝑗]).

In addition, we calculated a distribution of the nor-
malized ADC measurements, by scaling the ADC values
within each voxel to vary in the range 0 − 1:

̂Dk[i, 𝑗] =
Dk[i, 𝑗] − Dmin[i, 𝑗]

Dmax[i, 𝑗] − Dmin[i, 𝑗]
, (2)

where Dk[i, 𝑗] is the ADC calculated from Sk
b[i, 𝑗] (k th

acquisition of diffusion signal) and Dmin[i, 𝑗] and Dmax[i, 𝑗]
are the minimum and maximum ADC values for the voxel
located at (i, 𝑗). Then, we measured the distributions of
these normalized measurements within each 10-percentile
of the range of measurements. Such histograms are valu-
able to demonstrate the clusters of acquisitions within
each voxel and observe the effects of inter-acquisition vari-
ability, independent of the underlying ADC values within
each voxel. The histograms per ROI are then calculated
by summing the counts of normalized ADC values that
fall within the same percentile bin. This histogram can be
formulated as:
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pr =
∑

i,𝑗∈ROI

∑K
k=11

(
0.01(r − 1) < ̂Dk[i, 𝑗] ≤ 0.01r

)
,

r = 10, 20, · · · 100

where 1(A) is the indicator function that takes value 1 is A
is true, and 0 otherwise.

2.1.2 Inter-direction variation analysis

We analyzed the variation within each diffusion-encoding
gradient direction and compared the inter-direction and
intra-direction variation of the three directions. We per-
formed this analysis to determine whether there is any
pattern in the inter-direction variation, perhaps due
to anisotropic motion. Furthermore, we measured the
variance of Sb intensities of cancer voxels—calculated
across the acquisitions per diffusion-sensitizing gradient
direction- and compared them with the Rician noise vari-
ance, to determine if the inter-acquisition signal variation
in a voxel could be explained by random electronic noise.
The variations were displayed in radar plots where the
edges of the radar plots show the variance of signal along
each direction. To calculate the Rician noise variance, we
first calculated sample variance over a 5 × 5 ROI on rectum
(𝜎2

R), a region with no signal (where the intensity variation
is primarily due to random thermal/electronic noise gen-
erated by the lossy coupling between the detectors and the
patient’s body). The noise level for the Rician distributed
high-signal regions were then calculated as N = 𝜎2

R(2 −
𝜋∕2) as shown by Gudbjartsson and Patz.28 We are aware
that this may result in some errors; the noise level in the
rectum is likely to be somewhat different from the noise in
the prostate due to the distribution of the detectors and the
effect of the SENSE reconstruction algorithm. Neverthe-
less, this protocol provides a rough estimate of the noise.
This analysis of variation was done across several ROIs,
including ROIs at the center and edge of the cancer as well
as tissue surrounding the cancer.

Additionally, we conducted an analysis on the prostate
region to quantify how much of the inter-acquisition vari-
ation is caused by the inherent anisotropy of the water
diffusion and how much of it is caused by the nonphys-
iological noise and motion-induced signal loss. For this,
we compared the inter-directional variation, which gives
a measure of anisotropy (measured as the range of vari-
ation between the means of signal along each direction)
against the average intra-direction variation (measured by
the mean of the ranges of signal intensities of all acqui-
sitions along each direction). The ratio of inter-direction
variability and the intra-direction variability would give us
a measure of how much of the inter-acquisition variabil-
ity can be explained by the intrinsic anisotropy of water

diffusion. We note that the measurements used here to
evaluate anisotropy do not provide an accurate calcula-
tion of anisotropy. This requires diffusion tensor calcula-
tions based on a larger number of gradient directions.29

Nevertheless, comparison of signals from multiple voxels
acquired with different diffusion directions are sensitive to
diffusion anisotropy.30

