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Abstract
Body mass indices (BMIs) are applied to monitor weight status and
associated health risks in populations.  Binary or multinomial logistic
regression models are commonly applied in this context, but are only
applicable to BMI values categorized within a small set of defined ad hoc
BMI categories.  This approach precludes comparisons with studies and
models based on different categories.  In addition, ad hoc categorization of
BMI values prevents the estimation and analysis of the underlying
continuous BMI distribution and leads to information loss.  As an alternative
to multinomial regression following ad hoc categorization, we propose a
continuous outcome logistic regression model for the estimation of a
continuous BMI distribution.  Parameters of interest, such as odds ratios for
specific categories, can be extracted from this model post hoc in a general
way.  A continuous BMI logistic regression that describes BMI distributions
avoids the necessity of ad hoc and post hoc category choice and simplifies
between-study comparisons and pooling of studies for joint analyses.  The
method was evaluated empirically using data from the Swiss Health
Survey.
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Introduction
Body mass index (BMI) is an anthropometric measure that is  
relatively easy to capture in epidemiological studies. Thus, it 
is widely used for describing underweight, overweight, and  
obesity1,2. The most prominent standard BMI categories, under-
weight, normal weight, overweight, and obesity as defined by the 
World Health Organization [WHO, 3], are commonly applied to 
ensure comparability and reproducibility of statistical analyses 
across epidemiological studies4,5. Such international standards 
are important for the communication of scientific results, for risk 
factor assessment and monitoring in populations, and for provid-
ing information to the general public. However, categorization of  
BMI values inevitably leads to information loss because an indi-
vidual’s weight and height can be measured precisely using  
simple tools1, but this precision is lost in statistical analyses by such 
an ad hoc categorization6. The most important problem, however, 
is the lack of comparability across studies that rely on different 
categorization schemes. Even more troublesome is the problem 
of comparability of studies and findings over time because the  
WHO categories can be expected to be updated to better reflect 
contemporary BMI distributions. Only roughly half of the stud-
ies published up to 2000 that used BMI as a risk factor for death 
used the WHO categories; the other half relied on a variety of dif-
ferent alternative schemes4,5. The same problem occurs when the 
primary interest in a statistical analysis is the comparison of BMI 
distributions between different risk groups. In this latter situation, 
we advocate post hoc categorization of model outputs instead of 
ad hoc categorization of BMI measurements to better combine 
measurement precision, ease of communication, comparability, 
and reproducibility. Specifically, we propose that statistical anal-
yses should be based on precise BMI measurements without ad 
hoc categorization, and then parameters and interesting contrasts 
thereof should then be categorized post hoc. Such results would 
be interpretable and universally comparable between studies  
using any type of category.

Continuous outcome logistic regression
Conceptually, the traditional approaches to the analysis of BMI  
can be understood as regression models for the conditional  
distribution of BMI, given exposure, sex, and covariates7–13. Treat-
ing smoking as the only exposure variable in the following, a  
generic logistic regression model for BMI, conditional on smoking 
status, sex, and covariates x of the form

         logit(ℙ(BMI ≤ b | smk, sex, x)) = r(b | smk, sex, x)            (1)

helps to understand the properties of specific models for BMI 
and connections between them. Specific classical models, such 
as binary logistic regression or polytomous logistic regression, 
are implemented via a specific regression function r; details will 
be given in the next section. The majority of published BMI  
analyses relied on a small number of ad-hoc cut-off points b. After 
such an ad hoc categorization, only the conditional distribution of 
BMI at the corresponding cut-off points b can be evaluated. The 
core idea of continuous outcome logistic regression is to model 
the entire conditional distribution of BMI for all reasonable BMI 
values simultaneously. This requires that the parameterization of 
the regression function r is a smooth and monotonically increasing 

function of b. The statistical underpinnings of such models were 
developed only recently14,15. In models treating BMI as a continu-
ous outcome, the exposure smoking status, sex, and covariates 
x then have an impact on the regression function r and thus on  
conceptually all moments (mean, variance, skewness, kurtosis, 
etc.) of the conditional continuous BMI distribution. Although 
such models are more complex, the interpretation of parameters 
and contrasts thereof remains as simple as in models based on spe-
cific categories. For example, the difference between r(b | former  
smoker, female, x) and r(b | never smoker, female, x) is the  
log-odds ratio of the event BMI ≤ b of former female smokers  
compared to females who never smoked, both of which share the 
same covariate status x. After traditional ad hoc categorization, this 
odds ratio can only be evaluated for the small set of cut-off points  
b that define the categories. For continuous outcome logistic  
regression, the odds ratio can be evaluated for all potential BMI 
values b > 0, which allows the associations for different catego-
rization schemes to be interpreted post hoc. This feature ensures 
comparability and reproducibility independent of any ad hoc choice 
of categories.

The continuous outcome logistic regression model can be esti-
mated by maximum likelihood for BMI measurements recorded at  
different scales15. The likelihood contribution of an individual  
with a BMI value in the interval (b, b–] is simply the probability, 
in light of some specific regression function r, of observing a BMI 
within this interval16

    ℙ(b < BMI ≤ b– | smk, sex, x)                                        (2)

        = ℙ(BMI ≤ b– | smk, sex, x) – ℙ(BMI ≤ b | smk, sex, x)

        = expit(r(b– | smk, sex, x)) – expit(r(b | smk, sex, x)).