2.2 Editing for restricted diffusion

2.2.1 ERD Filtering

We aim to suppress corrupted signals from individual
acquisitions in an automated way, on a voxel-by-voxel
basis. One straightforward way to do this is to apply a cut-
off threshold as in Reference 27. We chose an ADC cutoff
from the prostate MR literature, taking into consideration
the scanner brand and scanning parameters. Chatterjee
et al.31 observed the average ADC value on cancer ROIs
to be 0.86 ± 0.18 × 10−3mm2∕s, measured over a cohort
of 22 prostate cancer patients. Therefore, we picked the
acquisition rejection cutoff at the upper limit of this range,
that is, 1.04 × 10−3mm2∕s. The ERD filtering procedure
acts on each voxel, compares the signal from each indi-
vidual acquisition to the threshold and counts the num-
ber of acquisitions that fall below it, instead of averaging
them. This provides a measure of consistency between the
acquisitions and reduces the effects of artifacts. The ERD
filtering is useful for (1) highlighting the regions with the
most restricted diffusion for cancer detection, (2) identi-
fying the amount of motion corruption by monitoring the
number of individual signals that are filtered and simi-
larly identifying voxels that have reliable signal because of
few suppressed acquisitions, and (3) identifying the signals
that can be used in an enhanced ADC calculation, as we
present in the next section (ERD Weighting method) in a
more generalized way.

2.2.2 ERD weighting

In addition to the ERD filtering described above, which
highlights the regions with the most restricted diffu-
sion, agnostic of the occasional motion-corrupted signals,
we also implemented a weighted average of acquisitions
instead of the conventional averaging. This yields an ADC
map with enhanced contrast. Instead of hard rejection,
this method follows the assumption that artifacts are more
likely to decrease signal than to increase signal in high
b DWI19,20,23,27 and attaches weights to the signals from
multiple acquisitions prior to combination of individual
signals, suppressing the effect of low signals. These sets of
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weights are calculated for each voxel using the soft-max
formula in (4):

wk[i, 𝑗] =

exp

(
Sk

b[i, 𝑗]
𝜏

)

∑K
𝑗=1 exp

(
S𝑗b[i, 𝑗]
𝜏

) , (4)

where Sk
b[i, 𝑗] is the k th acquisition of the high b signal

intensity at voxel located at (i, 𝑗) and 𝜏 is the “tempera-
ture” parameter. The set of weights wk for each voxel sums
to one, making it operate like a probability mass function.
The enhanced DWI is then calculated as the weighted sum
of the acquisitions as shown in (5).

̂Sb[i, 𝑗] =
K∑

k=1
wk[i, 𝑗]Sk

b[i, 𝑗]. (5)

The soft-max function gives more weight on the acqui-
sitions with high signals. If some acquisitions are signif-
icantly lower than the acquisition with the highest sig-
nal, their weights are suppressed. The functionality of
the “temperature” parameter 𝜏 is two folds: first, it con-
trols how steep this “high-signal favoring” is. As 𝜏 goes to
infinity, the set of weights would approach the uniform dis-
tribution, which would be equivalent to the conventional
signal averaging in DWI. Lower 𝜏 values would suppress
the low signal more drastically, favoring the acquisition
with the maximum signal value as it approaches to zero,
hence the name soft-max. One other role of the 𝜏 param-
eter is that it inherently enhances the contrast between
the cancer and healthy tissue: Since the signal on a voxel
with more restricted diffusion, that is, cancer, is higher;
the relative intensity of 𝜏 becomes lower, hence wk favors
the higher signals more. On the other hand, the same 𝜏
will appear relatively larger for voxels with low signals
and the weighted sum of the acquisitions will approach
the conventional signal averaging on such voxels. We also
employed the ERD-weighting method on multiple acqui-
sitions of a water phantom scanned at 18◦C to evaluate if
the method incorrectly reduces the ADC values of known
subjects.

3 RESULTS

3.1 Inter-acquisition variability in DWI

Figure 1 shows T2, ADC, and diffusion-weighted images at
highest b value, and the SD maps for a NERC and an ERC
scan. The NERC patient has GS3+4 and the ERC patient
has GS4+3 cancers. The SD map was windowed with the

minimum value as the Rician SD value to demonstrate
the variation introduced by the physiological noise. The
nonphysiological component of the noise was calculated
from the ROI at the rectum. Since the SD of the high sig-
nal regions should be upper bounded by the (

√
2 − 𝜋∕2)−1

times the SD of the rectum measurements,28 the variation
that is visible on the SD map reflects the increase that is
mostly induced by local motion or magnetic field varia-
tions. Moreover, the SDs in regions with more restricted
diffusion are higher than the SDs in most of the rest of
the prostate, while the SD of nonphysiologic (thermal/-
electronic) noise is independent of signal amplitude. More
analysis of the effect of motion-induced signal loss on the
signal distribution can be found in Supporting Information
Appendix S1 and Figure S1.