The BMI measurement (b, b
–] can be a narrow numeric interval 

based on precise measurements of height and weight, or a wide 
interval corresponding to some standard or non-standard catego-
rization scheme. Thus, continuous outcome logistic regression is 
applicable to studies that implement different BMI measurement 
scales or categorization schemes, or even a mixture of those. The 
procedure thus directly addresses the conceptual problem of lack 
of comparability between different studies. The aim of our study 
was to propose a continuous outcome logistic regression model  
for BMI that is independent of both the BMI measurement scale 
and cut-offs used for ad hoc categorization, which would allow  
tailored categorized parameters and contrasts to be extracted,  
compared, and communicated post hoc. We expected the model 
to be insensitive to the BMI measurement scales, in light of both 
the estimated conditional BMI distributions and the covariate 
model parameters. We evaluated this hypothesis empirically by  
analyzing the association of smoking status and BMI using 
data from the Swiss Health Survey 201217 while controlling for 
important covariates, such as age, alcohol intake, diet, physical  
activity, and socio-economic variables. We compared models  
fitted to a cascade of increasingly precise BMI values, starting with 
the four WHO categories and ending with the “exact” BMI values. 
This allowed an understanding of the impact of the measurement  
scale on the resulting models. We also expected the results  
of the novel continuous outcome logistic model for BMI to be  
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comparable to previously reported associations of smoking  
and BMI, and evaluated this hypothesis for the Swiss Health  
Survey 2012.

Methods
BMI data and models
Population for empirical evaluation. The Swiss Health Sur-
vey (SHS) is a population-based cross-sectional survey. Since 
1992, it has been conducted every five years by the Swiss Federal  
Statistical Office17. For this study, we restricted the sample from 
the 2012 survey to 16,427 individuals aged between 18 and 
74 years. Height and weight were self-reported by telephone  
interview. Records with extreme values of height or weight 
were excluded (highest and lowest percentile by sex). Smoking  
status was categorized into never smoked, former smokers, light  
smokers (1 – 9 cigarettes per day), moderate smokers (10 – 19), 
and heavy smokers (> 19). Individuals who never smoked stated 
that they did not currently smoke and never regularly smoked for  
longer than a six-month period; former smokers had quit  
smoking but had smoked for more than 6 months during their  
life. One cigarillo or pipe was counted as two cigarettes, and 
one cigar was counted as four cigarettes. The following adjust-
ment variables were included: fruit and vegetable consumption,  
physical activity, and alcohol intake. Information on the number 
of days per week fruits and vegetables were consumed was avail-
able. We chose to categorize as close to the “5-a-day” recom-
mendation as possible18. Fruit and vegetable consumption was  
combined in one binary variable that comprised the information 
on whether both fruits and vegetables were consumed daily or not.  
The variable describing physical activity was defined as the  
number of days per week a subject started to sweat during lei-
sure time physical activity and was categorized as > 2 days, 1 – 2 
days, or none. Alcohol intake was included using the continuous 
variable grams per day. Education was included as highest degree  
obtained and was categorized as mandatory (International  
Standard Classification of Education, ISCED 1-2), secondary II 
(ISCED 3-4), or tertiary (ISCED 5-8)19. Nationality had the two  
categories: Swiss and foreign. Language region reflecting  
cultural differences within Switzerland was categorized as  
German/Romansh, French, or Italian.

Models for BMI distributions. Binary logistic regression, ordered, 
and unordered polytomous logistic regression20 were previously 
applied to the analysis of BMI distributions based on ad hoc cat-
egorized BMI values. We will review the corresponding parameteri-
zations and compare the model parameters in the common frame-
work of model (1) before introducing the novel continuous outcome 
logistic regression for the analysis of BMI distributions.

Binary logistic regression For a binary outcome, such as non- 
obesity vs. obesity (BMI

30
 = I(BMI ≤ 30)), the regression  

function is defined for non-obese individuals only 

        r(30 | smk, sex, x) = α
30

 + γ
smk:sex

 + x⊤β,

�with intercept α
30

, main and interaction parameters γ of smok-
ing and sex, and regression coefficients or covariate param-
eters β. This model evaluates the conditional distribution  
function for BMI only at b = 30. Note that a change of 

the BMI cut-off point b leads to a different model, and 
thus different parameter estimates for all parameters α

b
, 

γ, and β. Such models have been reported for b = 25 or  
b = 3011,12.

Ordered polytomous logistic regression This model is also 
known as proportional odds logistic regression for an  
ordered categorical outcome, such as the WHO categories3 
underweight (BMI

18.5
 = I(BMI ≤ 18.5)), normal weight 

(BMI
(18.5,25]

 = I(18.5 < BMI ≤ 25)), overweight (BMI
(25,30]

 
= I(25 < BMI ≤ 30)), and obese (BMI > 30). For these  
four categories, the model is defined by three category- 
specific regression functions

	       r(18.5 | smk, sex, x) = α
18.5

 + γ
smk:sex

 + x⊤β

	          r(25 | smk, sex, x) = α
(18.5,25]

 + γ
smk:sex

 + x⊤β

                 r(30 | smk, sex, x) = α
(25,30]

 ��+ γ
smk:sex

 + x⊤β

�or, in more compact notation, by r(b | smk, sex, x) = α(b) +  
γ

smk:sex
 + x⊤β with intercept function

( ) ( )
18.5

(18.5,25]

(25,30]

18.5
3= 18.5 25

25 < 30.

b

b b

b

α
αα
α

 ≤ < ≤
 ≤

�The parameters γ and β are the same for all three regres-
sion functions and can be interpreted as category-independ-
ent log-odds ratios as a consequence of the proportional odds  
assumption on these parameters. The intercept function 
increases monotonically. Ordered polytomous logistic regres-
sion can be understood as a series of binary logistic regres-
sion models where only the intercept is allowed to change 
with increasing BMI values at cut-off points chosen ad 
hoc. Self-reported BMI values using the WHO criteria have  
been analyzed by such a model in 7. The BMI distribution  
of children categorized at marginal percentiles has been  
analyzed by a proportional odds model in 13.

�An extension of ordered polytomous regression to continu-
ous responses, treating the intercept function α as a step-
function at the observations with subsequent non-parametric  
maximum likelihood estimation, was recently suggested  
by 21. Unlike the model and estimation procedure discussed 
here, their method does not allow for the different likelihood 
contributions presented in the next section.

Unordered polytomous logistic regression Multinomial 
logistic regression is equivalent to polytomous logistic  
regression for an unordered outcome and is a generalization of  
the proportional odds model as it allows for category-specific 
parameters γ(b) and β(b) in the regression function

 	        r(b | smk, sex, x) = α(b) + γ(b)
smk:sex

 + x⊤β(b)

�for b ∈ {18.5, 25, 30}. The model can be used to test the  
proportional odds assumption, i.e., γ ≡ γ(b) and β ≡ β(b) for 
all b ∈ {18.5, 25, 30}. Typically, the model is introduced 
as a model of the conditional density by the relationship 
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between density and distribution function for discrete vari-
ables (as in (2)). This model is very popular for the analysis of  
BMI-related outcomes8–10.

The novel continuous outcome logistic regression model can be 
viewed as a generalization of the above-introduced models from 
discrete to continuous outcomes. Like these discrete models, the 
continuous BMI logistic regression model does not require strong 
parametric assumptions for the conditional BMI distribution, yet 
it allows to model the conceptually continuous BMI variable by a 
continuous distribution, regardless of the scale of the actual BMI 
measurements.

The most important aspect here is a smooth and monotonically 
increasing intercept function α(b). In an unconditional model for 
the marginal BMI distribution

         	            logit(ℙ(BMI ≤ b)) = r(b) = α(b),

such an intercept function can model arbitrary BMI distribu-
tion functions by the term expit(α(b)) (technical details of the 
specification and estimation of such an intercept function are  
given in the Appendix). This essentially removes the need to 
specify a strict parametric distribution, such as the normal, for  
BMI. Because of a potential impact of both smoking and sex of the 
individual on the entire distribution, we stratify this intercept func-
tion with respect to these two variables, i.e., one specific intercept 
function is dedicated to each combination of smoking and sex:

       logit(ℙ(BMI ≤ b | smk, sex)) =  r(b | smk, sex) = α(b)
smk:sex

.

This model is also assumption free, because arbitrary BMI  
distribution functions can be assigned to each combination of sex 
and smoking.

To facilitate model interpretation, we assume that regression  
coefficients β of the remaining covariates are constant across the 
entire BMI distribution in our final model

                    logit(ℙ(BMI ≤ b | smk, sex, x)) = r(b | smk, sex)     (4)

                                                                       = α(b)
smk:sex

 + x⊤β.

The regression coefficients β are log-odds ratios of all possi-
ble events BMI ≤ b, b > 0. The interpretation of the parameters  
β is the same in logistic regression, proportional odds regres-
sion, and the novel continuous BMI logistic regression (4). Of  
course, these constant regression coefficients might be incor-
rectly specified. Residual analysis, for example using the residual  
U = ℙ(BMI ≤ b | smk, sex, x) for a subject with BMI b, can help 
to detect such misspecifications. Similar to Cox-Snell residuals,  
the residual U is uniform when the model is correct.

Our model (4) can be understood as a joint model of all possi-
ble binary logistic regression models for the outcomes BMI ≤ b  
with b > 0 under two constraints: (1) the sex- and smoking- 
level-specific intercept is not allowed to jump abruptly, thus less 

parameters are required in this joint model, and increases for 
increasing cut-off points b; (2) the regression coefficients β are 
held constant as b increases. Instead of restricting our attention 
to specific binary logistic regression models defined by some cut-
off points chosen ad hoc, we can answer questions about the odds  
ratios for all or specific events BMI ≤ b post hoc based on this 
model.

The interpretation of the sex- and smoking-specific intercept func-
tions, and thus the associations of smoking and sex with BMI, 
however, is fundamentally different from the interpretation of 
the regression coefficients β. Because we allow the entire BMI  
distribution to change with these two variables in more complex 
ways, there is no simple interaction term γ that captures these 
parameters in model (4). However, model (4) allows computa-
tion of the log-odds ratios for some event BMI ≤ b between, for  
example, female former smokers and females who never smoked 
for all x as

  r(b | former smoker, female, x) – r(b | never smoked, female, x) =  
       α(b)

former smoker:female
 – α(b)

never smoked:female

In this way, the parameters and contrasts we are interested in are 
not directly parameterized in model (4) but nevertheless can be 
obtained from this model by relatively simple contrasts. The events 
BMI ≤ b are not restricted to those of a specific categorization of 
the BMI measurements (such as the WHO categories). Due to the 
smoothness of the underlying intercept functions, log-odds ratios 
can be computed for arbitrary BMI values b > 0.

Likelihoods for BMI models. Because the regression func-
tion r is defined for all possible BMI values b in model (4), 
the likelihood (2) can be evaluated for all types of inter-
vals (b, b

–] and also for “exact” BMI values computed as 
the ratio of weight and squared height. We distinguished  
between four different likelihood contributions corresponding to 
four different BMI measurement scales.