Figure 2 shows histograms of ADC values for two
patients. The histograms on the middle figure are calcu-
lated using all least squares fits for all combinations of
acquisitions and all b values. NERC scans are affected
by the inter-acquisition variation more than ERC, which
is consistent with the results discussed above. The his-
tograms for cancer ROIs (red color) and healthy ROIs
(green color) overlap considerably for NERC cases. There
is much less overlap for ERC cases. The NERC histograms
are unimodal but significantly skewed towards high ADCs.
The violin plots on the right show the variation of ADC val-
ues calculated using the acquisitions on the center voxel
of the cancer/healthy ROI. This variation is compared
to the variation over the whole ROI, which was calcu-
lated using all acquisitions for all voxels within the ROI.
This demonstrates that most of the variation comes from
the inter-acquisition variability, rather than the variation
across the voxels (spatial variation).

These features are also apparent in the histograms
showing combined data from all individual acquisitions
(Figure 3). The adverse effects of inter-acquisition varia-
tion are much stronger for NERC versus ERC. Both pro-
tocols exhibit positive skewness, as would be expected for
motion artifacts. Skewness was calculated to test whether
the bulk motion significantly decreases DWI signal inten-
sity (increases ADC). This indicates that the population
mean of all acquisitions for each b-value may not be a
good estimator of the correct value. When signals from
all acquisitions are combined to produce the final signal
intensity in each voxel, this “skewness” decreases the con-
trast for cancer detection. Moreover, both the healthy and
cancer ROIs from NERC scans have large kurtosis values,
indicating a more peaked and wider-tailed distribution
than a Gaussian distribution. For ERC scans, the kurto-
sis values were very close to Gaussian’s kurtosis value of
3.0. Moreover, a large and positive kurtosis value indi-
cates that the tails of the distribution of variation exceed
the tail of a Gaussian with the same mean and SD. This
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(A)

(B)

F I G U R E 1 T2W, mean apparent diffusion coefficient map, mean diffusion-weighted image (DWI) and corresponding DWI standard
deviation for (A) a nonendorectal coil and (B) an endorectal coil patient

emphasizes the need for ERD, that is, eliminating acquisi-
tions with high probability of motion-induced signal loss,
prior to mean signal estimation. The statistics are given in
Table 1.

Figure 4 demonstrates the inter-acquisition variabil-
ity over the independent acquisitions of a NERC scan for
b = 900 s∕mm2. The figure shows the voxels (red) that
have ADC values below 1.04 × 10−3 mm2∕s for 8 of the
24 Sb acquisitions, and additionally the union of all such
detected voxels over all acquisitions. The figure with all of
the 24 acquisitions is provided in Supporting Information
Figure S22. Voxels within the cancer ROI are sometimes
above and sometimes below the cutoff. There are also some
false positive areas where signal is above the cutoff. Some
individual acquisitions show more restricted diffusion in
some of the cancer voxels and other acquisitions show
more restricted diffusion in some other cancer voxels. Fur-
thermore, for some acquisitions the signal is completely
lost, and these acquisitions show almost no restricted dif-
fusion within the cancer.

Figure 5 shows the min-max normalized distributions
of ADC values calculated along the multiple acquisitions,
as shown in Equation (3). The histograms are demon-
strated as line graphs so that the differences of histograms
of different patients can be observed. Top row shows the
five NERC patients with different colors, and the bottom
row shows the ERC patients. The histograms on the left
and middle were calculated on the cancer and healthy
ROIs, respectively. The histograms on the right show the
averages of histograms of all prostate voxels. The effects
of inter-acquisition variation exhibit a similar pattern for

all patients; the majority of the values for independent
acquisitions cluster at lower values but also extend to
the higher values due to motion-induced signal loss. For
NERC, where this effect is stronger than ERC, the major-
ity the of the acquisitions (51%) are clustered on the first
1∕3 of the range of the acquisitions with the peak at
smaller values. However, a significant number of acqui-
sitions yield ADCs at higher values. This tends to skew
the calculated average ADC to higher values. For ERC,
effect of inter-acquisition variation is less dramatic, and
the distribution is flatter. This is due to the fact that the
unnormalized range of variation in ERC is smaller than
NERC as seen on Figure 3. Still, many of the signals are in
the first 30 th percentile.