WHO categories (WHO) The BMI for each individual was 
reported in one of the four WHO categories corresponding 
to the intervals ≤ 18.5 (under-weight), (18.5, 25] (normal 
weight), (25, 30] (over-weight), > 30 (obese). The likelihood  
contribution of a normal-weight individual is thus

    expit(r(25 | smk, sex, x)) – expit(r(18.5 | smk, sex, x)).

Other categories (Int 1) Other studies might have used a different 
categorization scheme, e.g., the 21 categories defined by BMI 
intervals for length two:

                 ≤ 17, (17, 19], (19, 21], . . . , (35, 37], > 37.               

�An individual with a BMI value between 19 and 21 thus  
contributes

           expit(r(21 | smk, sex, x))–expit(r(19 | smk, sex, x))

to the likelihood.

Page 4 of 16

F1000Research 2017, 6:1933 Last updated: 17 JAN 2020



Numeric intervals (Int 2) With weight measured in kilogram and 
height in meters, the BMI is calculated according to its defi-
nition as BMI = weight/height2. However, for an individual 
1.75m tall weighting 76kg, all BMI values between 75.5/1.7552 
= 24.51 and 76.5/1.7452 = 25.12 are consistent with this indi-
vidual due to rounding error. Thus, this individual contributes

             expit(r(25.12 | smk, sex, x)) − expit(r(24.51 | smk, sex, x))

�to the likelihood, which automatically takes the measure-
ment error into account. These intervals can be expected to be 
much larger in studies that rely on self-reported weights and 
heights.

Exact measurements (Exact) If extreme precision was used 
to measure weight and height, BMI = weight/height2 can  
be considered an “exact” observation. Because the interval 
around this value is very narrow, one can approximate the 
likelihood contribution by the density of the conditional BMI 
distribution

( )expit( (  | smk, sex, ))
5

r b

b

∂
∂

x

	 evaluated at the “exact” BMI value.

It is important to note that it is possible to evaluate the likeli-
hood when a mixture of these different BMI measurement scales 
is applied to subsets of the individuals. In subject-level meta  
analyses, for example, it would be possible to estimate a joint  
model based on studies using different BMI categorizations or 
no categorization at all. From a purely theoretical point of view, 
the application of numeric intervals that take rounding error into 

account (Int 2) is most appropriate. The remaining three procedures 
must be considered approximate.

Empirical results
Comparison of estimated probabilities obtained from the four  
different likelihoods for model (4) showed that these prob-
abilities were practically identical. For females and males of all  
smoking categories with baseline covariates, the estimated  
conditional BMI distribution evaluated at the WHO categories  
b ∈ {18.5, 25, 30} obtained from model (4) are given in Table 1. 
The model was fitted to BMI observations categorized accord-
ing to the WHO and to a different categorization with intervals 
of two BMI units (Int 1). Furthermore, numeric intervals taking  
rounding error into account (Int 2) and “exact” BMI values were 
used to estimate model (4). The approximation of the likelihood 
by the density was very accurate, as the estimated probabilities  
obtained from models estimated from numeric intervals taking  
rounding error into account (Int 2) and “exact” BMI values  
were very close. Differences occurred in the third decimal place if 
at all. Slightly larger differences were observed between numeric 
intervals (Int 2) and intervals obtained by categorization Int 1. The 
more extreme WHO categorization led to the largest differences in 
these estimated probabilities, but the results were still practically 
identical.

In addition to a comparison of the estimated probabilities, we also 
compared the proportional log-odds ratios β among the four BMI 
likelihoods (Table 2) and did not find relevant differences. The 
approximation of the likelihood based on the density resulted in 
odds ratios numerically almost identical to those obtained from 
numeric intervals that take the rounding error into account (Int 2).  
The odds ratios obtained with intervals of Int 1 differed more, 
but were still negligible. This also applied to the marginally less 

Table 1. Conditional distribution of BMI for WHO Categories. For baseline characteristics x, the probabilities obtained from 
model (4) for BMI ≤ 18.5, BMI ≤ 25, and BMI ≤ 30 are given for each combination of smoking and sex of the individual. The 
model was fitted using the likelihood (Lik) defined by BMI measurements categorized according to the WHO and according to 
a different categorization with intervals of two BMI units (Int 1). Numeric intervals taking rounding error into account (Int 2) and 
“exact” BMI values were used to estimate the model parameters. The differences between these four ways of evaluating the 
likelihood with respect to the estimated probabilities were marginal.

BMI: ≤ 18.5 ≤ 25 ≤ 30

Sex Smoking Lik.: WHO Int 1 Int 2 Exact WHO Int 1 Int 2 Exact WHO Int 1 Int 2 Exact

Female Never 0.056 0.039 0.043 0.044 0.764 0.735 0.728 0.728 0.943 0.929 0.932 0.932

Former 0.053 0.038 0.043 0.043 0.748 0.717 0.712 0.712 0.941 0.932 0.931 0.931

Light 0.079 0.051 0.062 0.063 0.787 0.759 0.755 0.755 0.968 0.955 0.957 0.957

Medium 0.047 0.042 0.048 0.048 0.768 0.732 0.723 0.723 0.948 0.944 0.942 0.942

Heavy 0.084 0.086 0.071 0.071 0.740 0.705 0.713 0.712 0.946 0.937 0.938 0.939

Male Never 0.003 0.004 0.004 0.004 0.546 0.503 0.507 0.507 0.921 0.907 0.910 0.910

Former 0.000 0.002 0.002 0.002 0.500 0.411 0.405 0.406 0.912 0.887 0.884 0.885

Light 0.000 0.002 0.003 0.003 0.545 0.497 0.497 0.497 0.932 0.918 0.926 0.925

Medium 0.000 0.006 0.005 0.005 0.569 0.522 0.521 0.522 0.932 0.914 0.922 0.922

Heavy 0.006 0.003 0.003 0.003 0.525 0.469 0.462 0.461 0.901 0.881 0.879 0.879
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accurate odds ratios obtained from models fitted to BMI values 
categorized according to WHO criteria. It should be noted that 
the lengths of the confidence intervals between the four different  
BMI likelihoods were in line, which indicated that not only the 
estimated parameters β̂  but also their estimated standard errors 
are comparable among the four approaches. The large sample size 
led to almost all odds ratios being significant. Age was associated  
with a shift towards larger BMI values, while higher alcohol intake 
was associated with marginally reduced BMI. Lower intake of 
fruits and vegetables as well as less physical activity also indi-
cated a shift to higher BMI values. The BMI distributions of people  
with a higher education were shifted to the left compared to  
those of less well-educated people.

The BMI values of people of the German-speaking part of  
Switzerland were higher than those of the French- and Italian-
speaking regions.

The estimated conditional BMI distribution for all combinations  
of smoking and sex were clearly non-symmetric, and the impacts 

of smoking and sex of the individual related to changes in the 
mean and higher moments (distribution functions in Figure 1 and  
density functions in Figure 2). The BMI distribution shifted  
towards larger BMI values from males who never smoked to male 
former smokers. In this case, only the mean was affected; the  
shape of the distribution was constant. The BMI distribution 
of females who never smoked and female former smokers was  
similar to those of males. The difference between the two sexes 
could not be described by a simple shift because the shapes of 
the two distributions clearly differed. In general, the associa-
tion of smoking and BMI was less pronounced for females than 
for males. Compared to the associations of sex (Figure 1 and  
Figure 2), the smoking associations were much smaller. We  
quantified the odds ratios of the smoking association for both  
sexes for the BMI categories. Table 3 presents the same informa-
tion as the distribution functions evaluated with the BMI catego-
ries (gray vertical lines in Figure 1) on the odds ratio scale in a 
condensed form. The odds of lower BMI evaluated at BMI ∈  
{25, 30} for male former smokers were smaller than for males who 
never smoked. The odds ratios for underweight and normal weight 

Table 2. Estimated proportional odds ratios of covariates. The odds ratios exp(β̂) along with 95% confidence 
intervals for the covariates age (centered at 40 years), education, alcohol intake, fruit and vegetable consumption, 
physical activity, education, nationality, and region are given for the four ways of evaluating the likelihood of model 
(4), i.e.,, using BMI measurements categorized according to the WHO and according to a different categorization with 
intervals of two BMI units (Int 2), numeric intervals taking rounding error into account (Int 2), and “exact” BMI values.

Likelihood

Covariate WHO Int 1 Int 2 Exact

Age (centered at 40 in y) 0.968 (0.966–0.970) 0.969 (0.967–0.971) 0.968 (0.967–0.970) 0.968 (0.967–0.970)

Alcohol intake (g/d) 1.002 (0.999–1.004) 1.003 (1.001–1.005) 1.003 (1.001–1.004) 1.002 (1.001–1.004)

Fruit and vegetables

    High 1 1 1 1

    Low 0.880 (0.824–0.940) 0.928 (0.874–0.986) 0.929 (0.878–0.983) 0.929 (0.878–0.983)

Physical activity

    High 1 1 1 1

    Moderate 0.836 (0.774–0.903) 0.850 (0.792–0.912) 0.863 (0.808–0.921) 0.862 (0.808–0.921)

    Low 0.695 (0.640–0.756) 0.743 (0.688–0.802) 0.769 (0.716–0.827) 0.769 (0.716–0.826)

Education

    Mandatory 1 1 1 1

    Secondary 1.095 (0.992–1.209) 1.252 (1.141–1.373) 1.256 (1.150–1.371) 1.254 (1.149–1.369)

    Tertiary 1.604 (1.441–1.786) 1.760 (1.594–1.944) 1.785 (1.625–1.961) 1.781 (1.622–1.956)

Nationality

    Swiss 1 1 1 1

    Foreign 0.785 (0.728–0.848) 0.832 (0.776–0.893) 0.810 (0.758–0.864) 0.809 (0.758–0.864)

Region

    German speaking 1 1 1 1

    French speaking 1.175 (1.091–1.266) 1.147 (1.071–1.228) 1.134 (1.063–1.208) 1.133 (1.063–1.208)

    Italian speaking 1.190 (1.026–1.382) 1.173 (1.024–1.344) 1.236 (1.086–1.405) 1.234 (1.085–1.403)
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Figure 1. Conditional distribution of BMI. For each combination of smoking and sex, the conditional distribution function of BMI ℙ(BMI ≤ b 
| smk, sex, x) corresponding to model (4) was evaluated for baseline covariates x at all possible BMI values b. Red, female BMI distributions; 
blue, male BMI distributions; solid lines, BMI distributions of active smokers; dashed lines, never smoked; gray vertical lines, WHO categories 
18.5, 25, 30. The model was fitted using “exact” BMI values.

(BMI ≤ 25) and for non-obesity (BMI ≤ 30) increased for both 
males and females.