3.2 Inter-direction variability in DWI

The “Radar” plots in Figure 6 show the variance of signal
values across acquisitions and diffusion-encoding gradient
directions for the voxels indicated in the image. There are
nine radar plot/triangles with different colors and each tri-
angle represents the inter-direction variation of the voxel
at the center of that ROI with the same color as the tri-
angle. The small dark circle at the centers of the triangles
shows the estimated variance of the Rician noise. The dis-
tance from each vertex to the center of the “noise circle”
represents the variance of signals acquired for the voxel
for each diffusion gradient direction (four different acqui-
sitions for ERC images and eight different acquisitions
for NERC images). Inter-acquisition and inter-direction
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F I G U R E 2 Histograms of apparent diffusion coefficient (ADC) values calculated on the cancer (red) and healthy (green) ROIs for a
nonendorectal coil (NERC) (top) and a endorectal coil (bottom) patient. The corresponding ADC maps and the cancer/healthy ROIs are also
provided. Violin plots on the right compare inter-acquisition variation against inter-voxel variation caused by spatial heterogeneity.

variation are summarized by size and asymmetry of the tri-
angles. The large area of the triangle relative to the area
of the circle representing noise shows that signal varia-
tion is much too large to be explained by Rician noise.
The asymmetry of the triangles demonstrates variability
between diffusion-sensitizing gradient directions associ-
ated with each image voxel. There was no consistent trend,
that is, the diffusion-sensitizing-gradient direction with
lowest variability was not consistent between voxels or
patients.

The intra-direction versus inter-direction vari-
ability ratio, employed to observe how much of the
inter-acquisition variation can be explained by the
anisotropic motion artifacts was less than 0.20 on aver-
age. This suggests that only a small portion of the
inter-acquisition variability can be explained by the
inter-direction variability.

3.3 Editing for restricted diffusion

We applied ERD to 10 cancer targets. For filtering, we
applied the ERD threshold 1.04 × 10−3mm2∕s, which was
taken from Reference 31 to highlight the areas with the

most restricted diffusion. Examples of ERD output are
shown in Figure 7, for a NERC and an ERC patient both
with Gleason 7 cancers. The ERD filter highlights (color
overlay) the marked PZ cancers and also identifies benign
TZ (possibly benign prostatic hyperplasia-BPH) areas. The
color of the marks shows the number of acquisitions for
each voxel that exhibit more restricted diffusion as given
in the heatmap. For example, the yellow color means that
all of the acquisitions for the corresponding voxel indi-
cate more restricted diffusion, whereas red indicates that
some of the acquisitions do not have ADC values that are
consistent with restricted diffusion. This shows that, in
this example, more acquisitions for each BPH voxel are
rejected by ERD compared to cancer voxels. ERD filtering
results along with the biopsy-verified cancer/healthy ROIs
for all patients in the study are given in the Supporting
Information Figures S2–S11.

The false positive rates of ERD were calculated with a
two-fold analysis—one based on the healthy ROI on the
cancer slice, and another based on the whole prostate area
on a slice that is 2 cm superior to the cancer slice. We
applied the ERD cutoff threshold to the voxels in these two
apparently healthy ROIs and measured the percentage of
voxels for which more than 50% of the acquisitions exhibit
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F I G U R E 3 Histograms of cancer (red) and healthy (green) apparent diffusion coefficient values for nonendorectal coil (NERC) (left)
and endorectal coil (right) patients. The “olive green” color indicates the region where the tail of the cancer distribution overlaps with the
healthy distribution.

F I G U R E 4 Visualization of
inter-acquisition variability over 8 of the
24 independent acquisitions of a
nonendorectal coil patient, along with the
map of the union of detections from all
acquisitions. Red voxels show areas where
the apparent diffusion coefficient is below
the diagnostic threshold of
1.04 × 10−3 mm2∕s and the arrow shows
the location of the biopsy-verified cancer.

more restricted diffusion (i.e., below the ERD threshold).
In the healthy ROI, the false positive rate was zero and
on average 2.3% and 5.9% of all acquisitions were below
threshold, for NERC and ERC patients, respectively. In the
other ROI, which involves a slice of the whole prostate

with no verified cancer, the false positive rate was 3.2% and
4.7% for NERC and ERC, respectively.