For current smokers, the odds ratio patterns that depended on  
BMI differed between males and females. All smoking levels  
were associated with larger odds of being underweight for  
females and had a U-shaped pattern. For males, this association was 
reversed and had an inverted U-shaped pattern. In the center of the 
BMI distribution (BMI ≤ 25), the odds ratios were much closer to 

1 for both sexes. The odds ratios for non-obesity (BMI ≤ 30) for 
females indicated a trend towards smaller BMI values for current 
smokers. Except for heavy smokers, this effect was also found for 
males.

Discussion
Our study showed that it was possible to analyze and compare  
BMI distributions in terms of standard parameters without the 
need of ad hoc categorization. Continuous BMI logistic regression,  
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Figure 2. Conditional distribution of BMI. For each combination of smoking and sex, the conditional density of BMI corresponding to model 
(4) was evaluated for baseline covariates x at all possible BMI values b. Red, female BMI distributions; blue, male BMI distributions; solid 
lines, BMI distributions of active smokers; dashed lines, never smoked; gray vertical lines, WHO categories 18.5, 25, 30. The model was fitted 
using “exact” BMI values.

which avoided ad hoc categorization of BMI values, led to  
deeper insights into the impact of sex of the individuals and smok-
ing status on the continuous BMI distribution. The model results 
were insensitive to BMI measurement scales or categorization  
schemes and matched previously reported findings on the impact 
of smoking and sex of the individuals on BMI. It was obvious 
from the conditional BMI densities (Figure 2) that more restrictive  

models, e.g., a conditional normal distribution with or without 
sex- and smoking-specific variance22, would describe the BMI dis-
tributions less accurately. The corresponding BMI-dependent odds 
ratios derived from continuous BMI logistic regression (Table 3) 
also indicated that a model that assumed proportional and thus 
BMI-independent odds would not be appropriate because odds 
ratios varied substantially as BMI cut-off points increased.
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We used a parsimonious approach in defining covariate param-
eters and described the impact of the covariates on the BMI  
distribution as being linear on the log-odds scale. We therefore 
assumed that the covariate parameters would be the same in all 
binary or polytomous logistic regression models regardless of the 
ad hoc categorization applied. This corresponds to the propor-
tional odds assumption in polytomous logistic regression models.  
In principle, this assumption could be relaxed by allowing  
BMI-dependent regression coefficients β(b), as in multinomial 
regression. Similar outcome-varying parameters are called time-
varying parameters in survival analysis and distribution regres-
sion in econometrics23,24 and are a special case of conditional  
transformation models14. Ongoing research25 suggests that the 
assumption of a constant and sex-independent age effect for 
BMI is oversimplistic and conditional transformation models14,15,  
allowing BMI distributions to vary smoothly with age, might  
provide additional insights.

From a practical point of view, one advantage of continuous 
outcome logistic regression is the possibility of evaluating the  
likelihood of BMI values obtained at different measurement scales 
or using different categorization schemes. This aspect allows the 
same model to be fitted to data obtained at different scales, and 
thus allows models from studies using different BMI measurement  
scales to be compared. The narrower the interval representing  
the BMI value for a particular individual, the more information  
is contributed by this individual to the likelihood. In contrast to 
the common procedure of downscaling all analyses by ad hoc  
categorization of BMI measurements to the ubiquitous WHO  
categories4,5, we propose to fit the same or even joint continu-
ous BMI model to all studies by maximizing a likelihood with 
measurement-scale specific contributions. In subject-level meta  
analyses, these likelihood contributions are a mixture of exact, 
interval, or category-based BMI measurement scales. The  

likelihood can also be extended to incorporate study-specific left 
and right truncation when only individuals with BMI values in a 
pre-defined range are enrolled.

Our findings on the association between smoking and BMI are 
consistent with the results of previous studies. It has been shown 
that former smoking is associated with being overweight as well 
as obesity, especially for males8,9,11,12,26. Other studies have also 
observed a positive association of male heavy smokers with  
obesity, although the association was non-significant when 
male heavy smokers were compared with males who never  
smoked8,9. By contrast, light and moderate smoking was associated 
with lower BMI values8,9. In general, current smoking is associ-
ated with lower BMI values12,27,28. These findings are consistent  
with previous findings on the effect of smoking on body 
weight29,30.

Waiving the need for ad hoc categorization and thus also for  
agreement on standard categories that define the parameters in 
models for BMI distributions makes reported scientific results 
less dependent on these standard categories, and most importantly, 
less dependent on the WHO criteria. Considering that BMI distri-
butions are subject to change at the population level over time2,  
insistence on the application of standards defined decades ago leads 
to an increasing discrepancy between models and data. Continuous 
BMI logistic regression is an attempt to narrow this gap.

Appendix: Computational details
The intercept functions α(b)

smk:sex
 for each combination of smok-

ing and sex were estimated as smooth and monotonically increas-
ing functions of b. The constraints expit(r(∞ | smk, sex, x)) = 1 
and expit(r(0 | smk, sex, x)) = 0 restrict the BMI distribution on 
the positive numbers. For each of the ten strata given by the five  
smoking categories and two categories of sex, an intercept function  

Table 3. Estimated non-proportional odds ratios for smoking. Odds ratios comparing all 
levels of smoking to the level never smoked for the events BMI ≤ 18.5, BMI ≤ 25, and BMI 
≤ 30 obtained from model (4) were fitted to “exact” BMI measurements; 95% confidence 
intervals are given.

BMI

Sex Smoking ≤ 18.5 ≤ 25 ≤ 30

Female Never 1 1 1

Former 0.993 (0.794–1.241) 0.922 (0.825–1.031) 0.987 (0.823–1.183)

Light 1.462 (1.135–1.884) 1.152 (0.977–1.358) 1.638 (1.187–2.259)

Medium 1.106 (0.823–1.488) 0.975 (0.830–1.146) 1.182 (0.894–1.564)

Heavy 1.674 (1.188–2.358) 0.925 (0.756–1.131) 1.116 (0.798–1.562)

Male Never 1 1 1

Former 0.457 (0.193–1.081) 0.664 (0.598–0.737) 0.757 (0.649–0.883)

Light 0.727 (0.275–1.922) 0.960 (0.825–1.117) 1.226 (0.926–1.622)

Medium 1.352 (0.631–2.900) 1.059 (0.917–1.223) 1.170 (0.911–1.503)

Heavy 0.852 (0.336–2.161) 0.832 (0.721–0.961) 0.716 (0.579–0.885)
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was defined by six increasing parameters of a Bernstein  
polynomial31 of order five. This choice ensures smoothness and 
monotonicity and allows flexible intercept functions and thus  
regression functions r and conditional BMI distributions to be 
described by model (4). The monotonicity constrained on the inter-
cept functions renders the addition of smoothing penalty terms 
to the likelihood unnecessary, because the effective number of  
parameters is less than the order of the Bernstein polynomial 
[see 15,32, for numerical experiments with varying numbers of  
parameters]. Simple maximum-likelihood estimation was  
performed for all model parameters simultaneously. When the 
likelihood was evaluated for BMI values in WHO categories, the 
sex- and smoking-specific intercept function was parameterized 
in terms of the step-function α(b) (see Formula (3)) defined for 
the proportional odds model. All computations were performed  
using R version 3.4.233. The mlt package32,34 was used to estimate 
continuous outcome logistic regression models. The underlying  
statistical theory is described in 15.

A blueprint for the estimation of conditional BMI logistic  
regression using the mlt package in R, assuming the data are  
available in a data frame sgb with variables bmi (the numeric  
BMI values), smoking, and sex (smoking and sex as factors), as 
well as age and alcohol (numeric age and alcohol intake) with 
optional sampling weights weights, is

### attach mlt package
library("mlt")
### compute support of BMI distribution
bmis <- quantile(sgb$bmi,
    prob = c(.01, .99), na.rm = TRUE)
vBMI <- numeric_var("bmi",
    bounds = c(0, Inf),
    support = bmis, add = c(-5, 5))
### set-up increasing Bernstein polynomial
bBMI <- Bernstein_basis(vBMI, order = 5,
                        ui = "increasing")
### set-up dummy encodings for smoking
### and sex
bSMK <- as.basis(~ smoking - 1, data = sgb)
bSEX <- as.basis(~ sex - 1, data = sgb)
### specify the model with strata sex
### and smoking and covariates age
### and alcohol
mod <- ctm(bBMI,
    interacting = b(sm = bSMK, sex = bSEX),
    shifting = ~ age + alcohol, data = sgb,
    todistr = "Logistic")
### f it model to data with weighted #
### ‘exact’ likelihood
fmod <- mlt(mod, data = sgb, scale = TRUE,
              weights = sgb$weights)
### plot conditional BMI distribution for
### 18 year-old never-smoking non-drinking
### female

nsf18 <- data.frame(
     sex = factor(c("Female", "Male"))[1],
     smoking = factor(c("Never", "Former",
          "Light", "Medium", "Heavy"))[1],
     age = 18, alcohol = 0)
plot(fmod, newdata = nsf18,
     type = "distribution")

Continuous outcome logistic regression, as a model for a  
continuous conditional distribution implemented in mlt, has a 
very strong connection to the Cox proportional hazards model,  
which describes the conditional continuous distribution of a  
survival time outcome with fully parameterized log-cumulative  
hazard function15,32. A Cox model for the conditional BMI  
distribution could be written as (see 35)

cloglog(ℙ(BMI ≤ b | smk, sex, x)) = r(b | smk, sex, x).

In this case, the logistic link in (1) was replaced by the comple-
mentary log-log link. In the absence of covariates x, the results 
obtained from our continuous BMI logistic regression model and 
a Cox model stratified by sex and smoking would not be affected 
by this change, because for each combination of sex and smok-
ing, a corresponding equivalent intercept function α(b)

smk:sex
  

(the sex- and smoking-specific log-cumulative hazard in the 
stratified Cox model) can be found on both the logit and cloglog  
scales. However, the interpretation of β changes from propor-
tional log-odds ratios to proportional log-hazard ratios. In contrast  
to the partial likelihood of Cox models that treat the intercept  
functions as nuisance parameters, the likelihood for continuous 
outcome logistic regression is evaluated for fully parameterized  
intercept functions and all model parameters are estimated by  
maximum likelihood [similar to 36]. The corresponding monoto-
nicity constraint allows smooth conditional distribution func-
tions to be estimated without adding smoothing parameters to the  
likelihood15,32.
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This article illustrates the methodology developed by Hothorn   (2014 , 2017 ) and implemented in theet al
CRAN package mlt (most likely transformation). The methods are applied to a common epidemiological
problem: estimating the effect risk factors for overweight and obesity measured in terms of body mass
index (BMI).  BMI is typically coded in categories determined by the World Health Organization (WHO),
but ad hoc categories may also be used, and other encodings of BMI are possible (e.g. BMI recorded to a
given numerical precision, or calculated exactly from the original height and weight data). The proposed
continuous outcome logistic regression model is capable of handling all of these different data formats for
BMI. This is illustrated using data from the Swiss Health Survey 2012. The BMI data from this survey are
encoded in various ways and the results show consistency of results (table 1 and 2). With the exact
encoding of BMI, the conditional distribution of BMI given baseline covariates is estimated from a flexible
parametric model using Bernstein polynomials (Figure 1, 2) and odds ratios that depend on the cutpoints
(referred to as "non-proportional" odds ratios) are also estimated.