When the soft-max weighting given in Equations (4)
and (5) was applied to the high b images, the contrast
ratio between the cancer and healthy ROIs on ADC images
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T A B L E 1 Summary statistics of apparent diffusion coefficient (ADC) values for cancer and healthy 3 × 3 ROIs

NERC Cohort ERC Cohort Phantom

DWI ERD DWI ERD DWI ERD

ADC
(×10−3mm2∕s)

Cancer 0.98 ± 0.21 0.77 ± 0.22 0.63 ± 0.18 0.58 ± 0.20 — —

Healthy 1.76 ± 0.21 1.65 ± 0.23 1.39 ± 0.13 1.29 ± 0.13 1.94 ± 0.00 1.94 ± 0.00

Skewedness Cancer 1.02 ± 0.2 — 0.03 ± 0.5 — — —

Healthy 1.00 ± 0.3 — 0.17 ± 0.2 — 0.28 ± 0.00 —

Kurtosis Cancer 5.94 ± 2.9 — 2.92 ± 0.3 — — —

Healthy 5.05 ± 1.4 — 2.67 ± 0.4 — 2.54 ± 0.00 —

Abbreviations: DWI, diffusion-weighted image; ERC, endorectal coil; ERD, editing for restricted diffusion; NERC, nonendorectal coil.

F I G U R E 5 Distributions of the acquisitions on min-max normalized apparent diffusion coefficient ranges calculated on cancer (left),
healthy (middle) and all prostate (right) voxels. Each patient is shown with a different color. Nonendorectal coil (NERC) is on the top and
endorectal coil (ERC) is on the bottom. Note that the normalized distribution appears flatter for ERC, because the SD and the range in
Dmax − Dmin are lower for ERC, but this range is being stretched to the same scale as NERC, that is, 0–1.

improved 30.7% on average for NERC patients and 13.0%
on average for the ERC patients. Examples of the ADC
maps obtained with the conventional averaging of DWI
acquisitions and the ADC map obtained by the ERD
weighting are provided in Figure 8. ERD-weighted ADC
maps, along with the biopsy-verified cancer and healthy
ROIs for all other patients are provided in Supporting
Information Figures S12–S21. The contrast between the
cancer and healthy tissue improves for all of the patients

after the ERD weighting. Table 1 also shows that the ERD
weighting decreases the ADC values on cancer regions
more than in regions of healthy tissue, which explains
the improvement in the contrast. This suggests that, as
expected, signals from water with more restricted diffu-
sion are more sensitive to microscopic motions during
diffusion-sensitizing gradients than more freely moving
water. Also, application of ERD on water phantom did not
change the ADC value. The scatter plot demonstrating the
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F I G U R E 6 Radar plots
demonstrating the inter-direction and
inter-acquisition signal variation for
(A) a nonendorectal coil and (B) an
endorectal coil patient, calculated at
the center and the edges of cancer
region. The variances of signal
intensity were calculated at the centers
of the colored ROIs. The extent of the
triangles’ corners depicts the signal
variation for each direction. The radius
of the gray circle in the middle shows
the Rician noise variation. Note that
the fact that the triangles are larger
than the noise shows that the
inter-acquisition variation in cancer is
much larger than the noise, which is
consistent with the SD map in Figure 1.
Moreover, the fact that the triangles are
far from being equilateral shows the
inter-direction variability.

(A)

(B)

F I G U R E 7 Examples of editing
for restricted diffusion, for (A) a
nonendorectal coil patient (GS4+3) and
(B) an endorectal coil patient (GS3+4).
The areas with restricted diffusion are
depicted with the colored overlay. The
colors of the heatmap indicate the
number of acquisitions that exhibited
more restricted diffusion. Arrows point
to the biopsy-verified cancers.

(A)

(B)



2308 GUNDOGDU et al.

improvement in the contrast ratio, calculated over unpro-
cessed and processed images, is given in Figure 9. Figure 9
shows that while contrast is improved for almost all of the
cancers, by far the greatest improvement is achieved for
NERC images.

4 DISCUSSION AND
CONCLUSIONS

We analyzed the individual acquisitions that are used to
produce averaged DWI and ADC maps. We also measured
the variability associated with each diffusion-encoding
gradient direction. The variability is much larger than the
electronic noise level, and large compared to the expected
difference between cancer and normal tissue, especially
for NERC images. For NERC images, the distributions of
ADC values for cancer and healthy tissue overlap signif-
icantly. On average, 43.4% of the ADC values for each
voxel in cancer ROIs calculated from individual high b
value acquisitions fall into a range that is much larger than

the expected values for malignant tissue. When these sig-
nals are combined with other acquisitions that show more
restricted diffusion in the same voxel, the cancer signal is
obscured. The ADC histograms are skewed toward higher
values, especially for NERC images. This is consistent with
the hypothesis that many of the signals acquired for each
voxel are corrupted by local motion. This variability and
skewness of the distribution makes it difficult to distin-
guish between healthy and cancer tissue. The measured
ADCs are likely much higher than the true ADCs.

These results are consistent with a priori expectations.
Motion during diffusion-encoding gradients that produce
many cycles per millimeter in the phase of magnetization
are expected to have a larger effect on signal intensity than
motion between acquisitions. The primary source of vari-
ability measured in this study is very local—there is little
correlation between changes in signal intensity in neigh-
boring voxels. More work will be required to identify the
sources of variability.

The data show that ERC images have far fewer motion
artifacts than NERC images. Histograms of the signal for

F I G U R E 8 Examples of editing
for restricted diffusion weighting for a
nonendorectal coil patient (top) and an
endorectal coil patient (bottom)
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F I G U R E 9 The scatter plot of the contrast ratio improvement
over the studied cancer patients

each voxel measured in separate acquisitions in cancer
and healthy ROIs show better separation between can-
cer and healthy tissue for the ERC protocol. The results
suggest that the ERC is stabilizing the rectal wall—and
reducing the motions that are primarily responsible for
the broader histograms in NERC cases. The higher “b”
value for the ERC acquisitions, combined with higher
signal-to-noise ratio also helps to distinguish between can-
cer and healthy tissue, but does not explain the narrower
histograms for ERC. Since NERC imaging is likely to be the
method-of-choice for mass screening for prostate cancer, it
will be necessary to address the differences between ERC
and NERC imaging. ERD may be an effective solution and
one example of such a method is shown here.

The study described here is different from previous
published measurements of variability of DWI in that we
investigate the effects of inter-acquisition variation and
evaluate the efficiency of conventional averaging. The
results support the hypothesis that with multiple acqui-
sitions contributing signal to each voxel in cancer ROIs,
cancers are clearly shown by some of the acquisitions, and
not shown by others.

ERD effectively conserves signal from areas of the most
restricted diffusion, for example, cancers. ERD weight-
ing was applied by giving less weight to motion-corrupted
signals. This resulted in lower ADCs for any voxel with
restricted diffusion, including cancers and BPH. The
soft-max weighting with the 𝜏 parameter gives more
weight to acquisitions with high signals, even if many of
the acquisitions are corrupted by motion. Furthermore, on

the areas with less-restricted diffusion, the function gives
a more uniform set of weights across the acquisitions. The
improvement in cancer to prostate contrast ratio demon-
strates this functionality. Another observation is that the
tissue with more restricted diffusion (e.g. in cancers) has
more sensitivity of the diffusion-weighted signal to micro-
scopic motion than the tissue with less restricted diffusion
(e.g., in normal prostate). This means that methods that
minimize motion artifacts have a greater effect on signals
from cancers versus signal from healthy tissue.

5 CONCLUSION

Evaluation of the multiple independent acquisitions that
contribute to the signal in each voxel in the final
diffusion-weighted image allowed us to evaluate variabil-
ity in high b value images. We showed that the distribution
of signals from multiple acquisitions is skewed and not
Gaussian. Therefore, combining all of these signals with
conventional averaging obscures the cancer. The analy-
sis demonstrated here can assess whether the signal from
individual voxels is a marker for cancer. ERD can guide
radiologists to place more or less emphasis on DWI data
for cancer diagnosis, depending on the level of variability
measured. Although this report focuses on conventional
DWI of the prostate, the methods can be applied to MRI
of other tissues and organs in the body where motion
artifacts or fluctuating magnetic field gradients are a con-
cern. Future versions of this method will use unsupervised
machine learning techniques working on different acquisi-
tions, and other information to reduce false positives while
further increasing sensitivity to cancer.
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