I have only minor comments on the manuscript

1) Presentation of the non-proportional odds ratios is obviously more complex, but I wonder why a
comparison across different encodings was not made for these odds ratios as it was for the risk factors
assumed to have proportional odds ratios in Table 2.

2) In Table 2, the results for the WHO encoding are somewhat different from the other encodings, which
tend to be more consistent with each other. Why?

3) In Table 2 , I would recommend different units for the continuous variables, as the per-unit odds ratios
are attenuated towards 1 by the choice of scale, e.g. odds ratios for a 10-year age difference and a single
unit of drink (12g in Switzerland, although 10g is more internationally comparable).

4) The final paragraph of the discussion seems to imply that the WHO cutpoints will changes in the future
as prevalence of overweight and obesity increases. This seems unlikely to me as these cutpoints are
normative. For example, despite doubts raised about the utility of the current cutpoints in Asian
popoulations, WHO recommends to continue to use them for international comparisons. Having said that,
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popoulations, WHO recommends to continue to use them for international comparisons. Having said that,
it is possible that the categories will become more detailed in the future as epidemiologists use the three
classes of obesity (30-35, 35-59, 39+) and/or break down the "normal" category into two (18.5-23, 23-25).
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The paper "Continuous outcome logistic regression for analyzing body mass index distributions" presents
a new approach for estimating conditional BMI probabilities, which avoids the necessity to specify ad hoc
BMI categories/cutoff points, e.g., as defined by the World Health Organization. More precisely, the

authors use recently developed conditional transformation models that directly model the distribution
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authors use recently developed conditional transformation models that directly model the distribution
function of BMI outcomes and are therefore capable to estimate all moments of the response distribution
simultaneously. Although computationally the model is quite complex, the authors show in numerous
examples that probability statements can be easily obtained in a simple fashion, similar to commonly
used models, e.g., when using ordered logistic regression models for BMI categories. The paper is
excellently written and clearly shows how information loss can be avoided by the presented model in
contrast to applying models onto ad hoc categorized BMI measurements. I only have minor points:

* In section "Likelihoods for BMI models" the authors show how  likelihood contributions are obtained
using different measurement scales. This was immediately clear to me, however, in the next section  the
sentence:

  "The model was fitted to BMI observations categorized according to the WHO and to a different
categorization with intervals of two BMI units (Int 1)."

  is confusing. What did the authors do exactly, please clarify.

* In section "Discussion" the authors say that a conditional normal distribution with covariate specific
variance would describe the BMI distributions less accurately. I agree, however, using distributions other
than the normal might lead to equivalent results. It would be nice to add some more discussion on that.

* In Table 2 there is a little typo, two commas "i.e.,,".

Regarding the Data Availability, I think to ensure full reproducibility readers should also be able to
download the data from F1000Research, that is why I answered "NO". However, this point is not too
critical, since it is possible to obtain the data on request.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
No

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

 No competing interests were disclosed.Competing Interests:

I confirm that I have read this submission and believe that I have an appropriate level of
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 Noora Kanerva
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The manuscript “Continuous outcome logistic regression for analyzing body mass index distributions” is a
very well written paper. The issue is interesting and provides strong suggestion for future studies to
consider continuous logistic regression instead of traditional logistic regression. I have only some minor
questions/suggestions for the authors:
 
1. The main research question was defined clearly in the end of Introduction section (association between
smoking and BMI). However, it was less clearly explained why association between smoking and BMI
was presented at different levels of sex in such detail in the results, but not the other covariates (e.g.,
consumption of fruits and vegetables)?
 
2. In the discussion (page 8), the authors state “The corresponding BMI-dependent odds ratios from
continuous BMI logistic regression (Table 3) indicated that a model that assumed   and thusproportional
BMI-independent odds ….”. Now, looking at the heading of the Table 3, it says “Estimated 

 odds ratios for smoking”. Could you please clarify, whether the Table 3 presentsNon-proportional
results for proportional or non-proportional odds ratios?
 
3. To demonstrate the difference between “traditional” and this “new” logistic regression approach, I
would like to see also estimated odds ratios for traditional logistic regression with ad hoc categorization
for this cohort. Would it be possible to add these results as supplemental material and discuss the
differences between these results shortly? I understand that comparing these models was not the aim of
this study, but still I think it would be interesting for the readers who are not familiar with this new approach
to see this difference.
 
4. In the discussion on page 9, the authors compare their results to previous studies. It would be also
interesting to compare the magnitude of the association between smoking and BMI in their study and in
the previous studies. If there are earlier studies from Switzerland or neighboring countries, are the results
more similar with these compared to studies conducted in other, geographically more distant populations
(e.g. USA, Asian countries)? Furthermore, it is not clear to me how the similarity of the results obtained
using continuous logistic regression and traditional logistic regression should be interpreted. Is it a sign of
validity of the new approach or does it imply that the traditional method is as good as the new one?
 
5. Please add a paragraph about the possible limitations of the proposed new logistic regression to the
Discussion section.
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6. What are the practical implications / future steps based on your findings? Should further studies move
from traditional regression model to using this new approach or should the method still be tested in other
data?
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others?
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If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes
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